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Abstract: Recently, there has been an increasing number of studies on the distortional buckling
analyses of cold-formed steel (CFS) channels with web edge-stiffened holes. However, the literature
about the analytical solutions is scarce, and the current design rules, e.g., the American Iron and
Steel Institute (AISI 2016) and the Australian/New Zealand standards (AS/NZ 4600: 2018), provide
little design advice for CFS channels with edge-stiffened holes. This paper presents an analytical
method for estimating the bearing capacity for the distortional buckling of CFS channel beams with
edge-stiffened rectangular web holes. To validate the proposed method, comprehensive finite element
(FE) analyses were performed. The proposed design equations accurately forecast the distortional
buckling moment capacities of the CFS channels with edge-stiffened holes. Specifically, the average
error of the critical moment predictions for the distortional buckling of perforated CFS channel
beams obtained by the proposed analytical method and the finite element method (FEM) is only
6.59%, where the maximum error reaches 17.76%. Moreover, a parameter study on the effect of the
edge-stiffener length on the bearing capacity was carried out as well, and the results show that the
edge stiffener indeed significantly enhanced the critical moment when it is below a threshold length,
but the enhancement becomes unobvious once surpassing the threshold length.

Keywords: cold-formed steel; beam web opening; finite element; analytical solution; distortional buckling

1. Introduction

Cold-formed steel sections are more and more widely used in the fields of building
construction, automobile, aerospace, and other fields because of their high degree of indus-
trialization, high construction quality, short construction cycle, long service life, admirable
colligated economy, energy savings, environmental protection, and other excellent char-
acteristics. To ensure the laying of water pipes, electric wires, and heating pipes as well
as better economy, the practical application of cold-formed steel often requires precutting
holes on the webs of beams. As a result, this will cause changes in the elastic buckling
(especially the performance of the distortional buckling mode) and stability of the compo-
nent. To compensate for the lack of mechanical properties of the member, the edge of the
hole can be stiffened. Recently, more and more scholars are paying attention to studying
such components with edge-stiffened holes. Nevertheless, there is less analytical research
on the critical moment of the distortional buckling mode. In addition, there is almost no
introduction to the relevant content in the current design, such as the American Iron and
Steel Institute (AISI) [1], EN1993-1-3 [2] and the Australian and New Zealand Standards
(AS/NZS) [3].
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In the extensive research works concerning the distortional buckling of CFS channel
members without web holes, Law and Hancock [4,5] first derived the distortional buckling
formulas for channel columns and beams with no holes, which has been adopted by the
AISI, and their analytical model has a continuous reference significance. Li and Chen [6]
provided the other analytical model for analyzing the distortional buckling of cold-formed
steel sections. Schafer et al. [7,8] clarified the features of the distortional buckling mode
and provided a design method for cold-formed steel members. Liu et al. [9,10] analyzed
distortional buckling formulas for different boundary conditions with CFS columns with no
holes. In addition, other authors, such as Nan-ting Yu, Daniel, and others [11–15], provided
an energy-based approach to obtain explicit equations for the distortional buckling of
cold-formed steel sections without holes or with unstiffened holes. Concerning CFS channel
members with unstiffened web holes, Schafer and Moen et al. [16–22] conducted plenty of
experimental, analytical, and numerical studies on the elastic buckling of CFS components
with unstiffened holes and provided effective design methods for calculating the strength of
CFS beams with unstiffened web holes, which have been adopted by the AISI and AS/NZS.
The aforementioned studies on CFS components with no holes or unstiffened web holes
enable us to evaluate or calculate the distortional buckling behavior of components or
provide a basis for the establishment of design methods.

However, only a small number of studies focused on the elastic buckling of CFS
channel members with edge-stiffened web openings. Chen et al. [23,24] conducted a series
of experimental and numerical studies on the axial strength and moment capacity for the
cold-formed steel channel sections undergoing compression and bending. Their study
shows that the edge-stiffened web holes can enhance the moment capacity of CFS channel
beams, compared to those with unstiffened web holes or plain channels. Furthermore,
Chen et al. [25] experimentally and numerically studied the axial strength of back-to-back
cold-formed steel channels with edge-stiffened holes on the webs, and they also com-
pared the results with those of members with unstiffened holes and unperforated webs,
they further provided simplified design equations for cold-formed steel channels with
edge-stiffened holes under axial compression, even if the equations were not analytical. In
addition, the research team of Chen [26] researched the shear capacity of cold-formed steel
channels with edge-stiffened web holes on an experimental basis. Chen et al. [27] also stud-
ied the web-crippling capacity of fastened cold-formed steel channels with edge-stiffened
web holes under two-flange loading with some experiments and FE analyses. Elilarasi Kan-
thasamy et al. [28] experimentally and numerically studied the shear behavior of doubly
symmetric rectangular hollow flange beams with circular edge-stiffened openings. Cheng
Yu [29] also numerically researched the effect of edge-stiffened circular web holes. It is
worth mentioning that Moen et al. [30,31] provided elastic buckling simplified methods
for cold-formed columns and beams with edge-stiffened holes, and they qualitatively
elucidated the effect of the length of the edge stiffeners and the size of the web holes on the
bearing capacity and provided the formula for predicting the critical load of distortional
buckling, but there is a certain drawback due to the lack of concrete mechanical derivation.
Fang et al. [32] proposed a new research method that predicts the enhanced axial capacity of
CFS channel sections with edge-stiffened openings by a framework of deep belief networks,
and Yecheng Dai et al. [33] evaluated the moment capacity of CFS channel beams with
edge-stiffened web holes subject to bending by a novel machine learning model. These two
articles may explore a new important direction (deep learning) for future studies in CFS
members with edge-stiffened holes.

As aforementioned, most studies on CFS channel members with edge-stiffened web
holes are experimental and numerical studies, but the enhancement mechanism of the
edge stiffeners on the critical load of the distortional buckling has not been properly
studied. To grasp the intrinsic enhancement mechanism, this paper attempted to ex-
plore an analytical solution for distortional buckling analyses of cold-formed channel
beams with edge-stiffened rectangular web openings (see Section 2). To validate the ac-
curacy of the proposed analytical solution, an extensive numerical study involving about
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1000 models was carried out and compared to the results of the analytical solution (see
Section 3). Furthermore, this study also discussed the effects of edge-stiffener lengths on
the critical moment of CFS channel beams with edge-stiffened web holes (see Section 4).
Lastly, some noteworthy remarks are given in Section 5 to conclude the paper.

2. Analytical Model
2.1. Critical Load for Pure Distortional Buckling of Nonperforated Lipped Channel Beams

Consider a cold-formed lipped channel beam displayed in Figure 1a, where the
longitudinally equal-spaced edge-stiffened holes are located on the web midspan, and
the parameters characterizing the geometry of each perforated cross-section are plotted
in Figure 1b. Starting by analyzing the flange–lip system (see Figure 2), we can obtain the
analytical solution to the critical load of the lipped channel sustaining pure distortional
buckling, where, following the scheme used in refs. [4,5], the actions of the other part of
the cross-section to the flange–lip system are modeled by a translational spring kx and a
rotational spring kϕ.
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Figure 1. Lipped channel with stiffened rectangular holes on the web: (a) 3D viewpoint and (b) the
perforated cross-section.
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In Lau and Hancock’s model [4], which can be seen in Figure 2, kϕ and kx offer the
rotational and the lateral elastic restraints of the web onto the flange–lip system, respectively.
To ensure that the flange part can be free to translate in the z direction in the buckling
mode, the horizontal spring stiffness kx is assumed to be zero. Therefore, the influence of
the web on the flange–lip system leaves only the rotational stiffness kϕ. Enlightened by
Hancock’s theoretical derivation [5], the elastic critical stress for the distortional buckling
of the flange–lip system of flexure members can be written as

σcr =
E

2A

{
{(α1 + α2)−

√[
(α1 + α2)

2 − 4α3

]}
, (1)
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in which

α1 =
π2 A

Lcrd
2
(

Az2
c + Iz + Iy

)(Izb2 + 0.039JLcrd
2
)
+

ALcrd
2kϕ

π2E
(

Az2
c + Iz + Iy

) , (2)

α2 =
π2

Lcrd
2

(
Iy +

2A
Az2

c + Iz + Iy
ycbIyz

)
, (3)

α3 =
π2

Lcrd
2

(
α1 Iy −

π2 A
Lcrd

2
(

Az2
c + Iz + Iy

) Iyz
2b2

)
, (4)

Lcrd = π

(
EIzb2

kϕ

)0.25

, (5)

where σcr is the elastic critical compressive stress for distortional buckling of the beam; E is
the modulus of elasticity; Lcrd is the buckling half wavelength; A is the area of the flange–lip
system; b is the compression flange width; zc and yc are the distances from the flange–web
junction to the y- and z-axes, respectively; Iz and Iy are the moments of inertia of the
flange–lip system area around the z- and y-axes; Iyz is the product moment of the flange–lip
system area; J is the St. Venant torsion constant of the flange–lip system. In this study, holes
are only opened on the web, so Hancock’s model can still be considered. The key difficult
point in this study that should be given more attention is kϕ, i.e., the rotational stiffness
corresponding to the web with edge-stiffened holes. As a matter of fact, kϕ represents
the moment required to produce a unit angle of the flange–web edge by the flange–lip
system, and therefore the web plate bending stiffness is an important influencing parameter,
because it defines the rotational restraint to the connecting flange. As a consequence, we
need to obtain kϕ by analyzing a simply supported plate with edge-stiffened holes.

2.2. kϕ for a Simply Supported Plate with Edge-Stiffened Rectangular Openings on the Midspan

On the one hand, due to the presence of holes, there will be a reduction in the bending
stiffness of the web [3]; on the other hand, because of the edge stiffeners around the holes,
there will be a strengthening of the bending stiffness. The presence of the hole edge
stiffeners compensates for the loss of the bending stiffness in the web. To quantify the
influence of the holes and the edge stiffeners on the web-bending stiffness, we may study
the case that there is only one edge-stiffened hole in the web first (see Figure 3).
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To obtain the analytical formula of kϕ, we can start by analyzing a rectangular plate
with a single edge-stiffened rectangular hole subjected to distributed moments along the
web-top flange joint edge, and further, several assumptions should be considered; i.e.,

(a) The geometric center of the hole coincides with that of the web as shown in Figure 3;
(b) The web plate of the C-section in flexure is treated as a beam simply supported at one

end and fixed at the other end (see Figure 4);
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(c) The derivation of the formula is within the theory of small deformation, so the
higher-order terms (above the second order) can be ignored;

(d) The middle surface of the hole stiffeners, which is initially perpendicular to the middle
surface of the web, always stays perpendicular to the web midsurface during the
deflection of the web plate.
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Figure 4. Web model used to determine kϕ.

To obtain the rotational stiffness kϕ, a uniformly distributed bending moment M was
applied to the upper side of the web along a half wavelength Lcrd, as shown in Figure 5,
and the corresponding buckling deflection of the web when it deforms can be described by

u0(A0, x, y) = C
y
h

(
y− y2

h

)
sin

πx
Lcrd

, (6)

where C is a constant that represents the rotational angle of the upper flange–web edge
about the x-axis; h is the web depth; notice that the deflection assumed above satisfies the
boundary conditions of the web model (see Figure 4).
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𝜕𝑦2 )
2

+ 2𝜈
𝜕2𝑢0

𝜕𝑥2

𝜕2𝑢0

𝜕𝑦2 +
𝐿𝑐𝑟𝑑

0

ℎ

0

2(1 − 𝜈) (
𝜕2𝑢0

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑥𝑑𝑦 − ∫ ∫ [(
𝜕2𝑢0

𝜕𝑥2 )
2

+ (
𝜕2𝑢0

𝜕𝑦2 )
2

+
𝐿𝑐𝑟𝑑+𝐿ℎ𝑜𝑙𝑒

2
𝐿𝑐𝑟𝑑−𝐿ℎ𝑜𝑙𝑒

2

ℎ+ℎℎ𝑜𝑙𝑒
2

ℎ−ℎℎ𝑜𝑙𝑒
2

(7) 

Figure 5. Apply a line moment to the upper side of the plate with an edge-stiffened hole.
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Due to the hole being rectangular, each stiffener can be thought of as a tiny beam
spanning the edge of the rectangular hole. Hence, the strain energy of the web with the
edge-stiffened hole due to pure bending reads

Uw −Uhole =
Et3

24(1−ν2)

{∫ h
0

∫ Lcrd
0

[(
∂2u0
∂x2

)2
+
(

∂2u0
∂y2

)2
+ 2ν ∂2u0

∂x2
∂2u0
∂y2 +

2(1− ν)
(

∂2u0
∂x∂y

)2
]

dxdy−
∫ h+hhole

2
h−hhole

2

∫ Lcrd+Lhole
2

Lcrd−Lhole
2

[(
∂2u0
∂x2

)2
+
(

∂2u0
∂y2

)2
+

2ν ∂2u0
∂x2

∂2u0
∂y2 + 2(1− ν)

(
∂2u0
∂x∂y

)2
]

dxdy
}
− Et3

24(1−ν2)

∫ h−hhole
2

h−hhole
2

∫ Lcrd+Lhole
2

Lcrd−Lhole
2

[(
∂2u0
∂x2

)2
+(

∂2u0
∂y2

)2
+ 2ν ∂2u0

∂x2
∂2u0
∂y2 + 2(1− ν)

(
∂2u0
∂x∂y

)2
]

dxdy,

(7)

Us =
Ee3t
24

∫ h+hhole
2

h−hhole
2

[(
∂2u0
∂y2

)2

x= Lcrd−Lhole
2

+
(

∂2u0
∂y2

)2

x= Lcrd+Lhole
2

]
dy+

Ee3t
24

∫ Lcrd+Lhole
2

Lcrd−Lhole
2

[(
∂2u0
∂x2

)2

y= h−hhole
2

+
(

∂2u0
∂x2

)2

y= h+hhole
2

]
dx,

(8)

where e denotes the depth of the stiffener (see Figure 4), and Lhole is the width of the
edge-stiffened hole. The work performed by M can be obtained as follows:

Wext =
∫ Lcrd

0
M
(

∂u0

∂y

)
y=h

dx =
2CLcrd

π
M, (9)

according to the principle of least potential energy, i.e., δ(Uw + Us −Wext) = 0, the rela-
tionship between C and M can be obtained by

δ(Uw + Us −Wext) =
Et3

24(1−ν2)

{∫ h
0

∫ Lcrd
0

[
2 ∂2u0

∂x2
∂3u0

∂x2∂C + 2 ∂2u0
∂y2

∂3u0
∂y2∂C+

2ν·2 ∂2u0
∂x2

∂3u0
∂y2∂C + 2(1− ν)2 ∂2u0

∂x∂y
∂3u0

∂x∂y∂C

]
dxdy−∫ h+hhole

2
h−hhole

2

∫ Lcrd+Lhole
2

Lcrd−Lhole
2

[
2 ∂2u0

∂x2
∂3u0

∂x2∂C + 2 ∂2u0
∂y2

∂3u0
∂y2∂C + 2ν·2 ∂2u0

∂x2
∂3u0

∂y2∂C + 2
(
1−

ν
)
2 ∂2u0

∂x∂y
∂3u0

∂x∂y∂C

]
dxdy

}
δC+ Ee3t

24

∫ h+hhole
2

h−hhole
2

[
2
(

∂2u0
∂y2

∂3u0
∂y2∂C

)
x= Lcrd−Lhole

2

+

2
(

∂2u0
∂y2

∂3u0
∂y2∂C

)
x= Lcrd+Lhole

2

]
dyδC + Ee3t

24

∫ Lcrd+Lhole
2

Lcrd−Lhole
2

[
2
(

∂2u0
∂x2

∂3u0
∂x2∂C

)
y= h−hhole

2

+

2
(

∂2u0
∂x2

∂3u0
∂x2∂C

)
y= h+hhole

2

]
dxδC− 2MLcrd

π = 0,

(10)

after calculation and simplification, and the following formula can be obtained:

M = πEt3

24(1−ν2)h

[
1

210 (πξ3)
4 + 2

15 (πξ3)
2 + 2

]
C− πEt3

48(1−ν2)h

{(
1

64 ξ1 − 1
192 ξ3

1−

1
320 ξ5

1 +
1

448 ξ7
1

)(
ξ2 +

sinπξ2
π

)
(πξ3)

4 +
(
ξ1 + 3ξ3

1
)(

ξ2 +
1
π sinξ2π

)
+[

2ν
(

1
8 ξ1 +

1
12 ξ3

1 −
3

40 ξ5
1

)(
ξ2 +

sinπξ2
π

)
+ 2(1− ν)

(
1

16 ξ1 − 1
24 ξ3

1 +
9

80 ξ5
1

)(
ξ2−

sinπξ2
π

)]
(πξ3)

2
}

C + πEe3t
24Lcrd

[
1
h
(
ξ1 + 3ξ3

1
)
(1 + cosπξ2) +

π4

Lcrd

(
1− ξ2

1 − ξ4
1−

ξ6
1

)(
ξ2 +

sinπξ2
π

)
ξ2

3

]
C.

(11)
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We obtained the relationship between M and C. Because the physical meaning of C is
the rotational angle around the x-axis as C approaches 1, the expression lim

C→1
dM
dC represents

the rotational stiffness kϕ approximately, and then kϕ in this study that can be written
explicitly as

kϕ = lim
C→1

dM
dC

=
πD
2h

m1 −
πD
4h

m2 +
πEe3t
24h2 m3, (12)

where

D =
Et3

12(1− ν2)
(Plate flexural rigidity per unit web width with no hole), (13)

m1 =
1

210
(πξ3)

4 +
2

15
(πξ3)

2 + 2, (14)

m2 = η1η2(πξ3)
4 + η2η3 + [2νη2η4 + 2(1− ν)η5η6](πξ3)

2, (15)

m3 =
(

ξ1 + 3ξ3
1

)
(1 + cosπξ2)ξ3 +

(
1− ξ2

1 − ξ4
1 − ξ6

1

)(
ξ2 +

sinπξ2

π

)
(πξ3)

4, (16)

η1 =
1

64
ξ1 −

1
192

ξ3
1 −

1
320

ξ5
1 +

1
448

ξ7
1, (17)

η2 = ξ2 +
sinπξ2

π
, (18)

η3 = ξ1 + 3ξ3
1, (19)

η4 =
1
8

ξ3
1 +

1
12

ξ5
1 −

3
40

ξ7
1, (20)

η5 =
1

16
ξ3

1 −
1

24
ξ5

1 +
9

80
ξ7

1, (21)

η6 = ξ2 −
sinπξ2

π
, (22)

ξ1 =
hhole

h
, (23)

ξ2 =
Lhole
Lcrd

, (24)

ξ3 =
h

Lcrd
. (25)

In Equation (12), the first term represents the rotational stiffness of the web with no
hole directly; the second term reflects the reduction effect in bending stiffness on account
of the removal of the hole material; the third and fourth terms express the influence of
two stiffeners along the longitudinal and transverse distributions of the rectangular hole,
respectively. On the other hand, the formula shows that the parameters e, ξ1, ξ2, and ξ3 are
the most significant parameters that represent the effect of openings and edge stiffeners.

To deal with simply supported beams with multiple stiffened rectangular openings
evenly distributed longitudinally as shown in Figure 6, i.e., calculating their parameters kϕ,
we made the following assumptions: each transversal edge stiffener has the same effect; if
the beam with multiple unstiffened rectangular openings in Lcrd is of the same ξ1 and ξ2 as
another beam with only one unstiffened opening in Lcrd, both of their strain energies are
assumed to be equal. Therefore, we can just modify m3 in Equation (12) properly, and the
other terms remain the same. In addition, m

′
3 for a simply supported plate with multiple

stiffened rectangular openings is as follows:

m
′
3 = n

(
ξ1 + 3ξ3

1

)
(1 + cosπξ2)ξ3 +

(
1− ξ2

1 − ξ4
1 − ξ6

1

)(
ξ2 +

sinπξ2

π

)
(πξ3)

4, (26)
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where n is the number of holes in a one-half wavelength and reads

n =
n0⌈
L

Lcrd0

⌉ , (27)

where n0 is the total number of holes; L is the beam length; Lcrd0 is the half wavelength
in Equation (1) when kϕ = 4D

h , and Lcrd can be estimated by Lcrd = L
n . When we take the

normal bending stress on the web (σw) into account, the stiffness kϕ of the rotational spring
should be modified by multiplying a reduction factor, i.e.,

kϕ =

(
πD
2h

m1 −
πD
4h

m2 +
πEe3t
24h2 m

′
3

)(
1−

σcr|kϕ=0

σw|λ=Lcrd

)
, (28)

where σw|λ=Lcrd
stands for the buckling stress of the web plate with edge-stiffened holes in

Lcrd and can be approximately obtained by using the energy method (see Appendix A).
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3

12
+

𝑒𝑡3

6
+

𝑒𝑡

2
ℎℎ𝑜𝑙𝑒

2 =
𝑡ℎ3

12
+

𝑏𝑡3

6
+

𝑏𝑡

2
ℎ2 +

𝑡𝑐3

6
+

𝑡𝑐

2
(ℎ − 2𝑐)2 −

𝑡ℎℎ𝑜𝑙𝑒
3

12
+

𝑒𝑡3

6
+

𝑒𝑡

2
ℎℎ𝑜𝑙𝑒

2 ,  
(31) 
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Figure 6. CFS channel beam with multiple edge-stiffened rectangular openings.

2.3. Critical Load for Pure Distortional Buckling of Lipped Channel Beams with
Edge-Stiffened Holes

Substituting Equation (9) into Equation (1), the distortional buckling stress for pure
bending can be obtained. As a result of the mind of average, the critical moment of the
distortional buckling can be expressed as

Mnd = 0.9My

√
Mod
My

(
1− 0.22

(
1− ξ2

1

)√Mod
My

)
, (29)

where
Mod =

2σcr Inet

h
, (30)

Inet = Ig −
th3

hole
12 + et3

6 + et
2 h2

hole =
th3

12 + bt3

6 + bt
2 h2 + tc3

6 + tc
2 (h− 2c)2−

th3
hole
12 + et3

6 + et
2 h2

hole,
(31)

In the above formula, Mod is the distortional buckling moment of channel-section
beams with edge-stiffened holes; Mnd is the nominal flexural strength of channel-section
beams with edge-stiffened holes subject to distortional buckling after modification; My is
the yield moment of channel-section beams with no holes when the extreme compression
fiber of the gross section is yield; Inet is the second moment of the net area of the lipped
channel section with edge-stiffened rectangular holes in the web; Ig is the second moment
of the gross area of the lipped channel section without holes in the web.

3. Numerical Analysis
3.1. General

Shell finite element modeling of the CFS channel beams with edge-stiffened web
openings, built upon the ANSYS shell181 elements, was employed to calculate the critical
loads of buckling. The material properties of the beams are as follows: modulus of elasticity
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E = 206 GPa, yield stress σy = 600 MPa, and Poisson’s ratio ν = 0.3. The detailed modeling
process is shown in Section 3.2.

3.2. FE Modeling

Figure 7 plots the typical shell finite element meshes used for the modeling of the
perforated/nonperforated CFS channel beams, where the shell-181, a 4-node thick shell
element with six DOFs per node, was used to construct the FE model, and the average edge
size of the meshes equals 5 mm.
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Figure 7. Finite element mesh of a perforated beam and the force boundary condition.

3.3. Boundary Conditions

The beams were assumed to be pinned–pinned at both ends and subjected to pure
bending about their principal axis. We applied the displacement boundary conditions
through linking the DOFs associated with nodes on an end section to a virtual single node.
Assuming that the lateral displacements of all nodes on the sections at both ends are zero,
the lateral displacements and the rotational displacements about the longitudinal axis are
zero as well. To avoid the appearance of rigid displacement along the longitudinal axis,
the longitudinal axial displacement of the key point, which locates in the neutral plane
of one end of the sections, is assumed to be zero. The bending moments were applied by
a distributed force along the center line of the two end sections, where the forces were
assumed to be equably distributed on the two flange lines, i.e., −σyt for the top and σyt
for the bottom, and linearly distributed on the web line, i.e., from −σyt to σyt; the lip line
is from −σyt to −σy

(
1− 2c

h
)
t for the top and from σyt to σy

(
1− 2c

h
)
t for the bottom, (see

Figure 6). Then, the linear elastic analyses of the beam with edge-stiffened web holes were
carried out, and the effects of the edge stiffeners around web holes on the elastic buckling
loads and failure mode shapes of the beam are discussed.

3.4. Validation of the Analytical Model

To obtain the minimum eigenvalue representing the critical stress of a distortional
buckling, the section size should be carefully selected. After a series of simple finite element
analyses of CFS channel-section beams without holes, we selected four sections from them,
and their geometry dimensions are listed in Table 1, the hole length to beam length ratio,
lhole/l = 0.5, and the hole depth to web depth ratio, hhole/h, ranged from 0.1 to 0.7. From
the distortional buckling curves of CFS channel-section beams with edge-stiffened holes
(see Figure 8), Mcr,FEM represents the distortional buckling moments of CFS channel-section
beams with edge-stiffened holes, and My denotes the yield moments of CFS beams without
holes. From the result of the FE analysis, the distortional buckling mode is dominant in all
kinds of buckling modes when the length of the beam varies from 200 mm to 1600 mm in
four selected sections.
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Table 1. Geometric properties of the chosen channel sections.

Sections h/mm b/mm c/mm t/mm

A 180 60 20 2.0
B 200 70 20 2.2
C 240 75 20 2.5
D 300 80 20 3.0

As shown in Figure 8, it is obvious that the four distortional curves have similar
variation tendencies, but beams exhibiting global buckling are of different lengths for the
four sections. Figure 8 also shows that the critical moment of global buckling decreases as
hhole/h increases because the properties of the section changed when there were several
openings with edge-stiffened holes on the beam webs; in turn, the overall flexural stiffness
of the beam decreases. On the contrary, the critical moment of distortional buckling
increases along with the increase in the ratio of the hole depth to web depth hhole/h once
a threshold value is exceeded; this trend implies that the enhancement effect of edge
stiffeners outweighs the reduction effect of the holes on the distortional buckling moment.
In addition, the member length on the beam behavior is dominated by the global buckling
mode will decrease with the increase in the hhole/h, so the dominant buckling mode may
be changed once the hole depth to web depth hhole/h becomes large enough. Due to the
simplification of strain energies for holes far from the center of the half wave, the error may
increase when more than one hole is involved in a distortional half wave, and it may also
increase when the size of the holes increases to a certain degree in the half wave, and this
can be estimated via the comparison of the results of the critical moments of the distortional
buckling between the presented formula and the FE analyses.
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Figure 8. Distortional buckling curves of CFS channel-section beams with edge-stiffened holes
(σy = 600 MPa; My is the yield moment of CFS beams; lhole/l = 0.5). (a) Section A (h = 180, b = 60,
c = 20, t = 2.0, and e = 9). (b) Section B (h = 200, b = 70, c = 20, t = 2.2, and e = 9). (c) Section C (h = 240,
b = 75, c = 20, t = 2.5, and e = 9). (d) Section D (h = 300, b = 80, c = 20, t = 3.0, and e = 9).
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Figure 9 shows several typical distortional buckling modes; in most cases, the wave-
lengths of different half waves are equal for the distortional buckling mode in the beam
with even-distributed edge-stiffened rectangular holes.
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Figure 9. Typical distortional buckling modes.

Figure 10 shows the overall process for predicting the critical distortional buckling
moments in a simply supported beam with given section properties and stiffening hole
dimensions. At first, we calculated the number of edge-stiffened holes n in a one-half
wavelength by Equation (27) and estimated the half wavelength, and secondly, we obtained
all the coefficients associated with ξ1 ∼ ξ3, η1 ∼ η6, m1, m2, and m′3 by using Equations
(14) and(15) and Equations (17) and (26); thirdly, we calculated the rotational stiffness kϕ

from Equation (28), and finally, we predicted the nominal moment of distortional buckling
by Equation (29).
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Figure 10. Calculation process of the critical moment of distortion buckling mode.

To verify the accuracy of the formula, a comparison of the critical moments for the
distortional buckling between the formula and FEM should be conducted. Figure 11
shows the comparison of the critical moments of the distortional buckling; Mcr,eq and
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Mcr,FEM were obtained from the proposed analytical solution and the finite element analysis
for different values of hhole/h ratios, respectively. Figure 11 indicates that the critical
distortional buckling moments calculated by the proposed analytical solution are highly
consistent with those calculated by the FE analysis, where the mean deviation of all the
cases is only 6.59%, and the maximum deviation is 17.76% for the case that hhole/h = 0.1
in section A. The mean values of Mcr,eq/Mcr,FEM are 0.89, 0.95, 0.98, and 0.99 for the four
sections. For section A, the analytical method predicting the critical moment of distortional
buckling is a little conservative; for other sections, some cases occur with unconservative
results, while the overall errors are small in all cases. Generally, the analytical method is
quite applicative when hhole/h ≤ 0.5, and it is worth mentioning that the analytical method
predicting the critical moment of distortional buckling is a little bit conservative when the
hole depth to web depth ratio hhole/h > 0.5, and this implies that the actual effect of edge
stiffeners increases as hhole/h increases.
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Figure 11. Comparison of critical moments of distortional buckling between formula and FEM.
(a) Section A (h = 180, b = 60, c = 20, t = 2.0, and e = 9). (b) Section B (h = 200, b = 70, c = 20, t = 2.2,
and e = 9). (c) Section C (h = 240, b = 75, c = 20, t = 2.5, and e = 9). (d) Section D (h = 300, b = 80, c = 20,
t = 3.0, and e = 9).

4. Effect of Edge-Stiffener Length on the Critical Moment of Distortional Buckling

To find out the optimized stiffener length to the web length ratio e/h, this article
studied the critical moment in the above four sections, whose stiffener length to web length
ratio e/h ranged from 0.1 to 0.9, and the hole depth to web depth hhole/h ranged from 0.1
to 0.7. The results are shown in Figure 12.

Globally, it is observed that the critical distortional moment of beams presents a
growing tendency as e/h increases, but the growth slows down when e/h exceeds a
threshold value, and the threshold e/h value is about 0.05 in the four selected sections. In
addition, Mcr,FEM/My increases slowly in Figure 12; i.e., the enhancement effect of edge
stiffeners is not quite significant when the hole depth to the web depth ratio hhole/h is small
(e.g., hhole/h = 0.1). When e/h ≤ 0.03, a small increase in the critical moment of beams
with different hhole/h ratios means that the enhancement effect of the edge stiffeners on the
critical moment of beams is inferior to the weakening effect of holes on the critical moment
of beams, and when e/h > 0.3, the critical moment of beams increases as hhole/h increases;
in other words, the effect of the edge stiffener outweighs the effect of holes, and the change
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in regularity for the distortional buckling moment is governed by hole edge-stiffener length.
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5. Conclusions

This paper presents an analytical and numerical investigation of the critical moment
of CFS beams with edge-stiffened rectangular web holes. A relatively accurate analytical
equation that predicts the critical moment of CFS beams with edge-stiffened rectangular
web holes is obtained by the energy method. The moment capacity of the CFS channel
beams with edge-stiffened web holes obtained from the analytical method was compared
with the finite element analysis. From the comparison, the results of the analytical method
and finite element method showed fair consistency, and the mean values of Mcr,eq/Mcr,FEM
are 0.89, 0.95, 0.98, and 0.99 for the four sections, and the mean deviation of all the cases is
only 6.59%.

Moreover, the parametric study in this paper shows some conclusions as follows:

(a) The existence of edge stiffeners will not change the overall trend of elastic buckling.
(b) When the enhancement of edge stiffeners dominates the change in critical distortional

moments, the critical moment of distortional buckling increases as hhole/h increases;
on the contrary, the critical moment of global buckling decreases as hhole/h increases.

(c) In the distortional buckling mode, the critical distortional moments of beams with
edge-stiffened holes generally increase as e/h increases, but the enhancement effect of
edge stiffeners declines when e/h exceeds the threshold of about 0.05.

(d) The critical distortional moments of beams with edge-stiffened holes increase as
hhole/h increases when the e/h value reaches the threshold of about 0.03, which
means the enhancement of edge stiffeners dominates the change of critical distortional
moments in this situation.

6. Recommendation

This article deals with the prediction of the distortional buckling loads of CFS chan-
nel members with edge-stiffened rectangular web openings undergoing major-axis pure
flexure. The authors advise that researchers could pay more attention to more analytical,
experimental, and numerical studies on CFS components with edge-stiffened web holes
in compression, flexure, and shear or under combined forces or other complex loading
conditions, so that relatively simple calculation formulas for the calculations of the pure
buckling critical loads, which are necessary for the DSM design of CFS members, can
be obtained.
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Abbreviations
A = Cross-sectional area of flange–lip system
b = plate width
c = depth of lip stiffener
D = plate flexural rigidity per unit width
E = Young’s modulus
e = edge stiffener length
h = depth of web
hhole = depth of web hole
Iy, Iz = second moments of area of flange–lip system about the y- and z-axes
Ig = second moment of the gross area of lipped channel section without holes
Iyz = product second moment of area of flange–lip system about the y- and z-‘
yc, zc = y, z distances of centroid from the flange–web junction (see Figure 2)
J = St. Venant torsional constant
L = beam length
Lcrd = distortional buckling half wavelength of beam
Lhole = length of web hole
Mcr = critical elastic distortional buckling moment
t = thickness
ν = Poisson’s ratio

Appendix A. Buckling Stress of Web Plates with Folds

The deflection of the web when it buckles is assumed as follows:

σ = −σw

(
2

y
h
− 1
)

, (A1)

where σw is the buckling stress of web plates, and the boundary conditions are also de-
scribed as aforementioned. The strain energy of the web plate with multiple edge-stiffened
rectangular holes can be obtained as follows:
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the work performed by web-bending stresses can be estimated as follows:

Wext = − t
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by using the variation of δ(Uw + Us −Wext) = 0 with respect to C, which is to be deter-
mined, and σw of the plate multiple stiffened rectangular openings can be obtained the
formula as follows:

σw =
Et2
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+
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, (A4)
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