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Abstract: Ultra-high-performance concrete (UHPC) is a form of cementitious composite that has
been the most innovative product in concrete technology over the last three decades. Ultra-high-
performance concrete has been broadly employed for the design of numerous forms of construction
owing to its excellent mechanical characteristics and durability, and studies on its behavior have
grown fast in the last decades. While the utilization of ultra-high-performance concrete in bridge
engineering (BE) is limited owing to its high costs, little is recognized about the utilization of UHPC
in various BE elements. As a result of these issues, a comprehensive review of the current UHPC
development trends should be conducted to determine its present state and perspective. This study
presents a review of the state-of-the-art UHPC applications in BE. This review also discusses the
current status, limitations, challenges, and areas for the further investigation of UHPC in BE. The aim
of this research to help various construction stakeholders understand the distinctive characteristics,
benefits, and barriers to the broad utilization of ultra-high-performance concrete applications. The
understanding of UHPC will aid in increasing its entire market share in both the national and
worldwide building sectors.

Keywords: UHPC; applications; bridge engineering; limitations; challenges; future prospects

1. Introduction

Ultra-high-performance concrete (UHPC) is an improved cementitious and fibrous con-
crete with high compressive strength (CS) (120–250 MPa) [1], tensile strength (15–20 MPa) [2],
particle packing density (0.825–0.855) [3], and exceptional durability [4]. UHPC has three
hundred times the energy absorption and ductility of high-performance concrete and three
to sixteen times the compressive strength of normal concrete [5]. Owing to its excellent
toughness and ductility under strain, as well as its remarkable mechanical characteristics,
UHPC is often recognized as the material of choice for seismic design reasons [6]. UHPC is
a viable alternative for improving infrastructure and the long-term viability of construction
facilities [7].

Ultra-high-performance concrete is prepared with a low w/c ratio, often between
0.15 and 0.25 [8]. Owing to the low water volume, high-range water reducer agents are
necessary to enhance the packing of the particles in the composite material, leading to
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a higher workability and fluidity of the mix [9]. As cementitious binders, PC and silica
fume are often employed in UHPC production scenarios [10]. The worldwide ultra-high-
performance concrete market is predicted to increase at a multifactor yearly growth rate of
nearly seven percent between 2018 and 2022, as shown in Figure 1. As the high greenhouse
gas inventory of PC has become a global issue, the need for more sustainable cementing
binders has advanced significantly [11–13].

The mechanical characteristics of UHPC make it an ideal material for applications
(apps) where strength is a fundamental design objective, and concrete structural component
sizes can be reduced to make them thinner, smaller, and more visually appealing [14,15].
It is typically made up of PC, silica fume, fine aggregate, a higher-range water-reducing
ingredient, and fibers. UHPC could be an appropriate material for concrete structures
exposed to harsh environments [16]. UHPC is commonly employed in ultra-high-rise
buildings, BE design, and long-span structures [17]. In harsh climate exposure or outdoor
conditions, UHPC reduces service cycles, and the enhanced durability and longevity
extends the lifecycle [18]. By utilizing synthetic fibers in UHPC, it is feasible to attain ultra-
high CS and high tensile ductility in concrete materials [15,19]. Although UHPC progress
and tech have been comprehensively studied and recognized from the micro- to the macro-
level, its wide marketing remains difficult due to the high costs and complicated production
process [12,20–22]. The problematic production process is mostly because of the usage of too
many components, which leads to high prices and difficult handling. UHPC tech provides
a different product that allows infrastructure developers to broaden their service offerings
and product [4]. This tech’s main concept is the introduction of systematic ways to solve
the inherent shortcomings in traditional concrete; for example, one of the sustainable ways
to produce UHPC can be performed using geopolymer technology [23,24]. This innovative
concrete is superior since it is more ductile, with a high capability to deform and support
flexural and tensile loads even after initial cracking forms [25–28]. UHPC’s improved
performance characteristics are the consequence of the improved bonding optimization and
mineral matrix microstructural characteristics among the concrete matrix elements [29,30].

Since its inception more than two decades ago, UHPC has attracted increasing atten-
tion from the construction industry, with attention on the following: construction BEs [31],
damaged concrete components [32], skyscrapers, unique architectural designs [33], offshore
constructions, facilities related to the oil and gas industry apps [34], vertical elements (for
instance, windmill towers and wind turbines) [7], overlay materials [35], and hydraulic
structures [36]. UHPC is widely utilized in all of these industries, as well as road and BE
construction [16]. UHPC is especially well suited for BE construction in difficult situa-
tions since its composites need less repair throughout their lifecycle and have excellent
strength [37]. Ultra-high-performance concrete is also a preferred strategy for BE construc-
tion in high-traffic locations since it supports stronger and longer spans, leading to more
usable space. However, the quality of the materials utilized and the accuracy with which
they are produced have a considerable impact on the functioning of ultra-high-performance
concrete [38]. Another factor that leads to carbon dioxide emissions is the high cement
volume of ultra-high-performance concrete, which raises ecological concerns [3,39–42]. As
a cement substitute, SF with fillers (for example, limestone and quartz powder) can sub-
stantially increase the workability of ultra-high-performance, fiber-reinforced concrete and
the efficacy of the steel fibers in the material [43]. Moreover, fillers can lower the volume
of the microsilica needed, which is essential for ultra-high-performance, fiber-reinforced
concrete in terms of energy, costs, and ecological effect [43]. As SF has a broad-range of
chemical and physical characteristics, depending on its source, more standardization and
study are required [43,44].

Furthermore, UHPC provides a diverse product range that can be employed in big
projects and infrastructure, including highways, federal roads, BEs, marine facilities, water
conservation facilities, pre-cast buildings, and military facilities [45]. As several service in-
frastructures and facilities around the world deteriorate, innovative UHPC strategies, such
as prefabricated BE components [46], UHPC BE overlays, seismic columns [47], piles [48],
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BE girders [49], link slabs [50], cladding [51], and waffle deck panels [52], are achieving ac-
ceptance and popularity in the construction industry. Owing to UHPC’s advanced progress,
architects and designers can now introduce structural and decorative punctured facades in
mesh designs or lattice styles, ultrathin [53], lightweight panels [31], and full facades with
multifaceted forms, textures, curvatures, and puncture levels exceeding 50 percent [25].
This substantial advancement seems to be limited, though, by a lack of knowledge of
the manufacturing processes and raw materials, the restricted design codes, and the high
production costs [54].

Nonetheless, the usage of UHPC as a prospective and novel material is earning traction
across a wide range of stakeholders, including scientists and construction companies [49].
Nevertheless, numerous hurdles limit the widespread utilization of UHPC. Some examples
include significant spalling and shrinkage strains, large volume production techniques
with limited workability, and undetermined durability following the progress of long-
term concrete cracks [55–57]. Because of a lack of knowledge in the industry, ultra-high-
performance concrete experts confront extra hurdles in imparting hands-on expertise to
concrete industry professionals so that they can be well versed in the implementation of
complex concrete techniques [58].

The aim of this review is to critically analyze the previous investigations on the
utilization of UHPC in BE, as well as the present challenges restricting its broad adoption.
Knowledge gaps have been found, as have the investigation needs. A study of the state
of knowledge is essential since the investigation of UHPC involves a grasp of concrete
materials science as well as structural and BE ideas. This review can assist scientists,
designers, and practitioners in expanding the usage of ultra-high-performance concretes in
advanced apps.
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Development of UHPC

Concrete is the world’s most frequently utilized human-made product, and it will
carry on being highly popular in the near future. The world’s manufacture of concrete is
expected to be over six bcm/year, with China currently accounting for almost 40 percent of
global concrete manufacturing [60,61]. Concrete’s outstanding characteristics, including
its durability and strength, low costs, and capacity to be poured into different shapes,
have made it the most well-known and important construction material. Concrete is often
utilized owing to its strong CS [62,63]. Substantial progress has been achieved in the area
of concrete construction during the last several years. In the 1930s, significant scientific
efforts to enhance concrete CS started [64–67].

During the 1960s, concrete tech evolved slowly, with maximum CSs varying from
15 MPa to 20 MPa. Concrete’s CS grew from 45 MPa to 60 MPa over a ten-year period.
Because of the technical obstacle of the present water reducer, concrete strength peaked at
roughly 60 MPa in the early 1970s. The present water reducer was unable to further lower
the w/b ratio at the time [68,69]. It was found in the 1980s that high-range water reducers,
known as superplasticizers, could be utilized to progressively lower the w/b to 0.30.
Lowering the w/b below 0.16 was supposed to be unlawful until Bache [70] demonstrated
that it was possible to do so with large dosages of silica fume and superplasticizers. A
concrete CS of up to 280 MPa was attained by utilizing compacted granular materials
by regulating the grain size distribution of the granular skeleton. As a consequence, a
material with the fewest flaws, such as interconnected pore spaces and micro-fractures,
was advanced to attain maximum durability and strength.

These technical breakthroughs, together with a fundamental understanding of low
porous materials, have led to the formation of ultra-high-performance Portland composition
materials with enhanced mechanical properties. Usually, the progress of UHPCs can be
categorized into four stages: before the 1980s, after the 1980s, after the 1990s, and after the
2000s. Moreover, Figure 2 presents a summary of the historical progress patterns of UHPC.

Due to a lack of the current tech prior to the 1980s, UHPC production was restricted to
the lab and needed specialized techniques such as heat curing and vacuum mixing. During
this time, scientists experimented with several methods to produce more compact and
denser concrete in order to boost its strength. Vacuum mixing coupled with temperature
curing has been shown to raise the CS of concrete to 510 MPa [71,72]. Although a high CS of
concrete was obtained, the preparation was energy-intensive and time-consuming [73–76].

In the early 1980s, microdefect-free cement was advanced [77]. In the microdefect-
free cement process, polymers are employed to seal the pores and eliminate any flaws in
the cement paste. Specific production conditions, such as the material being laminated
by passing it through rollers, are required for this technique. Microdefect-free cement
concrete has a CS of 200 MPa. Nevertheless, its apps have been restricted owing to the
complicated preparation procedure, the high costs of the raw ingredients, the brittleness,
and the substantial creep [77]. Following the launch of microdefect-free cement, Bache [70]
advanced dense silica particle cement (dense silica particle cement). Dense silica particle
cement, unlike microdefect-free cement, does not need rigorous manufacturing conditions
to be produced. Dense silica particle cement faults were eliminated by increasing the
particle packing density. Dense silica particle cement concrete is cured with pressure
and heat and has a high concentration of SF and SP. Dense silica particle cement has a
maximum CS of 345 MPa. These materials grow increasingly brittle as their ultra-high
strength increases. Steel fibers were added to dense silica particle cement concretes in the
1980s to assist in enhancing their brittleness. This form of steel fiber-augmented concrete is
a completely different material. It possesses ultra-high strength, a very thick microstructure,
excellent ductility, and excellent durability. Slurry-infiltrated fiber concrete (SIFCON) and
compact reinforced composites (CRC) are two significant instances of what transpired
immediately after dense silica particle cement. Both slurry-infiltrated fiber concrete and
compact reinforced composites offer remarkable durability and mechanical characteristics.
Nevertheless, both slurry-infiltrated fiber concrete and compact reinforced composite
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slurry-infiltrated fiber concrete have workability issues that limit in situ implementations
due to a lack of efficient high-range water reducers [78,79].

In the 1990s, Richard and Cheyrezy [80] utilized components with reactivity to pro-
duce reactive powder concrete (RPC) and higher fineness via thermal treatment. Reactive
powder concrete is a key advancement in the progress of UHPCs. Its idea depended on
the very dense arrangement of numerous particles. Reactive powder concrete is the most
often utilized kind of UHPC in the field and laboratory experiments owing to its very high
cement content, high binder concentration, extraordinarily low water-to-cement ratio, and
utilization of fine quartz powder, SF, SP, quartz sand, and steel fibers [42]. To increase the
matrix’s consistency, the coarse particles are eliminated. The CSs of reactive powder con-
crete range from 200 MPa to 800 MPa. Table 1 illustrates the typical mechanical parameters
and reactive powder concrete composition provided by Richard and Cheyrezy [80]. Unlike
its predecessors, reactive powder concrete is very consumer-oriented. This property of
workability is an advantage and the most significant criterion for large-scale cementitious
material apps. The first reactive powder concrete UHPC, known as Ductal+, was released
in the late 1990s. The world’s first reactive powder concrete structure was developed in
1997 for a pedestrian BE in Sherbrooke, Canada [81]. It was the first time reactive powder
concrete was employed to build the complete framework. Despite the effectiveness of
reactive powder concrete structures, the apps are still restricted owing to the production
costs and the prohibitively high cost of the materials.

Table 1. Typical mechanical parameters and reactive powder concrete composition of UHPC were
provided by Richard and Cheyrezy [80].

Ingredient in the Manufacture (kg/m3)

PC
Ground
Quartz

(d50 = 10 mm)
Fine Sand

(150–600 mm)
Total
Water

Silica
Fume

Steel
Fibers

Superplasticizer
(Polyacrylate)

Heat
Treatment

CS
(MPa)

Flexural
Strength

(MPa)

reactive
powder

concrete 200
955 / 1051 162 239 168 15 20 C/90 C 170–

230 25–60

reactive
powder

concrete 800
1000 390 500 190 230 630 19 250 C–400 C 490–

680 45–102

Since the year 2000, wide development has occurred in the progress of UHPCs. The
engineers recognized that as concrete tech grew, advanced concrete should have more
useful functions than high strength, which resulted in the names UHPC and ultra-high-
performance, fiber-reinforced concrete [82]. A broad range of novel concrete formulations
has been advanced to meet an increasing number of apps. Several scientists are now
developing sustainable UHPC formulations with the goal of lowering both the initial and
the material costs [83]. Supplementary cementitious materials such as SF, fly ash, rice
husk ash, ground granulated blast furnace slag, and others [40,79,84], are employed to
substitute part of the cement in the progress of sustainable UHPC and to minimize its
current cement consumption. It has also been reported that UHPC could be synthesized
by utilizing conventional temperature curing without compromising its characteristics.
UHPC apps are becoming more common as ecologically friendly UHPC becomes more
affordable. Since the early 2000s, numerous nations have been interested in different UHPC
apps. UHPC has been employed to build several structures in France, including BEs, slabs,
and facades [85]. UHPC is also being employed to repair and maintain transportation
infrastructure in the United States [49]. Considerable efforts have been made in Australia
to produce UHPC for BE construction [86]. UHPCs have mostly been employed for in situ
structural reinforcement in Switzerland [87]. UHPC BE projects have been erected in Spain
and the Netherlands [88]. In Malaysia, UHPC has been employed for BE construction as
part of a sustainable BE building plan. Since 2010, a total of 113 UHPC BEs have been
completed or advanced in Malaysia [89].
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2. Applications of UHPC in Bridge Engineering

In recent years, the utilization of UHPCs in BE has steadily improved, with high
achievements so far. In Malaysia alone, twenty-six UHPC BEs were constructed in 2014 and
2015 [63]. As another example, UHPCs became commercially available in the U.S. in 2000
and were utilized to build the first UHPC girder BE, known as the Mars Hill BE, in Wapello
County, Iowa. Furthermore, according to a recent Federal Highway Administration (FHWA)
study, about 200 BE construction projects from 2006 to 2018 utilized a UHPC proprietary
mix at a given scale, whether maintaining an existing BE or constructing a new BE within
the state DOT BE network. Table 2 presents completed UHPC projects worldwide. In
addition, Figure 3 depicts the number of UHPC BEs built in North America between 2006
and 2016.

Table 2. Completed UHPC projects worldwide [53].

Year App Location Advantages

1997 Pedestrian BE Sherbrooke, Canada The first UHPC structure.

2004 Foot BE Seonyu, Seoul, South Korea Reduced-segment arch BE.

2004 Roof Shawnessy LRT Station, Canada Simple to build and requires very little
maintenance work, lightweight.

2005 Road BE Bourg-lesValence, France
Steel reinforcing costs are reduced by 90 percent.

Lighter construction with a 66 percent weight
reduction over CC.

2006 Road BE Mars Hill BE, United States
The first UHPC highway BE in the United States

had a simple structure. There is no
shear reinforcement.

2013 Column and Façade MUCEM, Marseille, France Y-formed column with a ‘Transparent’ façade.

2013 Roof and Façade Jean Bouin Stadium, Paris Pre-cast UHPC components, waterproof roof and
façade, slim construction with distinctive design.

2014 Cladding UHPCpanels Foundation Louis Vuitton, France Creative design
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Figure 3. Typical apps of UHPC in BE: (a) Sakata-Mirar foot BE; (b) Zhaoqing Mafang BE; (c) ultra-
high-performance, fiber-reinforced concrete arch BE in Fuzhou University campus viaducts; (d) Mar-
tinet foot BE; (e) Sherbrooke pedestrian BE; (f) Mars Hill BE; (g) Shijiazhuang to Cixian highway BE;
(h) Batu 6 BE; (i) Chillon [53,91–94].

UHPCs can be utilized in BE decks, girders, arch rings, and other elements. Table 3
provides a brief overview of the utilization of UHPCs in BE components. In the sections
below, the authors highlighted the most common benefits of UHPC in BEs that have been
investigated in the literature.

Table 3. Applications of UHPC in BE elements.

Ref. Year Nation Name App Location Structure Type Achievement of
Utilizing UHPCs

[91] 2011

China

Zhaoqing
Mafang BE BE deck

Simply supported
steel composite

beam BE

The first time a UHPC deck
was paired with a steel box

girder to create a lighter
composite girder BE.

[93] 2015

Ultra-high-
performance,

fiber-reinforced
concrete arch BE

Arch ring Arch BE

To fulfill the strength
requirements of the arch ring,
which would be exposed to
an anticipated CS of more

than 100 MPa.

[94] 2015 Shijiazhuang to
Cixian highway BE Girder

Three continuous box
girders with

multi-span structure

To raise the ultimate strength
of the box girder while

decreasing its self-weight.
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Table 3. Cont.

Ref. Year Nation Name App Location Structure Type Achievement of
Utilizing UHPCs

[95] 2016 Malaysia Batu 6 BE Whole
superstructure

Single-span box girder
BE

To address the need for
international transportation.

[91] 1997 Canada Sherbrooke
pedestrian BE BE deck Space truss girder BE

To minimize the BE’s
self-weight and improve its

corrosion resistance.

[92] 2014/
2015

Switzerland

Chillon viaducts Deck slab Dual-box girder
structure

To advance the BE’s
durability and girder stiffness
and the fatigue performance

of the slabs.

[92] – Martinet foot BE Girder
A U-formed girder

with a simply
supported structure

To avoid damage from
hazardous fluids and to

maintain a crack-free
condition under service stress.

[91] 2006 USA Mars Hill BE I-girder Pre-stressed beam BE For improved lifecycle and
durability

[91] 2002 Japan Sakata-Mirar
foot BE Box girder Pre-stressed simply

supported beam BE

To provide design guidance
for the UHPC structure

in Japan.

2.1. Bridge Piers/Column

The BE pier is a crucial component in BEs since it transfers dead and live loads from
the superstructure to the foundations. The box section, a typical pier form in BEs, may
efficiently reduce the inertia force in the pier by minimizing its self-weight. Neverthe-
less, the piers with box-formed cross-sections were damaged in numerous earthquakes,
including the 1999 Chichi earthquake [96] and the 2008 Wenchuan earthquake [97]. This is
primarily because of the limited lifecycle and ductility of normal-strength concrete piers.
Ren et al. [98] evaluated the effectiveness of UHPC box piers exposed to seismic load
utilizing computational and empirical methods. The authors investigated the ductility of
UHPC box piers with varying longitudinal reinforcement and axial load ratios.

Furthermore, the UHPC was utilized as a pier jacket to improve the concrete BE
pier’s seismic performance, corrosion resistance, and spalling resistance. As indicated in
Figure 4, one of the UHPC pier jacket projects (the Mission BE) was completed in Canada
in 2014 [99]. Additionally, including pre-fabricated segmental BE columns and ultra-high-
performance, fiber-reinforced concrete (UHPFRC), segmented components of BE structure
displayed substantially greater energy dissipation capacity dynamic characteristics and
impact resistance [100].
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In China, a commonly utilized structural method for the construction of BE piers is
the concrete-filled steel tubular column, which may also be utilized for the production of
multistory buildings and other supporting constructions with appropriate flexibility and
high axial strength [101]. With the incorporation of UHPC into BE construction, substantial
investigation into the efficiency (ductility and axial capacity) of ultra-high-performance
concrete-filled steel tube columns has been conducted [102]. Ultra-high-performance
concrete has also been utilized to effectively repair severely damaged reinforced concrete
(RC) columns in BE piers [103]. According to the empirical findings, utilizing an ultra-
high-performance concrete jacket to repair RC columns substantially advances the cyclic
load resistance, energy dissipation capacity, ductility, stiffness, and strength of the column
test sample.

Despite its benefits in ductility and strength, the relatively expensive costs of utilizing
UHPC in BE piers have restricted its widespread adoption. As a result, attempts have been
made to develop optimal UHPC mixture designs for BE piers. According to the investiga-
tion by Joe and Moustafa [104], utilizing UHPC may minimize the cross-sections of BE piers,
reducing total cement and material use. According to Aboukifa et al. [105], constrained
ultra-high-performance concrete cylinders with substantial longitudinal reinforcement
ratios would be required to minimize the size of the cross sections and fully exploit the
greater strength of UHPC. Although their findings confirmed the viability of utilizing
UHPC instead of standard concrete in the construction of significant BE substructures, the
cost savings that may be gained by utilizing UHPC for BE piers remains unknown owing
to a lack of comparison data.

The hydration heat of UHPC can be significantly high compared to normal concrete
due to its high Portland cement dose. Hence, the use of pozzolanic materials in UHPC
production, such as fly ash, ground granulated blast furnace slag, etc., reduces the Port-
land cement dosage, minimizing hydration heat while also addressing engineering and
ecological issues [33].

2.2. Bridge Piles

The utilization of piles to sustain BE loads is a standard approach for producing
high-performance infrastructure. Typically, piles are built utilizing pre-cast concrete, steel
sections, or cast-in-place concrete. Concrete piles face challenges such as pile collapse
during installation, limited capability, and pile degradation caused by ecological threats.

The utilization of UHPC mixtures in pile fabrication has substantially enhanced the
long-term capability performance of the pile. UHPC mixtures with high strengths may be
driven with little to no damage. As UHPC mixtures have relatively low permeability, they
are more resistant to ecological challenges. The high material costs of UHPC mixtures are
balanced by the decreased material required owing to the lower demand and smaller pile
sizes for maintenance work over the construction project’s lifecycle.

In accelerated bridge construction (ABC) apps, UHPC mixtures are formed into various
BE elements for accelerated BE construction, utilizing the prefabricated BE elements system
(PBES) tech and prefabricated BE elements. Owing to the application of UHPC in the
ABC approach, BE design engineers were able to create new BE sections with geometrical
dimensions, leading to the simplicity of construction and considerable material savings.
The reformed Pi-girder, advanced by scientists at the Massachusetts Institute of Technology
(MIT) and tested at the FHWA’s Turner Fairbank Highway Research Center (TFHRC) in
McLean, Virginia, is an instance of the creative UHPC prefabricated sections utilized in
ABC processes [106].

Moreover, according to a review of the published literature, UHPC’s high durability
and material characteristics make it a good material for deep foundation applications.
UHPC piles have a larger load capacity than steel piles, as shown by the load testing,
which should result in a decrease in the number of piles needed for a standard bridge
foundation [107].
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2.3. Bridge Decks

Numerous deterioration-related issues such as delamination cause the end of the
lifecycle in BE decks, spalling, and cracking [108], which may also be impacted by tempera-
ture and load impacts [109]. UHPC is developing as a novel strategy for a wide range of
construction, BE design, and restoration issues. One novel utilization of UHPC in BEs is
the rehabilitation of BE decks with the utilization of thin, bonded UHPC overlays.

UHPC is now employed to pour BE deck overlays to enhance BE deck conditions.
There is a significant need for the effective and long-term rehabilitation of BE decks that
have deteriorated owing to improved vehicle weight and traffic, deck cracking, freeze–thaw
cycles, reinforcing steel corrosion, and concrete cover delamination. The available budget
and the expected lifecycle of the repaired structure determine the BE deck restoration
tech. Historically, specific asphalt mixtures, ordinary concrete overlays, and latex-modified
concrete comprising polymer compounds were utilized. UHPC overlays are now being
utilized effectively. UHPC overlays are helpful since they allow for the utilization of thin
(2.5–5.0 cm) overlays with excellent binding to existing concrete. UHPC’s extremely incred-
ible strength and low permeability characteristics offer appropriate strengthening as well
as protection against contaminator ingresses such as deicing salts and chemical assaults.

With little extra deadweight on the BE structure, ultra-high-performance concrete
overlays can reinforce the structure and avoid future water penetration and chloride [110].
One of the successful uses of ultra-high-performance concrete overlays in BE decks has
been the enhancement of the Chillon viaducts, two parallel concrete highway BEs erected in
Switzerland in the late 1960s. To protect the safety of the Chillon viaduct, which had been
damaged owing to alkali aggregate reactivity, a 45 mm layer of Ultra-high-performance,
fiber-reinforced concrete was installed on top of the deck slab in 2015, acting as the deck slab
and the main girder’s external tensile reinforcement. As a result, the deck slab’s stiffness
and the ultimate load capability were enhanced, and water penetration into the existing
concrete was successfully avoided [111].

Owing to its large capability, low self-weight, and ease of construction, an orthotropic
steel deck (OSD) is a popular BE deck tech for long-span BEs. However, numerous investi-
gations have been conducted to address the problem of orthotropic steel decks, which is that
they may be subject to fatigue cracking, particularly at the weld between the longitudinal
stiffeners and the deck plate [112]. This is primarily owing to the fact that when exposed
to traffic pressures, a substantial number of stress cycles are created in the fatigue-prone
details [113]. The current investigation focuses on deploying a UHPC layer to rehabilitate
existing orthotropic decks to solve the fatigue difficulties associated with orthotropic steel
decks. For instance, Shao, Qu, Cao, and Yao [113] presented a lightweight composite
deck (LWCD) built from an orthotropic steel deck with a UHPC overlay. According to
the scientists, the lightweight composite deck had improved local stiffness and might
efficiently prolong the fatigue life of the BE deck. Yoo and Choo [114] built a deck with an
ultra-high-performance, fiber-reinforced concrete layer connected to steel girders.

Furthermore, the deck pavement is a direct-wear part of the BE structure that is
impacted not only by vehicle wear but also by thermal expansion and rain erosion. As
the lifespan of the BE deck pavement in China has decreased considerably in recent years
because of the continual rise in traffic loads, some scientists are considering adopting
UHPC materials instead of standard paving materials to counteract this challenge. Table 4
illustrates instances of the UHPC BE deck pavement utilized in China in recent years.
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Table 4. Applications of UHPCs in BE deck pavement in China.

Position Year Name BE Type

Guangdong Province 2011 Ma Fang BE Simple box girder

Guangdong Province 2014 Buddha Chen BE Variable section continuous steel box girder

Hunan Province 2015 Dong Ting Lake Second BE Plate-truss composite suspension BE

Beijing 2015 Tong Hui BE Deck beam arch combination BE

Tianjin 2015 Hai, He BE Hybrid beam cable-stayed BE

Guangdong Province 2016 Rong Jiang BE Hybrid beam cable-stayed BE

2.4. Bridge Girders

BEs are subjected to higher live loads than buildings; thus, as shown in Figure 5,
UHPC has proven to be a viable material for BEs. The first UHPC BE—the Mars Hill BE, as
shown in Figure 5a—in the United States was advanced in 2006 in Wapello County, Iowa.
UHPC was employed to build the 33.5 m long, I-formed pre-stressed BE girders. UHPC’s
greater CS aided in reducing the girder depth and numerous pre-stressing tendons [115].
Depending on the project’s success, the form of the UHPC girder was further improved,
and Pi-formed girders were constructed, as seen in Figure 5b. After it was opened to traffic,
the Jakway Park BE performed well because of its optimum design [116]. The improved
productivity of a Pi-formed UHPC girder has significantly broadened the utilization of
UHPC in BEs. However, the high initial costs of the proprietary UHPC employed in the
two projects precluded UHPC from being widely adopted in other states. As a result, non-
proprietary, cost-effective UHPC has been developed utilizing locally accessible materials.
However, the potential for the employment of non-proprietary UHPCs as structural BE
parts has to be researched further.
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The component strength at the strength limit state is primarily considered in the design
of an ultra-high-performance concrete girder [117]. The corrosion of the girder ends can
dramatically decrease the strength of the BE components [118], highlighting the necessity
for material with strong resistance to the infiltration of hazardous chemicals. Previous
investigation has confirmed UHPC’s improved corrosion resistance. However, owing to
the high costs of UHPC, its utilization in BE girders has mostly been as a repair material.
UHPC, for instance, has been utilized to cover corrosion-damaged steel girder ends [118].
In this unique repair procedure, ultra-high-performance concrete panels were connected
to girders utilizing shear studs welded to the flange and web around the corroded region.
According to the findings of this research, employing UHPC can recover the capability
lost because of corrosion damage. Graybeal performed a series of investigations on the
flexural behavior of ultra-high-performance concrete BE girders and determined that UHPC
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I-girders might have a larger flexural capability than normal strength concrete girders with
the same cross-sectional geometry [119].

UHPC girders have the added benefit of being lighter in self-weight, which might be
employed in steel–concrete composite BEs to minimize production costs in long-span and
continuous BEs. For the trial design of the steel ultra-high-performance concrete lightweight
composite BE at the South Dongting Lake, BE, Shao and Hu [120] presented a set of
novel steel–UHPC composite girders. The self-weight of the steel–ultra-high-performance
concrete composite girder could be lowered by about 35 percent when compared to the
conventional composite girder.

2.5. Long-Span Bridge

The Seonyu foot BE in South Korea, with a main span of 120 m, was fabricated
utilizing ultra-high-performance concrete in 2002 and finished in 2004 [121]. The Seonyu
foot BE structure, the world’s longest long-span BE, built utilizing ultra-high-performance
concrete, required around half the material volume that would have been utilized in
conventional concrete production while providing similar strength characteristics. In Japan,
the Sakata-Mirai foot BE, with a span of fifty meters, was built in 2003. The BE demonstrated
how a perforated web in an ultra-high-performance concrete superstructure can decrease
weight while still being visually beautiful [122]. Subsequent to the achievement of these
projects, ultra-high-performance concrete pedestrian BEs have been constructed throughout
Australia, Europe, Asia, and North America (Canada and the U.S.) [123].

At the moment, some forms of flaws in long-span BEs have appeared, including
(1) steel BE deck pavement and BE surface structure crack; (2) general crack and deflection
of pre-stressed concrete continuous box girder; and (3) concrete crack in the negative
moment area of steel–concrete composite beams [63,71].

The impact of the long-span BE’s bent and broken concrete beam has been a severe
concern. Scholars have suggested the one-way, pre-stressed UHPC thin-wall continuous
box girder construction to tackle these challenges. The conceptual design for the UHPC
continuous box girder BE been completed. According to the research, this innovative form
of UHPC construction could effectively minimize girder BE deflection and fracture. Using
UHPC with a high tensile strength as the BE system instead of traditional concrete could
dramatically enhance the stiffness of the BE deck, substantially advance the stress of the
pavement layer, effectively minimize cracking, and decrease the fatigue stress of the steel
structure [69].

In recent decades, the construction and design tech for long-span BEs has evolved at
an increasing rate. Innovations in structural construction and design are often associated
with utilizing the novel product, and UHPC has a lot of promise in this area.

2.6. Joints/Links

All aspects of the BE, including the joints, must be considered (for example, expansion
joints, transverse and vertical wet joints, etc.) to achieve a long-lasting and safe highway
traffic system. Table 5 describes the UHPC apps in BE joints.

The research shows that link slab components could be included in BE decks to replace
the expansion joints.

This is often utilized in ABC projects. The standard connection requires complex
reinforcing arrangements, which take time. The utilization of UHPC simplifies the on-site
reinforcement and reduces construction time and assembly procedures. As indicated in
Figure 6, two field-cast UHPC connection projects (Route 23 BE in Oneonta and Route 31 BE
in Lyons) were built in 2009.
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Table 5. Applications of ultra-high-performance concrete in BE joints.

Ref. Year Nation Name App

[124] 2011

U.S.

Fingerboard Road BE Joints among deck bulb tees

[125] 2011 U.S. Route 6 BE Transverse and longitudinal joints among beams

[126] 2016 Pulaski Skyway Joint fill connections among the sheer pockets and slabs

[125] 2007

Canada

Sunshine Creek BE Joint fill among pre-cast curbs and adjacent box beams

[127] 2009 Buller Creek BE Joint fill among adjacent box beams and among pre-cast curbs

[127] 2009 Eagle River BE Joint fill among pre-cast curbs and among adjacent box beams
to establish live load continuity

[127] 2010 Wabigoon River BE Joint fill among pre-cast curbs and among adjacent box beams

[126] 2013 Blackwater River BE Joint fill among pre-cast curbs and among adjacent box beams

[126] 2016 Nipigon River BE
Connections of pre-cast tower segments to connections of
longitudinal, cast-in-place tower segments and transverse

joints to steel beams and girders

Chloride-contaminated water infiltration and debris deposition issues connected to
expansion joints often occur, posing a significant long-term repair and maintenance work
challenge and impacting on the structural lifecycle of BEs [128]. BE expansion joints are
expensive to build and maintain. To overcome this issue, jointless and continuous BE decks
with link slabs connecting adjacent girders have been suggested and advanced [129].

Several investigations [130–132] found that ductile concrete materials, known as
engineered cementitious composites (ECC), with ordinary steel reinforcement might be
employed to produce engineered cementitious composite link slabs. This connection
slab was designed to resist the imposed bending moment caused by the relative deck
rotations [133] or traffic loads [134]. Further investigation [135] found that ECC-linked slabs
strengthened with non-corrosive fiber-reinforced polymer rather than steel reinforcement
may greatly improve crack width control, deflection capability, and corrosion resistance.

Owing to their high ductility and strength, UHPCs could be a desirable material in
link slab apps [136], as seen in Figure 6. The usage of an ultra-high-performance concrete
connection slab is detailed in Graybeal’s work [137], as illustrated in Figure 7. The UHPC
link slab in Figure 8 was utilized to repair the leaky joint, providing deck continuity and
a long-lasting seal. This link slab has been functional since 2013. The performance of
ultra-high-performance concrete jointless BE decks is unknown; therefore, the design could
include ambiguities. Regardless of the various advantages of jointless BE decks, the United
States has a standardized set of design standards and processes for such BEs, with just a
few specifications and design guidelines provided.
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2.7. Bridge Bearing Component

Regarding bridge bearings, not only must high bearing compression forces be trans-
mitted but also rotation and movement [139]. A significant manufacturing effort is required
to fabricate the form in steel for spherical bearings. Using UHPC instead of steel might
well have considerable advantages. Such bearing advantages are obtained without com-
promising the bearing’s service performance or load resistance capacity. Moreover, Table 6
summarizes and briefly analyzes the usual BEs in the app example.
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Table 6. Examples of UHPC apps in BE bearing components.

Ref. Year Country Name App Location Purpose of Utilizing UHPC

[140] 2015 China
Fuzhou University

Landscape
BE

Arch rib Empirical BE to promote the
utilization of UHPC

[141] 2007

Canada

Glenmore Pedestrian
BE Pre-stressed T-beam Weather resistance and ease of

maintenance-work.

[142] 1997 Sherbrooke Overpass
Pre-stressed,

post-tensioned
space truss

To investigate novel materials
and architectures.

To improve the longevity of
ecological compatibility.

[143] 2008

U.S.

Jakway Park BE Pi-formed beam To provide direction for future
designs that utilize UHPC Pi-girders.

[144] 2008 Cat Point Creek BE I-formed beam To use material tensile characteristics
to make building simpler.

[145] 2006 Mars Hill BE I-formed beam To investigate UHPC characteristics
and enhance their materials.

[146] 2008

France

Pont du Diable
Pedestrian BE U-formed beam To improve the span length and

strive for a light, beautiful design.

[147] 2007 Pinel BE Pre-stressed T-beam To use UHPC for durability and
rapid building.

[148] 2005 PS34 BE Box girder

To change the BE’s design and
incorporation with the surrounding

environment and lighten
the structure.

[148] 2005 Australia Shepherds Gully
Creek BE

Pre-cast, pre-tensioned
I-beam

Empirical BEs to replace the old,
aging timber BE and enhance the

bearing capability.

[149] 2007 Germany Friedberg BE Pi-formed beam
To use superior durability

characteristics to replace an old,
deteriorated timber structure.

[150] 2010 Austria WILD BE Arch rib Ecological management and light and
slim constructions.

[148] 2002

South Korea

Peace BE Pi-formed beam
To strengthen diplomatic connections

with France while also improving
arch performance.

[151] 2009 Office Pedestrian BE Cable-stayed BE Lightweight structure and
reasonable stress

[152] 2013 Czech Republic Celakovice Pedestrian
BE Segmental deck Reduced lifecycle costs and low

maintenance-work.

3. Limitations

UHPC, as a cementitious engineering material, provides durability, higher strength,
and a compact microstructure, leading to its expanded utilization in infrastructure con-
struction [153]. Most of the time, UHPC fails to fulfill engineering performance standards
and is excessively expensive when compared to conventional concrete mixtures [5]. Com-
pared to traditional-strength concrete, UHPC provides superior durability and mechanical
performance; nevertheless, its application is limited because of its high initial costs, high
cement content (up to 1100 kg/m3), limited design standards, and substantial ecological
impact. Furthermore, the high costs of raw materials such as steel fibers and fine silica
sand, which accounted for nearly half of the overall costs, restricted its application [154].

The primary limits for utilizing UHPC in BE:



Buildings 2023, 13, 185 16 of 24

i. Costs of raw materials: The most significant aspect for BE designers and owners is
that numerous raw ingredients (such as steel fiber and silicon) and the costs of raw
UHPC materials are more costly than those of standard concrete.

ii. Ecological sustainability: The production of one tonne of PC releases about the same
volume of carbon dioxide into the atmosphere as the burning of one tonne of coal [155],
putting a significant burden on ecological sustainability.

iii. Raw material requirements: UHPC is highly strict with regard to the utilization of
raw materials; the form of fiber, the diameter of the gravel, and the water reducer
influence the completed product’s performance. As a result, how to prepare UHPC
for stable performance under varying situations has become the critical challenge
limiting its widespread deployment.

iv. Ultra-high-performance concrete opposes the current objective of sustainable pro-
duction, which is to reduce greenhouse gas emissions and energy consumption [156].
Furthermore, depending on the usual empirical findings, partial or total strength loss
in ordinary or high-strength concrete is more likely to develop as substitution rates
rise [156]. Achieving a higher replacement level for concrete mixes without losing the
hardened characteristics of concrete remains a fundamental problem in developing
optimum UHPCs in terms of mechanical functioning and sustainability.

v. Specifications: In the meantime, appropriate, standardized rules and standards for
design, testing, numerical modeling, and construction should be developed like
those of ordinary concrete. Furthermore, before the large-scale deployment of UHPC
materials, procedures for adequate maintenance work, recognizing damage, and
replacing or repairing UHPC components must be advanced and standardized to
facilitate UHPC apps.

vi. Maintenance-work requirements: In order to achieve high material strength, UHPC
requires high-temperature maintenance work throughout construction. However, the
BE construction process may not always be equipped with the necessary equipment
for such maintenance work. As a result, UHPC is usually utilized in the prefabricated
form, which limits the options for BE designs and building techniques.

In conclusion, practical apps for ultra-high-performance concrete can be found world-
wide. UHPCs, oppositely, are going slowly, with constraints restricting their apps. High
initial costs, restricted codes, design difficulties, sophisticated manufacturing techniques,
and limited available resources impeded its commercial growth and deployment in modern
construction, particularly in emerging nations. To fully realize UHPC’s enormous potential,
the sector must improve its collaboration with governmental organizations, academic insti-
tutions, and owners. All parties should share this novel practical experience and knowledge
of the material. As UHPC is a material with high material sensitivity, local design standards
and guidelines should be advanced. More investigation into developing cost-effective
and sustainable UHPC, utilizing alternative materials with comparable functionality to
replace the costly UHPC composites while minimizing the ecological impact is required for
improved UHPC adoption. Engineers, architects, and designers should be more willing to
experiment with novel technologies and materials. With all of these efforts, UHPC could
become a current and future building material, providing a more comprehensive strategy
for sustainable construction.

4. Challenges

In various nations through the past two decades, ultra-high-performance concrete
has been utilized for both structural and non-structural pre-cast elements. Nevertheless,
owing to a lack of design guidelines and its high initial costs, this significant tech has
failed to become a popular tech for daily use. Moreover, the high energy consumption
and high costs of UHPC materials make it problematic for it to compete with CC designs,
limiting its usage. Investigation into enhancing the sustainability and the lowering of
the costs of ultra-high-performance concrete is needed to enable its future widespread
use. Numerous investigations were conducted to modify the material mixtures utilizing
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industrial by-products and local raw materials to decrease the proportion of PC, SP, and
steel fiber [157]. With reduced ecological and cost influences, ultra-high-performance
concrete will be much simpler for the infrastructure market to adopt and will arouse the
attention of infrastructure owners.

The primary challenges of utilizing UHPC in BE are as follows:

1. Few investigations have been conducted on the lifecycle assessment of UHPC struc-
tures. The construction industry benefits from UHPC owing to its excellent mechanical
and durability characteristics. UHPC constructions have a longer lifecycle, need less
maintenance work, and have lower repair costs than typical concrete structures [158].
This must be considered throughout the design phase of the structure.

2. As UHPC structures differ from normal RC requirements and the number of engineers,
skilled builders, and experts are restricted, the teams experienced with UHPC design
and tech challenges are necessary In the UHPC market, there are only around five
major companies, mostly in North America and Europe [110]. Standards for the
construction and design of UHPC buildings must be devised depending on empirical
research, prior knowledge, field experiences, and scientific computation. International
guidelines are difficult to develop owing to the wide range of UHPC experience in
various nations [85].

3. UHPC materials are energy-intensive and costly, restricting their use. UHPC requires
more study to reduce the costs and improve long-term sustainability. Several investi-
gation studies modify material mixes by utilizing industrial by-products and regional
raw materials in order to minimize cement, SP, and steel fiber consumption. If the
ecological and economic costs and the effects of UHPC are decreased, infrastructure
owners will be more interested.

4. Lack of knowledge about mixing, quality control, and synthesis procedures is a
challenge since UHPC mixes with steel fibers and needs a multi-step mixing process
and a special curing method [99].

5. Owing to the rapid curing and high binder dose, creep and shrinkage have a sub-
stantial impact on UHPC behavior. More study is required to investigate materials
at the nano-, micro-, and macro-levels to correlate structural behavior and physical
phenomena for large-scale building methods.

5. Future Prospects

With regard to the above review, the following future investigation topics have
been highlighted:

1. The static and dynamic behavior of BE connections and elements/components made
of UHPC materials is fundamentally modeled. The models can be utilized in widely
accessible commercial software (For instance, ANSYS, SAP2000, etc.).

2. Develop a design and construction approach for pre-stressed UHPC girders for long-
span BEs.

3. Optimal performance and reliability design methodologies include the complete life-
cycle costs of a BE, including design, construction, maintenance work, and retrofitting
for damaged components caused by severe occurrences such as earthquakes, hurri-
canes, vessel collisions, etc.

4. The enhanced lightweight UHPC can be employed to make portable BE deck
panels [31].

5. Despite investigations demonstrating the possibility of substituting normal-strength
concrete with UHPC in BE apps, the strategies for lowering the UHPC costs have not
been extensively established, emphasizing the need for more investigations on this
topic to broaden and extend UHPC uses in BEs.

6. To broaden the applicability of UHPC to jointless BEs, further investigations into the
failure mechanism and mechanical characteristics of UHPC utilized for link slabs
are required.
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6. Summary

UHPC is an innovative novel material with superior characteristics, such as remarkable
strengths and good durability, obtained via improvements in packing and homogeneity
density. Since its debut in the early 1990s, there has been a substantial accumulation of
knowledge on the construction, design, and material of UHPC structures, with several
nations attempting to apply it to building and BE apps. UHPC materials exhibit high
mechanical characteristics and durability, which can enhance the connection integrity of
BE component joints, improve BE load-carrying capability, and minimize BE pavement
cracking and deformation. They are presented as exclusively utilized in small- and medium-
sized BEs, as well as pedestrian BEs.

UHPC is anticipated to be employed to address a variety of issues, including the
general cracking and deflection of conventional pre-stressed concrete continuous steel
structures, damage to steel deck pavement, fatigue cracks in steel structures, concrete
cracks in the negative moment area of steel–concrete composite beams, and a variety of
difficult issues associated with long-span BEs. The utilization of pre-cast segmental BE
columns has been actively promoted in engineering procedures. Although conventional
segmental RC columns are self-centering, their damage tolerance and energy dissipation
capability remains restricted. According to the authors’ empirical and numerical analyses,
pre-cast segmental UHPC columns have recently been advanced and can easily solve
the aforementioned restrictions. Although the cyclic response of such BE columns has
been studied empirically, the impacts of pre-cast segmental UHPC columns on the over-
all performance of a BE at the system level are still unknown. An extensive study on
UHPC preparation procedures, structural design approaches, material characteristics, and
requirements will lead to decreased material costs and broader apps.
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BE Bridge engineering
UHPC Ultra-high-performance concrete
UHPFRC Ultra-high-performance, fiber-reinforced concrete
CS Compressive strength
RC Reinforced concrete
ABC Accelerated Bridge Construction
SF Silica fume
OSD Orthotropic steel deck
FHWA Federal Highway Administration
LWCD Lightweight composite deck
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