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Abstract: Concrete cracks have always been the focus of research because of the serious damage 
they cause to structures. With the updating of hardware and algorithms, the detection of concrete 
structure surface cracks based on computer vision has received extensive attention. This paper pro-
poses an improved algorithm based on the open-source model Deeplabv3+ and names it 
Deeplabv3+ BDF according to the optimization strategy used. Deeplabv3+ BDF first replaces the 
original backbone Xception with MobileNetv2 and further replaces all standard convolutions with 
depthwise separable convolutions (DSC) to achieve a light weight. The feature map of a shallow 
convolution layer is additionally fused to improve the detail segmentation effect. A new strategy is 
proposed, which is different from the two-stage training. The model training is carried out in the 
order of transfer learning, coarse-annotation training and fine-annotation training. The comparative 
test results show that Deeplabv3+ BDF showed good performance in the validation set and achieved 
the highest mIoU and detection efficiency, reaching real-time and accurate detection. 

Keywords: damage detection; non-destructive evaluation; deep learning; concrete structure; crack 
segmentation 
 

1. Introduction 
In recent years, many concrete infrastructures have suffered from structural degra-

dation due to long-term, high-load operation, or are close to the end of their natural ser-
vice life, resulting in safety problems. Therefore, it is necessary to regularly inspect the 
health status of infrastructure, and the identification and evaluation of structural surface 
cracks are the tasks that managers and researchers are focusing on. However, traditional 
manual crack detection methods are inefficient and subjective. How to develop and pro-
mote more effective and reliable detection methods is the current research direction. 

In view of the limitations of artificial crack detection, Yeum et al. [1] have carried out 
a lot of research on intelligent crack identification methods in the last decade. Initially, 
image processing techniques (IPTs) were used to carry out detection tasks, but this 
method requires additional pre-processing and post-processing technologies, thus, reduc-
ing the degree of intelligence. Deep learning algorithms [2], which can automatically ex-
tract the sensitive features of the target in the training process, were subsequently pro-
posed and widely studied. Among them, the most representative algorithms are of two 
types: objection detection [3] and semantic segmentation [4]. Objection detection gives the 
category and position of the target in an image in the form of a rectangular box, and some 
models with excellent performance have been proposed, such as the YOLO series and SSD 
[5] one-stage models and Fast R-CNN [6] and Faster R-CNN [7] two-stage models. Im-
proved models have also been put forward according to specific task requirements. Park 
et al. [8] proposed a structural crack detection and quantification method in which 
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YOLOv3-tiny is used to locate concrete cracks in real time. Zhao et al. [9] proposed a crack 
feature pyramid network (Crack-FPN), which has superior feature extraction capability 
and reduced computational cost. Some research or reviews on the application of objection 
detection algorithms to crack detection have also been carried out [10–16]. However, due 
to the simplicity of the result form, the target detection algorithm is only applicable to 
simple target existence determination. 

Crack images and datasets are highly class imbalanced, and cracks usually have com-
plex textures. According to these characteristics, the research has further developed from 
objection detection to semantic segmentation algorithm, that is, all pixels belonging to the 
same type of target are represented by a monochrome mask, and the picture is simplified 
into a combination of multiple different color masks. Some research has also been carried 
out on the application of the semantic segmentation algorithm in crack detection [17–22]. 
Xiang et al. [23] proposed a crack segmentation method based on super-resolution recon-
struction, which achieved a more than 10% performance improvement compared with 
previous models but could not meet the real-time requirements. Ren et al. [24] proposed 
a new end-to-end crack segmentation method based on a fully convolutional network 
which uses dilated convolution, spatial pyramid pooling, skip connection and an optimi-
zation loss function to obtain higher efficiency and accuracy. However, researchers have 
ignored or avoided some aspects of research, such as: (1) The computation amount re-
quired by the semantic segmentation algorithm is very large, and it even takes a few sec-
onds to detect an image in the early stage. If the semantic segmentation is intended to be 
used in an actual scene, the data type is usually video with a frame rate of 60. When con-
sidering frame extraction or reducing the frame rate, real-time detection requires that the 
model processes images at a speed of 0.033 to 0.04 s per image, that is, 25 to 30 frames per 
second (FPS). At present, the detection efficiency of many models is difficult to achieve in 
actual projects. (2) Due to the limitations of manual labeling, the division between the 
cracks and the background boundary in the label is relatively vague, which makes the 
segmentation results given by the trained model show a large number of false positives 
and false negatives on the boundary [25]. (3) Mei et al.’s study [26] and many other studies 
deployed a transfer learning [27] strategy in a model, using initial weights trained on a 
large dataset containing many categories. These datasets have many objects of different 
classes from cracks (for example, ImageNet [28] has more than 5000 classes), and the ex-
tracted features are not highly related to cracks. Even if the models are continuously 
trained with carefully prepared datasets after transfer learning, it usually takes a lot of 
time to complete the production of segmentation labels. It seems to be a method to auto-
matically label targets with computers, but the marking model still requires an initial da-
taset to complete training before it can be put into use. 

In this paper, a new pixel-level semantic segmentation model for crack detection 
based on Deeplabv3+ [29] is proposed to solve the above problems and is named 
Deeplabv3+ BDF. This model can overcome the interference of background and crack-like 
features, extract the crack boundary quickly and accurately and, thereby, prepare for the 
intelligent detection of fine indicators such as crack width across complex background, so 
that the management and maintenance department can concentrate resources to study 
cracks and ignore the background or other objects. In addition, this paper also attempts 
to use a new training strategy to reduce the common labeling cost problem of semantic 
segmentation models, which provides a potential solution for researchers with a large 
amount of data but not enough resources to fine-label all data. The main contributions of 
this paper are as follows: 

(1) A lightweight network MobileNetv2 is used as the backbone, and all standard 
convolutions are replaced by DSC to reduce the number of parameters and realize real-
time detection; 

(2) On the basis of the characteristics of semantic hierarchy and cracks, during the 
up-sampling process, the shallow feature map after one down-sampling is fused to 
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improve the segmentation accuracy at the boundary between the foreground and back-
ground; 

(3) Focusing on the problem of the labeling cost of semantic segmentation model be-
ing too high, a three-step training strategy according to the sequence of transfer learning, 
coarse-annotation (CA) training and fine-annotation (FA) training is designed and pro-
posed, which can enhance the learning and extraction of crack features. This training strat-
egy can train a better segmentation model with a large number of CA images on the prem-
ise of only a few FA images, saving a lot of human and material resources. 

2. Models and Methodology 
2.1. Deeplabv3+ 

The Deeplab series was developed on the basis of FCN [30]. Its main feature is to 
expand the receptive field by using atrous spatial pyramid pooling (ASPP) to obtain more 
image feature information. Deeplabv3+ achieves 87.8 mIoU on the PASCAL VOC-2012 
dataset, and its image segmentation effect is superior to other Deeplab series models. 
Compared with Deeplabv3, the main feature of Deeplabv3+ is that it adds a decoder mod-
ule with transposed convolution as the main unit, which can gradually restore high-di-
mensional feature vectors to the feature map of the same size as the input image. Figure 1 
shows the network diagram of Deeplabv3+. 

 
Figure 1. The structure of Deeplabv3+. 

The encoder consists of backbone network Xception [31] and ASPP. Xception extracts 
two feature maps of high semantic information and low semantic information at the same 
time. The former usually represents an abstract concept and is the information expressed 
by the image closest to human understanding, while the latter is the color, texture and 
shape. The high semantic information feature map conducts multi-scale, dilated convolu-
tion sampling in the ASPP module, generates and fuses multiple feature maps of different 
scales and, finally, uses 1 × 1 convolution for dimension reduction. Low semantic infor-
mation is transferred into the decoder part for 1 × 1 convolution and is fused with the high 
semantic information feature map after bilinear up-sampling four times to enhance the 
network learning effect and improve the segmentation accuracy. Then, the feature is ex-
tracted through 3 × 3 convolution, and the final semantic segmentation map is obtained 
by up-sampling four times. 
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2.2. Deeplabv3+ BDF and Optimization Strategies 
According to some defects in the current research described in Section 1, including 

defects relating to detection efficiency, boundary ambiguity and initial weight mismatch, 
we propose a method to improve the model accordingly and rename the model according 
to the optimization strategy used, namely Deeplabv3+ BDF. 

2.2.1. Backbone 
MobileNetv2 is used to replace Xception as the backbone. MobileNetv2 is the same 

as MobileNetv1, which is a lightweight CNN, and it uses DSC. By adjusting the number 
of channels in each convolution layer, MobileNetv2 does not affect the performance but 
can reduce the amount of computation. Taking it as a backbone can effectively improve 
the detection speed and decrease the occupation, making the model oriented to real-time 
detection. For more details, please refer to [32]. 

2.2.2. DSC 
All standard convolutions other than the backbone are replaced by DSC [33], includ-

ing standard convolutions in the decoder to accelerate the detection. DSC can be divided 
into depthwise convolution (DWC) and pointwise convolution (PWC) [34]. The compari-
son of these convolution operations is shown in Figure 2. Take the convolution operation 
in Figure 2 as an example. There are four filters in the standard convolution, and each 
filter has three convolution kernels, which correspond to three channels of the image. Af-
ter convolution, the feature maps with the same number of filters is obtained, and the 
parameter quantity is 4 × 3 × 3 × 3 = 108. There is only one convolution kernel in each filter 
of DWC, which is responsible for one channel, respectively. The number of channels be-
fore and after convolution remains unchanged, and the parameter quantity is 3 × 3 × 3 = 
27. The convolution kernel size of PWC is 1 × 1, and its function is to generate a new fea-
ture map by weighted combination of the output feature maps of the upper layer. It is a 
special case of standard convolution when convolution kernel size is 1 × 1 and the param-
eter quantity is 1 × 1 × 3 × 4 = 12. After DWC and PWC, a four-channel output can also be 
obtained, which is the same as in standard convolution. Moreover, compared with the 
standard convolution, the parameter quantity of DSC is 27 + 12 = 39, which is only 36.1% 
of the standard convolution, and the calculation cost is significantly reduced. 

 
Figure 2. Comparison of convolution operations. 

2.2.3. Feature Fusion 
The feature map after one down-sampling is fused additionally, as shown in Figure 

3. Convolution features are hierarchical and choosing different layers may achieve com-
pletely different results. Shallow features of CNN focus on detail features, such as edges 
and corners, which are usually associated with individual segmentation results. Middle 
features are a part of the object, and deep features focus on deeper semantic information. 
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Intuitively, deep feature maps can represent a complete object, which is usually related to 
the accuracy of classification results. Only when the receptive field size of the feature map 
is larger than the object can the correct detection be carried out. Correspondingly, shallow 
features can only cover small objects, while deep features can cope with larger objects. 

The boundary of the crack belongs to edge or corner features, so the feature map after 
one down-sampling is added to the up-sampling process to enhance the ability of the 
model to deal with the demarcation. For the feature map after three down-samplings, be-
cause the crack itself is a tiny object, even if it runs through the whole image, the number 
of pixels belonging to the crack is very small. The cracks contained in the receptive field 
corresponding to the feature map after two down-samplings can meet the training re-
quirements, because a part of a long crack can still be regarded as a crack with complete 
features. However, it is also unreasonable to only fuse the feature map after one down-
sampling, because it needs a larger field of vision to judge whether it is a crack or a crack-
like object. Only focusing on the edges or corners of the object may mistake some black, 
slender objects for cracks, thus, we retain the strategy of fusing the feature map after two 
down-samplings in Deeplabv3+. 

 
Figure 3. Comparison of network structure changes. 

3. Establishment of Dataset 
The biggest difference between the actual project and the laboratory scene is the en-

vironment around the crack. Generally, images obtained in the field experience interfer-
ence due to handwriting, template lines and other crack-like objects, while the crack im-
ages obtained in the laboratory have a monotonous background and no sundries; so, the 
trained model is difficult to extend to practical applications. Therefore, we take 82 images 
from multiple scenes. The illumination conditions, exposure intensity and acquisition 
equipment of these images are different, so the dataset has enough diversity. Because the 
dataset is collected by mobile phones or high-definition cameras, the image capture dis-
tance varies in a large range (0.2 m to 5 m), and the image scene also has enough complex-
ity; the trained model has good recognition effect on common crack images. However, the 
model has the potential to improve the recognition effect of fine cracks, especially for 
cracks where the width is less than 1 pixel, which are very easy to be missed in detection. 
This is also the difficulty of the semantic segmentation model used for crack detection at 
present. Examples of the dataset are shown in Figure 4. Four images at 3840 × 2880 pixels 
are from a composite plate failure experiment, eight images at 1920 × 1080 pixels are from 
another composite plate experiment, four images at 4608 × 3456 pixels are from a bridge, 
seven images at 4608 × 3456 pixels are from some cracked walls or structures in Zhejiang 
University, five images at 1920 × 1080 pixels are from a concrete beam bending experiment 
and five images at 1920 × 1080 pixels are from a concrete column bending experiment. 
These images are manually labeled at pixel level using the Labelme program. Another 49 
images at 1920 × 1080 pixels are obtained from a concrete beam bending test, and CAs are 
made to enable the model to be pretrained. Although transfer learning is an effective 
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strategy, its initial weights are usually trained by multi-class objects, and there are a lot of 
irrelevant or weak correlation features. After transfer learning, more pretraining for cracks 
can weaken these irrelevant or weak correlation features and strengthen the recognition 
and extraction of crack features. 

 
Figure 4. Examples of the dataset. 

The comparison of CA and FA is shown in Figure 5. CAs use more long lines and 
obvious angles to represent the irregular contour of the crack. The form shown in the fig-
ure shows that the mosaic area is wider, the jagged boundary of the crack is ignored and 
the final label can be approximately regarded as a polygon, which greatly reduces the time 
for CA. FAs make the marking points fit the crack as much as possible so that the width 
of the mosaic and the outline of the label basically match the crack. Therefore, obvious 
bending does not appear in the figure, and the overall appearance of FA is smoother. It 
takes about 6 min for an image to be coarsely labeled and 15 min to be finely labeled. This 
method of training based on two types of labels does not require fine labeling of all images 
and can reduce labeling costs. 

 
Figure 5. Comparison of CA and FA. 

Firstly, all images are divided into sub-images at 576 × 576 pixels; 588 coarse-labeled 
images and 944 fine-labeled images are obtained. Then, images without cracks are re-
moved, and 550 coarse-labeled images and 676 fine-labeled images are obtained. Due to 
the small amount of data, in order to make the test results more reliable, we refer to a data 
configuration strategy similar to K-fold verification in [35] so as to avoid over-fitting. The 
dataset is divided into five subsets for cross-training and validation. The division of sub-
datasets is shown in Table 1, and the dataset not used in each training process is used as 
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the code of this training process; so, each sub-dataset includes 540/541 images (including 
only FA images) or 980/981 images. CA images are not used for testing. 

Due to the small amount of data, the model proposed in this paper should be limited 
to detecting concrete cracks, and the prediction effect of surface cracks in extreme envi-
ronments (such as earthquake) or other materials needs further research. 

Table 1. Division of sub-datasets. 

Sub-Dataset No. 
or Training Process 

CAs FAs 

Sd1 110 135 
Sd2 110 135 
Sd3 110 135 
Sd4 110 135 
Sd5 110 136 

Total 550 676 

4. Model Training and Results 
The contents of this chapter include the details and experimental results of training 

Deeplabv3+ BDF. The optimization of the model is implemented using Python and the 
open-source framework Deeplabv3+. The computing workstation is configured with four 
1080 Ti GPUs. In the following paper, transfer learning is referred to as process T, training 
on CA images is referred to as process C and training on FA images is referred to as pro-
cess F. 

4.1. Training Strategy and Experimental Results 
Training is divided into four types: F, C + F, T + F and T + C + F, i.e., three-step train-

ing. Process T does not need to be specific, and using the Cityscapes initial weights already 
available in the Deeplabv3+ model package can be considered an alternative to this pro-
cess. Deeplabv3+ BDF is trained on CA images firstly and then on FA images as the model 
converges. Experiments show that process C converges after 15,000 epochs, and the 
weight of any subsequent epoch can be used as the initial weight of process F. In this 
paper, process C is iterated with 20,000 epochs. The image input size is set to 577 × 577 
resolution, the loss function is binary cross-entropy loss, the initial learning rate is 0.0001, 
the learning rate attenuation coefficient is 0.1, the number of attenuation steps is 2000, the 
batch size is 32, the dropout rate is set to 0.5 and the total number of epochs is 50,000. That 
is, when process C with 20,000 epochs exists, process F continues to iterate 30,000 epochs, 
and the loss is recorded every 10 epochs. 

In order to present the figures clearly, a simple moving average (SMA) of every 500 
steps is used to describe the loss curve, as shown in Figure 6. The SMA is calculated ac-
cording to Equation (1): 

SMA = ൜
(𝐿௜ + 𝐿௜ିଵ + 𝐿௜ିଶ + ⋯ + 𝐿ଵ)/𝑖, 𝑖𝑓 𝑖 ∈ [1,500)

(𝐿௜ + 𝐿௜ିଵ + 𝐿௜ିଶ + ⋯ + 𝐿௜ିସଽଽ)/500, 𝑖𝑓 𝑖 ∈ [500, 50000]
 (1)

where i is the number of iterations, and Li is the loss value of the ith iteration. Since the 
number of iterations is less than 500, SMA calculation needs to follow another variant 
form in the first 499 iterations, while SMA is normally calculated after 500 iterations. After 
two pretraining sessions of process T and process C, the three-step training model still 
shows the potential to be optimized in process F and further decreases in the loss value 
and finally converges to 0.25, which is the lowest of the four training strategies. Even for 
process C + F without process T this phenomenon also appears, that is, after the process 
C training weight excellence, it still has room to be improved, and its loss converges to 
0.39. 
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(a) F (b) C + F 

  
(c) T + F (d) T + C + F 

Figure 6. SMA loss curve. 

Process T + F and process F, which are two conventionally used training strategies 
with convergence values of about 0.30 and 0.42, respectively, without process C can also 
converge but are higher than T + C + F. In the two strategies without process T, the SMA 
curve fluctuates in different degrees. Note that this is the average curve, and its fluctuation 
is somewhat mitigated, but it still has disadvantages compared with the corresponding 
curves of the two strategies with process T. Therefore, process T is necessary. 

The effectiveness of our proposed training strategy can also obtain the same conclu-
sion from the validation indices. The precision (P), recall (R), F1-score and the most com-
monly used index in semantic segmentation task, mIoU, are used for evaluation, and they 
are calculated according to Equations (2)–(5): 

P = TP/(TP + FP), (2)

R = TP/(TP + FN), (3)

F1-score = 2 × P × R/(P + R), (4)

mIoU = (1/k) × TP/(FN + FP + TP), (5)

where TP, FP and FN represent true positive, false positive and false negative, respec-
tively, and K is the number of target categories in all images. Figure 7 shows that, when 
the training strategy is T + C + F and the dataset is Sd2, the change of mIoU curve is op-
posite to the loss curve, but the change trend is the same, that is, when process F is carried 
out after the convergence of process C, the curve has a certain mutation. The mIoU curves 
of the four training types on the Sd1 subset are shown in Figure 8. From the comparison 
between F and C + F, and the comparison between T + F and T + C + F, it can be seen that, 
although the curves of C + F and T + C + F are lower at the initial stage, the inversion is 
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achieved after 20,000 iterations, which indicates that the models with CA and FA training 
have significant optimization in terms of mIoU. 

 
Figure 7. Example of mIoU curve. 

 
Figure 8. mIoU curves of four training types. 

The performance of the four training strategies on the validation set is shown in Table 
2, which shows the indices of different training strategies on different sub-datasets. The 
results of process T + C + F is the highest in the four indices. From the comparison of T + 
F and F, T + C + F and C + F, it is revealed that transfer learning is still a very effective 
strategy when dealing with small datasets. It can provide better initial performance, opti-
mization rate and convergence for the model. The effectiveness of establishing a training 
strategy for a specific task can be proved by the comparison of T + F and T + C + F and the 
comparison of F and C + F. Deeplabv3+ BDF that is pretrained with CA data for a specific 
task and then trained normally is better at indicators than the model that is trained directly 
on FA data. The conventional training strategy, i.e., process T + F, is 0.019 lower than the 
secondary pretraining method proposed in this paper in terms of mIoU. 
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Table 2. Indicators obtained by different training strategies. 

Training Strategy Training Process P R F1 mIoU 

F 

Sd1 0.837 0.841 0.839 0.821 
Sd2 0.843 0.838 0.840 0.824 
Sd3 0.831 0.828 0.829 0.816 
Sd4 0.834 0.829 0.831 0.818 
Sd5 0.839 0.835 0.837 0.820 

Average 0.837 0.834 0.835 0.820 

C + F 

Sd1 0.871 0.874 0.872 0.856 
Sd2 0.863 0.859 0.861 0.841 
Sd3 0.854 0.865 0.859 0.838 
Sd4 0.861 0.868 0.864 0.845 
Sd5 0.859 0.851 0.855 0.843 

Average 0.862 0.863 0.862 0.845 

T + F 

Sd1 0.883 0.880 0.881 0.900 
Sd2 0.875 0.874 0.875 0.893 
Sd3 0.881 0.877 0.879 0.902 
Sd4 0.879 0.877 0.878 0.899 
Sd5 0.874 0.879 0.876 0.895 

Average 0.881 0.877 0.879 0.898 

T + C + F 

Sd1 0.892 0.903 0.897 0.921 
Sd2 0.889 0.897 0.893 0.917 
Sd3 0.883 0.887 0.885 0.912 
Sd4 0.887 0.882 0.884 0.914 
Sd5 0.892 0.896 0.894 0.919 

Average 0.889 0.893 0.891 0.917 

Some experiments are carried out on the proportion of data required by process C 
and process F, and the final mIoU is taken as the evaluation index. A total of 550 CA im-
ages are divided into five sub-datasets. Trial training is conducted according to the num-
ber of sub-datasets from 1 to 5, and the mIoU of each experiment is recorded, which can 
be seen in Figure 9. The results show that the difference of mIoU is within ±0.03 after using 
three or more sub-datasets, i.e., 330 CA images, which can be regarded as the fully devel-
oped optimization potential. However, this result is only for the task of this paper. In an 
actual project, the number ratio of CA and FA images should be determined according to 
the complexity of the task, the characteristics of the object and other factors. Section 3 de-
scribes the time spent in annotation, and an FA image is 2.5 times a CA image. If 330 or 
more CA images are labeled according to the FA image standard, it takes more time to 
achieve the same result, and this problem can be solved using the three-step training strat-
egy proposed in this paper. 
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Figure 9. The change of mIoU with the number of CA images. 

4.2. Comparison Results 
The excellent performance of Deeplabv3+ BDF can also be shown in the comparison 

experiment, and we compare Deeplabv3+ BDF with a variety of representative semantic 
segmentation models, including Deeplabv3+, U-Net [36], PSP-Net [37], DeepCrack [38] 
and DeepCrack-Aug [38], among which DeepCrack is a model specially designed for 
crack detection. Table 3 shows the results of the comparative experiment. Due to the use 
of a lighter backbone and the replacement of all standard convolutions with DSCs, the 
number of parameters in Deeplabv3+ BDF is greatly reduced, the physical occupation and 
running video memory occupation are reduced and the detection speed is greatly im-
proved. In addition, even Deeplabv3+ BDF without process C intensive training is supe-
rior to other models in various evaluation indicators, while Deeplabv3+ BDF with process 
C training further expands its advantages. The mIoU of Deeplabv3+ BDF (T + C + F) takes 
the lead over Deeplabv3+ with better performance at 0.102, and the detection speed 
reaches 26.132FPS, 2.9 times faster than U-Net. The comparison experiment proves that 
our optimization measures are effective. Deeplabv3+ BDF has both accuracy and speed 
and can meet real-time detection requirements (generally 20–25 FPS). If Deepalabv3 + BDF 
(T + C + F), Deeplabv3+ and DeepCrack-Aug are used simultaneously to detect 100 images 
at 576 × 576 pixels, which takes 3.83 s, 26.56 s and 11.43 s, respectively, our model can 
complete the same task with high accuracy and speed, and this advantage is more obvious 
when the number of images is larger. 

Table 3. Comparison results using the dataset of this paper. 

Model Deeplabv3+ U-Net PSP-Net DeepCrack DeepCrack-Aug 
Deeplabv3+ BDF 

(T + F) 
Deeplabv3+ BDF 

(T + C + F) 
P 0.821 0.813 0.801 0.467 0.512 0.880 0.888 
R 0.783 0.779 0.724 0.532 0.502 0.877 0.897 
F1 0.802 0.796 0.761 0.497 0.507 0.878 0.892 

mIoU 0.815 0.782 0.746 0.612 0.538 0.898 0.917 
FPS 3.765 8.934 7.824 2.784 8.752 25.783 26.132 

The results of crack semantic segmentation detection can be used to measure the 
width and length of cracks, and its application in the field of structural damage detection 
is not only as demonstrated here, but is also for corrosion detection and calculation and 
statistics of corrosion area, which will be carried out in our future work. 
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4.3. Typical Inference Results 
The proposed three-step training method is proved to be effective. In this section, we 

use representative inference results to show that Deeplabv3+ BDF with additional feature 
map fusion has better performance. Another training session is conducted using the same 
strategy and dataset Sd1, but the training object is changed to Deeplabv3+ BDF, which 
only fuses the feature map twice, and it is named Deeplabv3+ BDF-single for differentia-
tion. These two models are inferred from the same test set, three representative images 
are selected and the mIoU values after detection are attached. The pixels in the segmenta-
tion result can be divided into four categories, namely, TP in red, FN in blue, FP in green 
and TN representing the background, as shown in Figure 10. 

 
(a) mIoU = 0.908/0.831 

 
(b) mIoU = 0.823/0.672 
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(c) mIoU = 0.876/0.752 

Figure 10. Typical segmentation results. 

Deeplabv3+ BDF gives more accurate segmentation results of all fractures and ob-
tains significant advantages over the comparison model in mIoU. Figure 10a is a crack 
image containing a small cavity with simple background. Deeplabv3+ BDF-single incor-
rectly identifies the cavity as a crack, but Deeplabv3+ BDF does not. The segmentation 
results show that the mIoU of Deeplabv3+ BDF-single is only 0.831 even in simple back-
ground, and more FP pixels appear on the dark concrete background at the crack edge. 
Figure 10b contains a fuzzy fine crack. Fine cracks are the key and difficult task of crack 
detection. However, due to the accuracy of human eyes, the edges of cracks cannot be 
accurately marked, which makes it difficult to completely segment the fine cracks. 
Deeplabv3+ BDF has less truncation on the whole fine crack and less error expansion at 
the crack edge, while Deeplabv3+ BDF-single detects a complete fine crack as nearly 10 
cracks, and the mIoU also reflects the performance difference from the data level. Figure 
10c contains a spalling concrete surface, and the crack that passes through it can be con-
fusing. Deeplabv3+ BDF overcomes the problem of crack area expansion caused by spall-
ing to a certain extent, but there are a lot of FN results in the spalling area, which still has 
the potential for improvement. Deeplabv3+ BDF-single has a similar problem in dealing 
with the problem of spalling concrete. The whole crack is segmented more thinly, and the 
detection of the next thin cracks still fails, and the instrument circuit is classified as crack, 
which is unacceptable. It can be seen from Figure 10 that most of the FP and FN values of 
the crack segmentation task appear at crack boundary, which is the reason why we choose 
to fuse the shallow feature map, because it corresponds to the edges and corners of crack. 
Although the judgment of crack boundary is subjective due to the different degrees of 
image blur, at an overall level, however, the additional feature map fusion strategy re-
duces the proportion of FP and FN and has advantages in filtering various complex back-
grounds or processing cracks with different widths. 

Figure 11 shows the segmentation results of our model, Deeplabv3+, U-Net and 
DeepCrack-Aug. Figure 11a shows a crack with an average width of about 3.7 pixels. Our 
model has almost the same result as the groundtruth. The worst one is DeepCrack-Aug. 
As mentioned earlier, the dataset used by DeepCrack is relatively simple, and it is easy to 
make mistakes in some common images with general complexity. Figure 11b shows a 
crack with an average width of only 1.6 pixels. In this image, all models have made many 
errors, but, from a comprehensive perspective, our model still achieves the best results. 
The other three models have different degrees of truncation and error expansion for this 
fine crack. It can also be inferred from Figure 11b that our model can identify cracks only 
1 pixel wide and separate them from the background. It is proved that our model is supe-
rior to the recent work in both data and segmentation visualization. 
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(a) 

 
(b) 

Figure 11. Segmentation results comparison of multiple models. Subfigure (a,b) are two randomly 
selected crack images. 

5. Conclusions 
In this study, we noticed that the current research has some defects or ignores some 

problems, so we proposed a semantic segmentation model improving on Deeplabv3+ and 
named the model Deeplabv3+ BDF according to optimization strategies. The identification 
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of cracks is the most critical task in structural health detection, so we think it is necessary 
and beneficial to propose a deep learning network dedicated to crack detection according 
to the unique characteristics of cracks. We adjusted the training strategy of Deeplabv3+ 
BDF and optimized the network structure and established a dataset including CA images 
and FA images. After the training, we evaluated the performance of the proposed 
Deeplabv3+ BDF by comparing it with other models. The results show that Deeplabv3+ 
BDF solves the three problems mentioned in the paper well, especially realizing real-time 
detection. The conclusions are as follows: 

(1) The network structure of Deeplabv3+ BDF is made lightweight by using Mo-
bileNetv2 as the backbone network, so that its FPS of 576 × 576 pixels image is 26.132, 
which meets the real-time requirements and is 2.9 times faster than in recent works; 

(2) Because of the additional fusion of shallow feature map, Deeplabv3+ BDF can 
reduce the number of FN and FP values in detection results and improve the processing 
ability of the boundary between foreground and background under the same conditions; 

(3) After the second pretraining, that is, the proposed three-step training strategy, the 
potential of Deeplabv3+ BDF is further developed. Compared with the conventional train-
ing strategy, the mIoU of Deeplabv3+ BDF is increased to 0.917, which is at least 0.102 
ahead of other models. 
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