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Abstract: A beam finite element model considering the slip, shear lag, and time-dependent effects
of steel–concrete composite box beams have been proposed in this study. The element is employed
to a one-dimensional analytical method that is solved involving an expression of spatial and time-
dependent variables. A step-by-step method that does not involve storing the stress and strain
histories, which is more accurate than the single-step algebraic method, is employed to solve the time
variables. A recursive method was elaborated to determine spatial and time-dependent variables
through the above method. The validity of the proposed method in instantaneous analysis is attested
by the numerical data of the elaborate finite element model established in a commercial software,
ANSYS, and that of the time-dependent analysis is verified by the existing test results on the long-term
performance of composite beams. The proposed beam finite element model is applied to predict
the time-related behavior of simply supported composite beams after validation. The results show
that concrete shrinkage and creep significantly influence the structural responses of the composite
box beams. From the initial load on the 28th day to that in the 3rd year, the vertical deflection at
the cross-section of the mid-span increased by 47.01%. The interface slip at the end increased by
−10.99%. The warping intensity function of the concrete slab and the steel beam at the end caused
by shear lag increased by 111.64% and 7.01%, respectively. The maximum compressive stress on the
concrete slab and the maximum tensile stress at the steel bottom flange increased by −6.75% and
4.56%, respectively.

Keywords: steel–concrete composite beams; beam finite element; shrinkage and creep; interface slip;
shear lag; time-dependent behavior

1. Introduction

Steel-concrete composite beams, by far, have been employed into buildings and bridges
world-wide. Design analysis and computational modeling of composite beams have long
been active study areas [1–5]. Their concrete slab and steel beam are subjected to pressure
and tension, respectively, under vertical loading, fully utilizing the good compressive
strength of concrete and the excellent tensile strength of steel. The shear connectors serve
as a kind of connection between the steel beam and the concrete slab to achieve the overall
working performance. However, deformation of the shear connectors causes interface slip
between the concrete slab and the steel beam, which reduces the bending stiffness of the
composite beams. Actually, the interface slip concerns are characteristic not only of classical
composite beams, but also of non-standard composite beams such as hybrid trussed beams
with inclined shear studs [6,7]. Additionally, the shear lag effect on the slab causes varying
stress distribution, remarkably for composite beams with an extremely wide concrete slab
where the shear lag is positive or negative [8–11]. In the positive case, the stress at the
slab–beam intersection is more than that for the remainder of the slab, while in the negative
case, the stress is lower than that for the remainder of the slab. Due to the non-uniform
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distribution of stresses, disregarding the shear lag may bring out underestimation of the
actual stresses in parts of the concrete slab. Subsequently, to simulate the mechanical
behavior of composite beams accurately, the shear lag and interface slip must be taken
into consideration. Figure 1 shows the two mechanical behaviors of the composite box
beam above. On top of the mentioned spatial kinematic effects, the time-dependent effect
of the structure because of the shrinkage and creep of the concrete slab have been a major
focus in the study of composite beams, where creep and shrinkage of concrete lead the
extra internal force and deformation of the composite beam to continuously change as
time goes by [12,13]. Some studies have focused on the partial time-dependent effects
of the composite beams. For example, D Huang et al. [14] studied the time-dependent
shear lag of assembled composite beams with the concrete age difference across the section.
Souici et al. [15] proposed a method to study the effects of creep in composite beams, which
assumes a perfect connection between the concrete slab and the steel beam. Based on
generalized beam theory, Henriques et al. [16] proposed a finite element to analyze the
time-dependent effects of steel–concrete composite beams without considering the slip.
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One-dimensional models that consider interface slip, shear lag, and time-dependent
behaviors [17–21] have been widely utilized in the behavior of composite beam’s analyses.
The one-dimensional beam model retains the longitudinal direction (along the span) and the
cross-sectional characteristics are simplified in the transverse and vertical directions, which
is obviously more efficient than the three-dimensional elaborate model. The correctness
and applicability of the one-dimensional model have been widely verified by plenty of
engineering practices.

The spatial and time-dependent variables are predicted to analyze one-dimensional
models. To solve the spatial variables, displacement functions and the intensity functions
of the entire beam are substituted into equations about virtual work. The finite element
method (FEM) [20] is often utilized to solve the equations. Madenci et al. conducted some
studies on finite element models of GFRP composite beams [22–25]. How to consider time
variables is the main focus of the model. Many studies have considered the time-dependent
behavior of composite beams due to the creep and shrinkage of concrete [26–36]. For
the shrinkage, since the shrinkage has little to do with the stress state, the initial strain is
applied to the structure during the calculation, which is simpler to address. For the creep,
this is more complicated since the concrete creep is inextricably relevant to the current stress
state, and the stress state in the whole stress history, which explains why many studies
focus on it.

Common solutions for time variables in the literature are general step-by-step methods
and methods using single-step algebraic equations. The time-integration procedures are an
essential part in numerical solution procedures that translate genetic integration relations
into constitutive relations for the time decomposition that can be easily addressed in the
solution algorithm. Methods using one-step algebraic equations, such as the effective mod-
ulus (EM) [26], mean stress (MS) [27], and age-adjusted effective modulus (AAEM) [28,29]
methods, can be used for different varieties of orthogonal formulas used for numerical
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integration, disregarding stress histories, but they lose the accuracy. Instead, Bazant [30]
proposed a general step-by-step method aimed at this numerical integration based on
the trapezoidal or midpoint rule. The drawback, however, is that the stress history as
a whole needs to be restored during the solving process, which leads to a long solving
time and high computational cost. However, the problem has been subsequently solved
by Bazant and Wu [31]. They proposed a new strategy for the step-by-step integration
methods by introducing the Dirichlet series to fit the creep function, which only requires
storing the stress and strain of the previous steps in time histories. This work paves a good
numerical way for the accurate analysis of the structural time-dependent behavior while
saving memory and improving computational efficiency.

The above findings show that without storing data on the stress history, the step-
by-step method in the time history and the finite beam element method with additional
degrees of freedom (DOFs) function based on the Euler Bernoulli beam in the space provide
the most accurate prediction of the complex spatial time-dependent behavior of composite
beams. The novelty of the study is to propose a one-dimension theoretical model of a
composite box beam considering slip, shear lag, and time-dependence based on the virtual
work principle. For the solution to this model, a finite element discretization method is
employed for the spatial variables, and an incremental step-by-step method without storing
stress and strain histories is utilized for the time variables. A beam element with 18 DOFs
for the steel–concrete composite box beam is proposed. The accuracy of the proposed beam
model is verified by numerical simulations and some classical tests. Among them, the
instantaneous behavior of the model is verified by numerical calculations using the finite
element model, and the time-dependent behavior of the model is verified by long-term
performance test results.

2. Theoretical Model of the Composite Box Beam
2.1. Principal Knowledge

The beam element model was built on the basis of the classical Euler Bernoulli beam
theory and the virtual work principle. Considering the behaviors of the steel–concrete com-
posite box beam, the following basic assumptions are made for the theoretical derivation
and modeling:

(i) The vertical bending curvatures and transverse bending curvatures of the concrete
slab and steel beam are identical;

(ii) The deflections of the concrete slab and steel beam in both vertical and transverse
deflections are identical;

(iii) Shear deformation of the beam caused by bending is disregarded;
(iv) The slip between the steel beam and the concrete slab is considered only in a longitu-

dinal direction. The shear connections are arranged uniformly along the span so that
the shear connection stiffness of the interface remains identical along the span;

(v) The shear lag on vertical deflection is considered;
(vi) The study only focused on the structure in the normal service stage, so the concrete

slab is always under elastic stage. The concrete creep is simulated by use of a linear
creep model according to Bazant’s study.

(vii) The study only focused on the structure in the normal service stage, so the steel beam
is always under the elastic stage;

(viii) The study only focused on the mechanical properties in the normal service stage, so
the shear connections are always under elastic stage.

Figure 2 shows the definition of the geometrical parameters of the I-beam or box com-
bination beam, where Oc is the centroid of the concrete slab, Os is the centroid of the steel
beam, and Cs is the torsional centroid of the transformed section of the composite beam.
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Figure 2. Geometric notation of composite beams. (a) Three-dimension; (b) Cross-section. 
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2.2. Kinematics of the Composite Box Beam

From the above assumptions and the coordinate system in Figure 2, the transverse
displacement u(x, y, z) and vertical displacement v(x, y, z) at any point of the beam,
displacement of the concrete slab wc(x, y, z), and displacement of the steel beam ws(x, y, z)
in longitudinal direction are expressed as follows:

u(x, y, z) = u0(z)− φ(z)(y− yh)
v(x, y, z) = v0(z) + φ(z)(x− xh)
wc(x, y, z) = wc0(z)− u′0(z)x− v′0(z)y + fc(z)ψc(x)
ws(x, y, z) = ws0(z)− u′0(z)x− v′0(z)y + fs(z)ψs(x)

(1)

where yh is the y-directional coordinate of Cs; xh is the x-directional coordinate of Cs; wc0
and ws0 are the longitudinal displacements of Oc and Os, respectively; u0 is the transverse
displacement of Oc or Os; v0 is the vertical displacement of Oc or Os; φ is the torsion angle
of the overall structure; f c and f s are the intensity functions of warping due to shear lag
on the concrete slab and steel beam, respectively; and ψc(x) and ψs(x) are the functions of
warping due to shear lag on the concrete slab and steel beam, respectively. The functions of
warping on the concrete slab are calculated based on Equation (2). For the steel U-beam,
there is no warpage due to shear lag in the upper flange and web; thus, ψs(x) = 0. For the
bottom flange of the steel beam, the shear lag needs to be considered and is calculated by
Equation (3).

ψc(x) =


[

1−
(

bc−|x|
bc−bc1

)2
](

bc−bc1
bc1

)2
|x| > bc1

1−
(
|x|
bc

)2
|x| ≤ bc1

(2)

ψs(x) =


1−

(
|x|
bs1

)2
|x| ≤ bs1 for bottom plate of steel girder

0 |x| > bs1 for bottom plate of steel girder
0 top plate and web of steel girder

(3)

The magnitude of interface slippage between the steel beam and the concrete slab dsl is:

dsl(z) = ws0(z)− wc0(z) + v′0(z)h0 (4)

where h0 is the vertical distance between Oc and Os.
From the variables of the displacement of the concrete slab, the normal strain εc and

shear strain γc of the concrete slab are obtained:{
εc(x, y, z) = w′c0(z)− u′′0 (z)x− v′′0 (z)y + f ′c(z)ψc
γc(x, y, z) = φ′(z)r∗c + fc(z)ψc,x

(5)

From the displacement variables of the steel beam, the normal strain εs and tangential
strain γs of the steel beam are obtained:
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{
εs(x, y, z) = w′s0(z)− u′′0 (z)x− v′′0 (z)y + f ′s(z)ψs
γs(x, y, z) = φ′(z)r∗s + fs(z)ψs,x

(6)

where r∗c is the vertical distance from Cs to any point of the concrete slab along its thin wall
and r∗s is the vertical distance from Cs to any point of the steel beam along its thin wall of.
ψc,x is the derivative of ψc of x in first order, and ψs,x is the first-order derivative of ψs with
respect to x.

2.3. Virtual Work of the Composite Box Beam

The one-dimensional analysis model of the composite box beam is on the basis of the
virtual work principle where the expression is:

δΠ =
∫
L

v

Ac

δεT
cσcdadz +

∫
L

v

As

δεT
sσsdadz +

∫
L
δdslqsldz−∑ δWTQ−

∫
L
δWTqdz = 0

∀δεs, δεc, δqsl, δW
(7)

where As and Ac are the areas of the steel beam and concrete slab cross-section, respectively,
and L is the length of the composite beam span. In order to present the results concisely,
the variables and equations are subsequently expressed as a matrix.

(1) Internal virtual work of the steel beam and the concrete slab∫
L

v

Ac

δεT
cσcdadz and

∫
L

v

As

δεT
sσsdadz in Equation (7) represent the internal virtual work

caused by the deformation of the concrete slab and the steel beam, separately. εc is the
strain matrix of the concrete slab, as shown in Equation (8), which includes the normal
strain and tangential strain, respectively.

εc =
(
εc γc

)T (8)

The strain matrix εc of a concrete slab is:

εc = Bcdc (9)

where

Bc =

(
−x −y 1 ψc 0 0
0 0 0 0 r∗c ψc,x

)
(10)

dc =
(

u
′′
0 v

′′
0 w′c0 f ′c φ′ fc

)T
(11)

εs is the strain matrix of the steel beam, as shown in Equation (12), including normal
strain and tangential strain, respectively.

εs =
(
εs γs

)T (12)

The strain matrix of steel beam εs is:

εs = Bsds (13)

where

Bs =

(
−x −y 1 ψs 0 0
0 0 0 0 r∗c ψs,x

)
(14)

ds =
(

u
′′
0 v

′′
0 w′s0 f ′s φ′ fs

)T
(15)

The stress matrix of the concrete slab σc (Equation (16)) including normal stress σc
and tangential stress τc:

σc =
(
σc τc

)T (16)
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Based on assumption (vi), considering the shrinkage and creep effect of concrete,
introduce the creep function J(t,t0) and shrinkage strain matrix εc,sh(t). The relationship
between the stress and the strain of concrete is expressed as follows:

εc(t)− εc,sh(t) = J(t, t0)X−1
c σc(t0) +

∫ t

t0

J(t, τ)X−1
c dσc(τ) (17)

where t is the age of concrete, t0 is the initial loading age of concrete, and εc,sh is the
matrix of instantaneous shrinkage strain of concrete with respect to t (Equation (18)).
εc,sh(t) in Equation (18) is the instantaneous shrinkage strain of concrete with respect to t.
The relationship Xc is shown in Equation (19), and µc in Equation (19) is Poisson’s ratio
of concrete.

εc,sh =
(
εc,sh 0

)T (18)

Xc =

(
1 0
0 1

2(1+µc)

)
(19)

The stress matrix of the steel beam σs (Equation (20)) comprises the normal stress σs
and shear stress τs.

σs =
(
σs τs

)T (20)

According to assumption (vii), the relationship between σs and εs is:

σs = EsXsεs (21)

where the relationship Xs is shown in Equation (22), Es is the elastic modulus of steel, and
µs is Poisson’s ratio of steel.

Xs =

(
1 0
0 1

2(1+µs)

)
(22)

(2) Internal virtual work by interface slip∫
L
δdslqsldz in Equation (7) is the internal virtual work due to the interface slip between

the steel beam and the concrete slab. From the assumption (viii), the relationship between
the interface shear force dsl and the interface slip displacement qsl is expressed as follows:

qsl(z) = ρdsl(z) (23)

where ρ is the per unit length along the longitudinal direction for the shear connection
stiffness of the interface.

(3) External virtual work

∑ δWTQ in Equation (7) is the external virtual work due to the concentrated load at
any position of the composite beam, and

∫
L
δWTqdz is the external virtual work due to the

distributed load at any position of the composite beam.
According to Equation (1), the displacement vector W at any position of the steel beam

or the concrete slab is expressed as:

W =
(
u(x, y, z) v(x, y, z) wc(x, y, z) ws(x, y, z)

)T (24)

Furthermore, Equation (24) is written as:

W = HdF (25)

where

H =


1 0 0 0 0 0 −(y− yCs) 0 0
0 0 1 0 0 0 x− xCs 0 0
0 −x 0 −y 1 0 0 ψc 0
0 −x 0 −y 0 1 0 0 ψs

 (26)
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dF =
(
u0 u′0 v0 v′0 wc0 ws0 φ fc fs

)T (27)

The concentrated load Q and distributed load q are expressed as follows:

Q =
(
Qx Qy Qcz Qsz

)T (28)

q =
(
qx qy qcz qsz

)T (29)

where Qx, Qy, and Qz are the concentrated loads in the x, y, and z direction, respectively,
and qx, qy, and qz are the distributed loads in the x, y, and z direction, respectively. It should
be noted that this analytical model considers the case that the load acts at any position.

3. Numerical Procedure of the Analysis Model

The one-dimensional theoretical model of the composite box beam includes two parts
as follows. First, the time-dependent components are obtained using a more accurate
step-by-step method. To save computational space (without storing the stress history), the
Dirichlet series is introduced to the creep function. Second, the space-related components
are obtained by the FEM selected to discretize the composite box beam into several beam
elements with two nodes. Next, the components of element stiffness and equivalent load
matrices at each node are calculated, which are applied to obtain the overall stiffness matrix
and the overall equivalent load matrix.

3.1. Time Integration: Incremental Step-by-Step Method without Storing the Histories of Stress
and Strain

When the effect of temperature on concrete is disregarded, the gross strain of concrete
is the combination of strain, shrinkage strain, and creep strain in an instant [34], as shown
in Equation (30). The shrinkage strain is not related to the forces of the structure, and the
numerical model of the overall structure equals to the initial strain of the composite box
beam when considering shrinkage, which is a relatively simple method to address. The
instantaneous strain and creep strain are related to the forces of the structure. Moreover,
the strain is related to the stress, both of which change over time. So, the numerical analysis
of this process is far more cumbersome. According to reference [34], the creep function
J(t, t0) is employed to obtain the instantaneous strain and creep strain.

εc(t) = εc,e(t) + εc,sh(t) + εc,cr(t) (30)

According to reference [34], the creep function is written in the form of Equation (31):

J(t, t0) =
1

Ec(t)
+ C(t, t0) (31)

where Ec(t) is the elastic modulus of concrete in each time step t, and C(t,t0) is the specific
creep function of concrete in each time step t when the initial loading age is t0. By substi-
tuting Equation (31) into Equation (17) and separating the instantaneous strain εc,e(t) and
creep strain εc,cr(t), the following expressions are obtained:

εc,e(t) = X−1
c
σc(t)
Ec(t)

= X−1
c
σc(t0)

Ec(t0)
+
∫ t

t0

1
Ec(τ)

X−1
c dσc(τ) (32)

εc,cr(t) = X−1
c σc(t0)C(t, t0) +

∫ t

t0

C(t, τ)X−1
c dσc(τ) (33)

To improve the accuracy as much as possible, the incremental step-by-step method
is adopted, and the Dirichlet series is employed into the specific creep function C(t, t0)
by the step-by-step method (without storing the stress and strain histories, respectively).
According to reference [34], the Dirichlet series expansion of C(t, t0) in Equation (31) is
shown in Equation (34), i.e., the Kabir formula:
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C(t, t0) =
m

∑
j=1

αj(t0)
(

1− e−(t−t0)/τj
)

(34)

Bazant [34] suggested that for the concrete creep problem, using m = 4 is suffi-
cient to guarantee the validity of the expansion of series, and the delay time τj = 10j−1

(j = 1, 2, . . . , m). The αj(t0) (i = 1, 2, . . . , m) in Equation (34) is solved by the least-squares
method provided that C(t, t0) is known.

To apply the incremental step-by-step method, the time step from t0 to t is discretized
in the form of ∆tn = tn − tn−1 (n ≥ 1), and ∆εn

c , ∆εn
c,cr, ∆εn

c,sh and ∆σn
c of ∆tn are solved.

Among these variables, ∆εn
c,sh is independent of stress and is obtained from the time-

dependent constitutive relation of shrinkage strain; ∆εn
c is obtained from the displacement

matrix dc of concrete, while the calculation of ∆εn
c,cr and ∆σn

c is more complicated and
needs to be calculated by the recursive method [34]:

Using the nth time step ∆tn as an example, we have Equation (33):

εn
c,cr =


[0]2×1 n = 0

X−1
c

n−1
∑

i=0
∆σi

cC(tn, ti) n > 0
(35)

When n > 0,

∆εn
c,cr = ε

n
c,cr − εn−1

c,cr = X−1
c

[
n−2

∑
i=0

∆σi
c(C(tn, ti)− C(tn−1, ti)) + ∆σn−1

c C(tn, tn−1)

]
(36)

When n = 0,
∆ε0

c,cr = ε
0
c,cr = [0]2×1 (37)

Therefore,

∆εn
c,cr =


[0]2×1 n = 0

X−1
c

[
n−2
∑

i=0
∆σi

c(C(tn, ti)− C(tn−1, ti)) + ∆σn−1
c C(tn, tn−1)

]
n > 0

(38)

In Equation (38),

C(tn, ti)− C(tn−1, ti)

=
m
∑

j=1
αj(ti)

[
1− e−λj(tn−ti)/τj

]
−

m
∑

j=1
αj(ti)

[
1− e−(tn−1−ti)/τj

]
=

m
∑

j=1
αj(ti)

[
e−(tn−1−ti)/τj − e−(tn−ti)/τj

]
=

m
∑

j=1
αj(ti)e

−(tn−1−ti)/τj
[
1− e−∆tn/τj

]
(39)

Therefore, we obtain:

∆εn
c,cr = X−1

c

[
m

∑
j=1
βn

j

(
1− e−∆tn/τj

)
+ ∆σn−1

c C(tn, tn−1)

]
(40)

where

βn
j =


∆σ0

cαj(t0) n = 1
n−1
∑

i=0
∆σi

cαj(ti)e
−(tn−1−ti)/τj n > 1

(41)

It can be determined thatβn
j satisfies the recurrence relation, as shown in Equation (42).

It is only necessary to store βn−1
j and stress increment ∆σn−1

c at the previous time step
∆tn−1 to obtainβn

j at time step ∆tn, which avoids the need to store stress and strain histories.

βn
j = βn−1

j e−∆tn−1/τj + ∆σn−1
c αj(tn−1) (42)
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Therefore, it is determined that the strain increment ∆εn
c,cr of time step ∆tn is obtained

from the stress increment ∆σn−1
c of the previous time step ∆tn−1 and βn

j of the time step
∆tn. According to Equation (32), the following expressions are obtained:

∆σn
c = En

c Xc

(
∆εn

c − ∆εn
c,cr − ∆εn

c,sh

)
(43)

where

En
c =

{
En

c n = 0
En−0.5

c n > 0
(44)

As shown in Equation (43), the ∆σn
c of time step ∆tn is obtained. Afterward, one can

proceed to the next time step ∆tn+1 and continue to repeat the above calculation process.

3.2. Space Integration: The Finite Beam Element with 18 DOFs

An FEM with high accuracy and stability is applied to obtain the one-dimensional
analysis model in space. Like Equation (7), the identical virtual work principle is followed
in incremental time steps ∆tn:

δ(∆Π) =
∫
L

v

Ac

δεT
c (∆σn

c )dadz +
∫
L

v

As

δεT
s (∆σn

s )dadz +
∫
L
δdsl

(
∆qn

sl
)
dz−∑ δWT(∆Qn)−

∫
L
δWT(∆qn)dz = 0

∀δεs, δεc, δdsl, δW
(45)

The composite box beam is discretized into two-node finite beam elements with
18 DOFs, each node containing 9 DOFs. The elements of the node displacement matrix of
de are:

de =
(
de1 de2

)T (46)

dei =
(
ui u′i vi v′i wci wsi φi fci fsi

)
for i = 1, 2 (47)

Based on the node displacement matrix of element de, the shape function matri-
ces [Nc]6×18, [Ns]6×18, [Nsl]1×18, and [NF]9×18 are introduced. The following equations
are obtained:

dc = Ncde (48)

ds = Nsde (49)

dsl = Nslde (50)

dF = NFde (51)

where the values of the shape function matrices [Nc]6×18, [Ns]6×18, [Nsl]1×18, and [NF]9×18
are illustrated in Appendix A.

Substitute Equations (9), (13), (21), (23), (25), (43), (48), and (49) into Equation (45), and
the equilibrium equation of the composite box beam at time interval ∆tn is solved as:

Kn∆dn
e = ∆Fn (52)

where Kn is the incremental stiffness matrix for the incremental time interval ∆tn, ∆dn
e is

the incremental node displacement matrix of the element for the time incremental interval
∆tn, and ∆Fn is the incremental equivalent load matrix of the element node for the time
incremental interval ∆tn.

The form of the expression for the incremental stiffness matrix Kn is:

Kn =
∫
le

NT
c

En
c

x

Ac

BT
c XcBcda

Nc + NT
s

En
s

x

As

BT
s XsBsda

Ns + NT
slρNsl

dz (53)

where le is the length of the finite beam element.
The elements of incremental equivalent node load matrix of ∆Fn are calculated by the

following expression:
∆Fn = ∆Fn

ext + ∆Fn
cr + ∆Fn

sh (54)
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∆Fn consists of three parts, where ∆Fn
ext is the equivalent node load matrix externally

produced in the incremental step, ∆Fn
cr is the equivalent node load matrix of produced by

the creep strain in the incremental step, and ∆Fn
sh is the equivalent node load matrix caused

by the shrinkage strain in the incremental step. The equations of the three load matrices
above are:

∆Fn
ext =

∫
le

NT
FHT∆qndz + NT

FHT∆Qn (55)

∆Fn
cr =

∫
le

NT
c

En
c

{

Ac

BT
c Xc∆εn

c,crda

dz (56)

∆Fn
sh =

∫
le

NT
c

En
c

{

Ac

BT
c Xc∆εn

c,shda

dz (57)

Combining the above calculations in the time and space domains, a solution procedure
for a two-node finite beam element model with 18 DOFs of the composite box beam
considering slip, shear lag, and time-dependence is proposed:

First, based on Equation (34) and C(tn,ti) (i = 0, 1, . . . , n−1) for all of the time steps,
αj(ti) are obtained by least-square fitting, after which the recursive process begins:

(i) Calculate βn
j according to Equation (42);

(ii) Calculate ∆εn
c,sh; calculate ∆εn

c,cr according to Equation (40);
(iii) Calculate Kn according to Equation (53); calculate ∆Fn

ext, ∆Fn
cr, and ∆Fn

sh according to
Equations (55)–(57); calculate ∆Fn according to Equation (54); calculate ∆dn

e according
to Equation (52);

(iv) Calculate ∆εn
c from Equations (48) and (9);

(v) Calculate ∆σn
c according to Equation (43) for the next incremental time step;

(vi) Return to (i) and perform the iterative computation for the next incremental time step.

Figure 3 shows the synoptic scheme of inputted geometric and mechanical parameters
for the solution of the proposed beam element model. Figure 4 shows the flow of the
solution procedure for the proposed beam element.
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In short, this study proposed a finite beam element with 18 DOFs for a steel–concrete
composite box beam considering interface slip, shear lag, and time-dependence.

4. Verification of the Beam Finite Element Model

To verify the accuracy and applicability of the proposed beam finite element model,
the instantaneous and long-term results of the finite beam element model were verified.

4.1. Instantaneous Behavior

First, the instantaneous behavior of a simply supported composite beam applied to
a project under the action of a uniform load is analyzed. The standard span length of the
composite beam is 60 m, and the parameters of the cross-section are illustrated in Table 1.
The material properties of the specimen are listed as follows: shear connection stiffness
ρ = 1 kN/mm2, steel elastic modulus Es = 2.06 × 105 MPa, steel Poisson’s ratio µs = 0.3,
concrete elastic modulus Ec = 3.8629 × 104 MPa, and concrete Poisson’s ratio µc = 0.2. A
vertical uniform load of 200 kN/m is applied to the simply supported composite beam.

Table 1. Cross-section of a simply supported composite beam (validation through instantaneous analysis).

bc
(mm)

bc1
(mm)

tc
(mm)

bs
(mm)

bs1
(mm)

ts
(mm)

bst
(mm)

tst
(mm)

hs
(mm)

tw
(mm)

9000 5000 300 5000 5000 24 600 16 3000 20

The elaborate finite element (FE) model and the proposed finite beam element model
of the simply supported composite beam were utilized to numerically analyze the structure.
The elaborate FE model was established by using a commercial software, ANSYS version
18.0, as follows: both the concrete slab and steel beam were meshed by using shell elements
(four-node general order Shell181 element in ANSYS). The studs at the interface between
the steel plate and the concrete were simulated by using a linear spring element (two-node
general order Combin14 element in ANSYS). The elastic stiffness of the shear studs was
calculated as per CEB-FIP Model Code 1990 [37]. Figure 5 shows the elaborate FE model of
the simply supported composite beam in ANSYS, which has 4860 nodes and 5612 elements.
The mesh size of the elaborate element model is approximately 600 mm.
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Figure 5. Finite elaborate element model of a simply supported composite bridge.

The beam element was established by using MATLAB 2019. A mesh sensitivity test
was performed in which 20 beam elements and 21 nodes were used to mesh the specimens.
The results showed that the sensitivity of the FE simulation results is within 1% of the
observed values. The boundary conditions for the simply supported beam are listed in
Table 2. In order to ensure simulation of the boundary condition of the simply supported
beam, the longitudinal displacements of concrete slab and steel girder wc and ws and the
intensity functions of warping due to shear lag on concrete slab and steel girder f c and f s
are restricted in the mid-span. The transverse displacement u, vertical displacement v, and
torsion angle φ are restricted at both ends of the beam.
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Table 2. Boundary conditions for beam element model.

Location of Section Restraint DOFs

Both ends of the beam u, v, φ
Mid-span wc, ws, f c, f s

Figure 6 shows the calculation results of the elaborate FE model and proposed finite
beam element model, including vertical deflections, interface slip, stresses on the concrete
slab, and stresses at the bottom flange of the steel beam. The figure shows that the deviation
between the two calculations is only within 5%.
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In terms of the computation cost, the elaborate FE model requires 15.32 s, while the
proposed beam element requires a total of 1.56 s. Therefore, the proposed beam element
has notably higher computational efficiency than the elaborate FE model.
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4.2. Time-Dependent Behavior

Fan et al. [38] carried out a test of two composite beams under vertical uniform loads
in the long term. Both specimens have identical geometry configuration: the span of the
composite box beam is 4 m, the steel beam height is 180 mm, the thickness of the reinforced
concrete slab is 60 mm, and its width is 600 mm. A row of studs was welded on the upper
flange of the steel beam with an interval of 80 mm longitudinally. The concrete slabs of
specimens LCB1 and LCB2 were constructed of C20 concrete and C30 concrete, respectively.
The cubic compressive strengths on the 7th day and the 28th day of the concrete applied
in LCB1 were tested to be 24.3 MPa and 32.3 MPa, respectively. The cube compressive
strengths on the 7th day and 28th day of the concrete applied in LCB2 were 33.4 MPa
and 44.7 MPa, respectively. The composite beams were loaded from the 7th day of age
continuously and constantly and had been monitored for 3 years. The vertical uniform
load (including the weight of the beam itself) was 6.23 kN/m.

Figure 7 shows the test results and predicted results in comparison of the proposed
finite beam element model, focusing on the vertical displacement of the composite beams
and the strain development in the bottom flange of the steel beam. In the proposed model,
the shrinkage strains measured in the material tests and the creep model referring to CEB-
FIP 90 [37] are adopted to consider the shrinkage and creep of the concrete. The model
results show agreement with the test results.
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Figure 7. Comparison of the experimental results in [38] and the results of prediction for the finite
beam element model. (a) Vertical deflection; (b) Normal strain of steel bottom flange (Adapted with
permission from Ref. [35]. Copyright 2017 Elsevier.).

Bradford and Gilbert [39] conducted long-term performance tests on four simply sup-
ported steel–concrete composite beams with specimens named B1 to B4. Specimens B1 and
B2 arrange two rows of studs with an interval 200 mm longitudinally. Specimens B3 and
B4 arrange two rows of studs with an interval 600 mm longitudinally. The uniform vertical
loads are sustained by the specimens B2 and B4 considering self-weight (1.92 kN/m) only,
while those that are sustained by the specimens B1 and B3 consider self-weight (1.92 kN/m)
and extra uniform loads (7.52 kN/m). The cylindrical compressive strength and elastic
modulus of the concrete applied in the specimens is 31.1 MPa and 2.51 × 104 MPa, respec-
tively. The elastic modulus of steel is 2.0 × 105 MPa, the final value of shrinkage of concrete
on the 220th day was 410 × 10−6, and the coefficient of creep was 2.6.

Figure 8 displays the measured vertical displacements of the specimens and the pre-
dicted results of the proposed finite beam element model. As for the model, the coefficient
curves of the shrinkage strain and creep coefficient of concrete are determined by the
material tests. The prediction results of the proposed model show agreement with the
test results.
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Figure 8. The experimental results in [39] and the prediction results of the finite beam element model
(Adapted with permission from Ref. [35]. Copyright 2017 Elsevier.).

A comparison between the experimental data given in [38,39] and the prediction
model proposed by Zhu and Su [35] was carried out. The comparison results obtained by
Zhu and Su are similar to those obtained by this study, as shown in Figures 7 and 8.

5. Application of the Beam Finite Element Model

The proposed method is applied to predict the time-dependent behaviors of simply
supported composite beams. The span of the composite beam is 40 m, the parameters of
the cross-section shown in Table 3. The material properties of the specimens are as follows:
shear connection stiffness ρ = 1 kN/mm2, elastic modulus of steel Es = 2.06 × 105 MPa,
Poisson’s ratio of steel µs = 0.3, cubic compressive strength of concrete f ck = 50 MPa, elastic
modulus of concrete Ec = 3.8629 × 104 MPa, and Poisson’s ratio of concrete µc = 0.2, the
shrinkage age tsh = 7 d, loading age t0 = 28 d, and relative humidity RH = 75%. A vertical
uniform load of 200 kN/m was applied to the composite beam. The shrinkage strain
and creep coefficient calculation methods specified in CEB-FIP 90 [37] were adopted in
the model.

Table 3. Cross-section of the composite bridge (application).

bc
(mm)

bc1
(mm)

tc
(mm)

bs
(mm)

bs1
(mm)

ts
(mm)

bst
(mm)

tst
(mm)

hs
(mm)

tw
(mm)

6500 4000 250 4000 4000 24 600 12 2000 16

5.1. Influence of the Shear Connection Stiffness

To investigate the influence of shear connection stiffness, two other composite beam
models with dissimilar shear connection stiffnesses were also analyzed for the cases
ρ = 0.5 kN/mm2 and ρ = 10 kN/mm2. Figures 9–12 show the vertical deflections, in-
terface slip, the stresses of the concrete slab, and the bottom flange of the steel beam, where
(a) and (b) represent the 28th day and 3rd year, respectively. According to the above figures,
compared to the model with ρ = 1 kN/mm2, the mid-span vertical deflections of the model
with ρ = 0.5 kN/mm2 on the 28th day and in the 3rd year are 13.90% larger and 8.40% larger,
respectively; for the interface slip at the beam end, the vertical deflections are 91.64% larger
and 90.62% larger, respectively; for the maximum compressive stress on the concrete slab,
the vertical deflections are 2.2% smaller and 2.13% smaller, respectively; for the maximum
tensile stress in the steel beam bottom flange, the vertical deflections are 1.06% larger and
0.96% larger, respectively. Compared to the model with ρ = 1 kN/mm2, the mid-span
vertical deflections of the model with ρ = 10 kN/mm2 on the 28th day and in the 3rd year
are 13.08% smaller and 7.90% smaller, respectively; for the interface slip at the support, the
vertical deflections are 89.13% smaller and 89.20% smaller, respectively; for the maximum
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compressive stress on the concrete slab, the vertical deflections are 1.97% larger and 1.91%
larger, respectively; for the maximum tensile stress in the steel beam bottom flange, the
vertical deflections are 0.96% smaller and 0.88% smaller, respectively.
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Figure 9. Vertical deflections of composite beams (influence of shear connection stiffness). (a) 28 days;
(b) 3 years.
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Figure 10. Interface slip of composite beams (influence of shear connection stiffness). (a) 28 days;
(b) 3 years.

Buildings 2023, 13, x FOR PEER REVIEW 17 of 25 
 

Figure 9. Vertical deflections of composite beams (influence of shear connection stiffness). (a) 28 

days; (b) 3 years. 

0 10 20 30 40
−4

−2

0

2

4

Longitudinal position (m)

S
li

p 
(m

m
)

= 0.5 kN/mm2

= 1.0 kN/mm2

= 10 kN/mm2

 

0 10 20 30 40
−4

−2

0

2

4

Longitudinal position (m)

S
li

p 
(m

m
)

= 0.5 kN/mm2

= 1.0 kN/mm2

= 10 kN/mm2

 
(a) (b) 

Figure 10. Interface slip of composite beams (influence of shear connection stiffness). (a) 28 days; 

(b) 3 years. 

−6000 −4000 −2000 0 2000 4000 6000
−6.5

−6.0

−5.5

−5.0

−4.5

Transverse position (mm)

N
or

m
al

 s
tr

es
s 

(M
P

a)

= 0.5 kN/mm2

= 1.0 kN/mm2

= 10 kN/mm2

 

−6000 −4000 −2000 0 2000 4000 6000
−6.5

−6.0

−5.5

−5.0

−4.5

Transverse position (mm)

N
or

m
al

 s
tr

es
s 

(M
P

a)

= 0.5 kN/mm2

= 1.0 kN/mm2

= 10 kN/mm2

 
(a) (b) 

Figure 11. Stress on the concrete slab of composite beams (influence of shear connection stiffness). 

(a) 28 days; (b) 3 years. 
Figure 11. Stress on the concrete slab of composite beams (influence of shear connection stiffness).
(a) 28 days; (b) 3 years.
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Figure 13. Deflection of the composite beam (time-dependent analysis). (a) Distribution along 

span; (b) Change with time at mid-span section. 

Figure 12. Stresses at the bottom flange of the steel beam (influence of shear connection stiffness).
(a) 28 days; (b) 3 years.

5.2. Time-Dependent Analysis

Time-dependent analysis of the above composite box beams focuses on the me-
chanical responses on the 28th day and in the 3rd year. Figures 13–18 exhibit the time-
dependent responses of the composite beams, including the vertical deflections, interface
slip, warping intensity function on the concrete slab due to shear deformation, warp-
ing intensity function at the bottom flange of the steel beam due to shear deformation,
and stresses on the concrete slab and at the bottom flange of steel beam, respectively.
Figures 13a, 14a, 15a, 16a, 17a and 18a show the distribution of these responses on the 28th
day and in the 3rd year, while Figures 13b, 14b, 15b, 16b, 17b and 18b show the changes
over time.
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Figure 13. Deflection of the composite beam (time-dependent analysis). (a) Distribution along 
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Figure 13. Deflection of the composite beam (time-dependent analysis). (a) Distribution along span;
(b) Change with time at mid-span section.
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Figure 15. Warping intensity function of the concrete slab due to shear deformation of the compo-
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Figure 14. Interface slip of the composite beam (time-dependent analysis). (a) Distribution along
span; (b) Change with time at support section.
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Figure 15. Warping intensity function of the concrete slab due to shear deformation of the compo-

site beam (time-dependent analysis). (a) Distribution along span; (b) Change with time at support 

section. 

Figure 15. Warping intensity function of the concrete slab due to shear deformation of the composite
beam (time-dependent analysis). (a) Distribution along span; (b) Change with time at support section.
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Figure 17. Stress on the concrete slab of the composite beam (time-dependent analysis). (a) Distri-

bution along width; (b) Change with time at mid-span section. 

Figure 16. Warping intensity function of the steel bottom induced by shear deformation of the
composite beam (time-dependent analysis). (a) Distribution along span; (b) Change with time at
support section.



Buildings 2023, 13, 215 18 of 22

Buildings 2023, 13, x FOR PEER REVIEW 20 of 25 
 

Figure 16 shows the time-dependent variations in the warping intensity function at 

the bottom flange of the steel beam due to shear deformation. As shown in Figure 16a, 

this response at the beam end in the 3rd year is 7.01% higher than that on the 28th day. 

Figure 16b shows the changes in the response at the composite beam end. The response at 

the support of the composite beam gradually increases over time, but in a narrower range. 

The increase in the warping intensity function of the concrete slab is more significant than 

that at the bottom flange of the steel beam. 

0 10 20 30 40
−1.0

−0.5

0.0

0.5

1.0

28 days
3 years

Longitudinal position (m)

In
te

ns
it

y
 f

u
n

ct
io

n 
(m

m
)

 

0 200 400 600 800 1000 1200
0.82

0.84

0.86

0.88

0.90

0.92

Age (d)

In
te

ns
it

y
 f

u
n

ct
io

n 
(m

m
)

 
(a) (b) 

Figure 16. Warping intensity function of the steel bottom induced by shear deformation of the com-

posite beam (time-dependent analysis). (a) Distribution along span; (b) Change with time at support 

section. 

Figure 17 shows the stress distribution on the concrete slab and the variation with 

time. According to Figure 17a, the compressive stress at the edge of the concrete slab de-

creases from 5.829 MPa on the 28th day to 5.428 MPa in the 3rd year; the compressive 

stress at the intersection between the steel web and the concrete slab decreased from 6.075 

MPa on the 28th day to 5.665 MPa in the 3rd year; the compressive stress of the centerline 

of the concrete slab decreases from 5.446 MPa on the 28th day to 5.058 MPa in the 3rd year. 

Figure 17b shows the variation in these stresses with time and reveals that the stress on 

the concrete slab slowly decreases after the 400th day. 

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000
−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

N
or

m
al

 s
tr

es
s 

(M
P

a)

28 days
3 years

Transverse position (mm)  

0 200 400 600 800 1000 1200
−6.2

−6.0

−5.8

−5.6

−5.4

−5.2

−5.0

−4.8
Edge of concrete slab
Intersection of steel web and concrete slab
Centerline of concrete slab

N
or

m
al

 s
tr

es
s 

(M
P

a)

Age (d)
 

(a) (b) 

Figure 17. Stress on the concrete slab of the composite beam (time-dependent analysis). (a) Distri-
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Figure 17. Stress on the concrete slab of the composite beam (time-dependent analysis). (a) Distribu-
tion along width; (b) Change with time at mid-span section.
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Figure 19. Contour plot of stresses on the concrete slab of the composite beam. 

Figure 18. Stress at the bottom flange of the steel beam of the composite beam (time-dependent
analysis). (a) Distribution along width; (b) Change with time at mid-span section.

Figure 13 shows the time-dependent variation in the vertical deflection of the com-
posite beam. Figure 13a indicates that the long-term vertical deflection in the 3rd year is
47.01% larger than that on the 28th day. The time-dependent variation in the deflection
at mid-span is shown in Figure 13b. It can be noted that the vertical deflection increases
gradually over time, but in a narrower range.

Figure 14 shows the time-dependent interface slip between the concrete slab and the
steel beam. This response is consistent with the common observation that obvious slip
often occurs at the end of composite beams. The interface slip at the end of the composite
beam continually decreases from 1.665 mm on the 28th day to 1.482 mm in the 3rd year, as
illustrated in Figure 14a. Figure 14b shows the variation in the interface slip at the beam
end. The interface slip gradually decreases over time, but in a narrower range.

Figure 15 shows the time-dependent variation in the shear lag warping intensity
function of the concrete slab. Figure 15a shows that this response is more significant at
the support of the composite beam, while this response is 0 at mid-span. This response in
the 3rd year was 111.64% higher than that on the 28th day. Figure 15b exhibits the time-
dependent variations in the warping intensity function of the concrete slab at the support of
the composite beam. The warping intensity function of the concrete slab increases gradually
over time, but in a narrow range. The increase slowed after the 400th day.
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Figure 16 shows the time-dependent variations in the warping intensity function at
the bottom flange of the steel beam due to shear deformation. As shown in Figure 16a,
this response at the beam end in the 3rd year is 7.01% higher than that on the 28th day.
Figure 16b shows the changes in the response at the composite beam end. The response at
the support of the composite beam gradually increases over time, but in a narrower range.
The increase in the warping intensity function of the concrete slab is more significant than
that at the bottom flange of the steel beam.

Figure 17 shows the stress distribution on the concrete slab and the variation with time.
According to Figure 17a, the compressive stress at the edge of the concrete slab decreases
from 5.829 MPa on the 28th day to 5.428 MPa in the 3rd year; the compressive stress at
the intersection between the steel web and the concrete slab decreased from 6.075 MPa
on the 28th day to 5.665 MPa in the 3rd year; the compressive stress of the centerline of
the concrete slab decreases from 5.446 MPa on the 28th day to 5.058 MPa in the 3rd year.
Figure 17b shows the variation in these stresses with time and reveals that the stress on the
concrete slab slowly decreases after the 400th day.

Figure 18 exhibits the stress distribution of the bottom flange of the steel beam and
the change over time. Figure 18a shows that the stress at the steel web–concrete slab
intersection increases from 96.349 MPa on the 28th day to 100.739 MPa in the 3rd year; the
stress of the centerline of the steel bottom increases from 87.039 MPa on the 28th day to
91.133 MPa in the 3rd year. Figure 18b shows the variation in these stresses with time and
reveals that the stress of steel slowly increases after the 400th day.

To better show the time-dependent influence, the composite beam on the 3650th day
was analyzed. Figure 19 shows the stress distribution on the concrete slab on the 28th and
3650th days. Figure 20 shows the stress distribution at the steel bottom on the 28th and
3650th days. The stress on the concrete slab decreases over this period (28th to 3650th day),
and the stress at the bottom flange of the steel beam increases. These results indicate that
the creep of concrete produces an unloading effect on the concrete slab.
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Figure 19. Contour plot of stresses on the concrete slab of the composite beam. Figure 19. Contour plot of stresses on the concrete slab of the composite beam.
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Figure 20. Contour plot of stresses at the bottom flange of the steel beam of the composite beam.
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6. Conclusions

A beam finite element model with 18 DOFs considering slip, shear lag, and time-
dependent effects of the composite box beam is proposed in this study. The conclusions
from the numerical results are drawn as follows:

(1) The analytical model of the composite box beam is solved in the time domain by an
accurate step-by-step method, and the Dirichlet series is employed into the creep
function without the storage of stress and strain histories. In the spatial domain,
the FEM discretizes the composite beam into finite two-node beam elements with
18 DOFs. An effective recursion method was developed to solve these equations of
the system.

(2) A fine numerical simulation by ANSYS is performed to validate the correctness and
applicability of the proposed model in instantaneous analysis. Through a comparison
between the classical long-term test results of the composite beams and the calcula-
tion results of the proposed model involving beam finite elements, the validity and
applicability of the proposed model used in the long-term analysis was proven.

(3) The proposed model is then applied to the analysis of the time-dependent behavior of
composite beams. Some mechanical responses, including vertical deflections, interface
slip, warping intensity function due to shear deformation, the stress on the concrete
slab, and the stress of the steel beam, are analyzed. In this study, the variation in these
responses between the 28th day and the 3rd year was the focus. It was determined
that the shear connection stiffness, shrinkage, and creep all have a significant impact
on these responses.

(4) Compared with the model with ρ = 1 kN/mm2, the vertical deflection at mid-span in
the 3rd year of the model with ρ = 0.5 kN/mm2 is 8.40% larger; the interface slip at
the end is 90.62% larger; the mid-span vertical deflection in the 3rd year of the model
with ρ = 10 kN/mm2 is 7.90% less; and the interface slip at the end is 89.20% smaller.

(5) For the model with ρ = 1 kN/mm2, from the 28th day to the 3rd year, the mid-span
vertical deflection increased by 47.01%, the interface slip at the end decreased by
10.99%, the warping intensity function of the concrete slab at end of the steel beam
due to shear deformation increased by 111.64%, the warping intensity function at
the steel bottom near the beam end increased by 7.01%, the maximum compressive
stress on the concrete slab decreased by 6.75%, and the maximum tensile stress at the
steel bottom flange increased by 4.56%. The above mechanical responses have been
developing, and even in the 10th year, the development rate is still not negligible.
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Appendix A

The shape function matrix [Nc]6×18 is listed as follows:

Nc =



g1
′′ g2 ′′ 0 0 0 0 0 0 0 g3 ′′ g4

′′ 0 0 0 0 0 0 0
0 0 g1

′′ g2 ′′ 0 0 0 0 0 0 0 g3 ′′ g4
′′ 0 0 0 0 0

0 0 0 0 0 k1
′ 0 0 0 0 0 0 0 0 k2

′ 0 0 0
0 0 0 0 0 0 0 0 k1

′ 0 0 0 0 0 0 0 k2
′ 0

0 0 0 0 0 0 k1
′ 0 0 0 0 0 0 0 0 k2

′ 0 0
0 0 0 0 0 0 0 0 k1 0 0 0 0 0 0 0 k2 0

 (A1)

The shape function matrix [Ns]6×18 is listed as follows:

Ns =



g1
′′ g2 ′′ 0 0 0 0 0 0 0 g3 ′′ g4

′′ 0 0 0 0 0 0 0
0 0 g1

′′ g2 ′′ 0 0 0 0 0 0 0 g3 ′′ g4
′′ 0 0 0 0 0

0 0 0 0 0 k1
′ 0 0 0 0 0 0 0 0 k2

′ 0 0 0
0 0 0 0 0 0 0 0 k1

′ 0 0 0 0 0 0 0 0 k2
′

0 0 0 0 0 0 k1
′ 0 0 0 0 0 0 0 0 k2

′ 0 0
0 0 0 0 0 0 0 0 k1 0 0 0 0 0 0 0 0 k2


The non-zero elements of the shape function matrix [Nsl]1×18 are listed as follows:

Nsl =
(
0 0 g1

′ g2
′ −k1 k1 0 0 0 0 0 g3

′ g4
′ −k2 k2 0 0 0

)
(A2)

The shape function matrix [NF]9×18 is listed as follows:

NF =



g1 g2 0 0 0 0 0 0 0 g3 g4 0 0 0 0 0 0 0
g1
′ g2

′ 0 0 0 0 0 0 0 g3
′ g4

′ 0 0 0 0 0 0 0
0 0 g1 g2 0 0 0 0 0 0 0 g3 g4 0 0 0 0 0
0 0 g1

′ g2
′ 0 0 0 0 0 0 0 g3

′ g4
′ 0 0 0 0 0

0 0 0 0 k1 0 0 0 0 0 0 0 0 k2 0 0 0 0
0 0 0 0 0 k1 0 0 0 0 0 0 0 0 k2 0 0 0
0 0 0 0 0 0 k1 0 0 0 0 0 0 0 0 k2 0 0
0 0 0 0 0 0 0 k1 0 0 0 0 0 0 0 0 k2 0
0 0 0 0 0 0 0 0 k1 0 0 0 0 0 0 0 0 k2


where g1 =

(
1 + 2z

le

)(
z
le
− 1
)2

; g2 = le
(

z
le
− 1
)2 z

le
; g3 =

(
3− 2z

le

)(
z
le

)2
;

g4 = le
(

z
le
− 1
)(

z
le

)2
; k1 = 1− z

le
; and k2 = z

le
.
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