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Abstract: In the study, experimental and theoretical studies were carried out to assess the influence
of the vertical mounting joint zone of the tank on the stress-strain state of the defect zone. Thus,
experimental tests of models of a tank wall fragment with an imperfection of the mounting joint
evaluated the stress-strain state of the mounting joint zone and established the dependence of the
stress concentration in the joint zone on the deflection, the width of the zone and the thickness of the
tank wall. It is shown that with a 50 mm bending boom, the annular stresses increase by 1.3 times
than with a 30 mm bending boom and the meridional stresses increase by 1.16 times. The same
nature of the increase is observed with the stress concentration indicator. By numerical analysis of the
stress-strain state of tanks with joint imperfections in the ANSYS medium, the stress-strain state of the
tank is estimated for various values of the joint bending parameters ς and ξ. The dependences of the
stress concentration coefficient on the geometric dimensions of the imperfection, radius and thickness
of the tank wall are also obtained. From the results of calculating the stress concentration coefficient,
with an increase in the dimensionless parameters ς and ξ, the values of the stress concentration
coefficient Kσ increase by 1.35 times. As a result of the calculations, an interpolation polynomial (5),
approximating the stress concentration coefficient Kσ, is obtained, which can be used to estimate the
strength, durability and residual resource of the tank. In addition, the obtained results can be used to
normalize the limiting dimensions of the imperfection of the joint and to establish the values of the
coefficient, taking into account the peculiarities of the work of structures at stress concentrations.

Keywords: tank; stress concentration; joint zone; wall vertical field; experimental study; numerical
method; modeling
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1. Introduction

In the new century, more and more serious attention is being paid to the country’s
security issues at all levels of legislative and executive power. A special key place is occu-
pied by the problem of increasing the efficiency and safety of oil and oil products’ storage,
which have very specific properties. The main element of oil and oil products’ storage
points and bases is large-sized steel vertical cylindrical tanks, which involves construction
and maintenance intensification. At the same time, vertical cylindrical tanks are classified
as especially critical structures, the destruction of which can lead to environmental disas-
ters, significant material costs, and human casualties. Therefore, tanks’ construction and
operation should be based on sound scientific, technically feasible, fundamentally new
designs and economically viable solutions. In addition, in order to limit energy consump-
tion, specialists are currently conducting various studies in the field of energy saving and
development of alternative energy sources [1,2].

It is known that the most common causes of accidents and emergency situations in
all types of tanks (steel, concrete, reinforced concrete, vertical, horizontal, etc.) are stress
concentrators, in combination with adverse operational impacts and various tank design
options have been considered, including steel, concrete, horizontal and vertical. Tank
designs take into account the material’s characteristics, as well as ways to improve the
strength properties of the materials themselves [3–20]. In this regard, this paper considers
the issue of a comprehensive study of a cylindrical tank wall vertical field joint zone’s
true stress-strain state, an improved method for calculating limit states, and establishing
the factor values, taking into account the features of work at stress concentrations. The
relevance of the problem under consideration is also due to a sharp decrease in the volume
of new construction, which led to a noticeable “aging” of the tank farm and an increase in
the proportion of tanks whose technical condition is close to the limit and requires specific
measures to ensure the trouble-free operation of cylindrical steel tanks.

The authors Wang et al. [21] present the results of modeling the operation of steel
cylindrical tanks filled with liquid. Fan Y. et al. [22] present a numerical analysis method.
Martynenko G. et al. [23] note that a typical tank design has a wall that is modeled by a thin
shell. Wang, Zh. et al. [24] study the buckling of a tank wall at a constant external pressure.
It is shown that the presence of initial defects in the design significantly reduces the strength
of the tanks. Rastgar et al. [25] consider the issues of repairing dents with carbon fiber
reinforcement in order to restore the lost bearing capacity. Fatma M. et al. [26] provide the
results of a strength assessment of a cylindrical shell wall with a dent, taking into account
the stress concentration in the defect zone, where the issue of stress concentrations in the
defect was also not considered, and the shape and geometric dimensions of defects in the
form of dents were not taken into account [27].

Bannikov R. et al. [28] only consider the problem of assessing the technical condition
of steel tanks with a defect in the form of a dent, without taking into account the weld.
Dmitrieva et al. [29] mainly consider the issue of durability of the structure from the
corrosion process of a vertical steel tank shell. Mariusz et al. [30] highlight the problem of
the increase in the corrosion rate over time, and also analyze the residual life calculation. In
the work of Song, Z. et al. [31], the oscillatory sliding contact between a rigid rough surface
and an elastic-plastic half-space was considered in the context of numerical modeling.
Hagihara S. et al. [32] present a method for calculating the J-integral and T*integral in a
framework of the EFG method. The proposed method is applied to both a stationary crack
problem and a stable crack growth problem. In the work of Sun Jichao [33], through static
analysis, the resultant force of particles in rock fissures is extruded by rock on both sides.
Zhang Y et al. [34] attempted to simulate girth welded pipelines with various corroded
depths and lengths in order to compare it with offshore pipeline design manuals. Based on
the numerical results, the influence of corrosion defect parameters on remaining strengths
were investigated for girth welded pipelines. Yi Dake et al. [35] provide a method for
assessing the ability to destroy a practical pipeline subject to large plastic deformation.
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As the results of the above analysis of vertical cylindrical tanks’ operation showed, the
problems of angular strains in scroll tank field joints require significant improvement, since
the angular strains in the tank wall field joint significantly affect the stress-strain state in the
joint zone, lead to a significant stress concentration in the joint zone, and under conditions
of re-variable loads, reduce the tank performance as a whole. Considering the foregoing
information, the research purpose involves the experimental and theoretical assessment
of a cylindrical tank wall vertical field joint zone and the stress concentration dependence
identification on the joint imperfection geometric dimensions, which, in the future, will
allow us to predict vertical steel tanks’ service life. The research results can be used in steel
vertical cylindrical tanks’ design and construction.

2. Materials and Methods

At the first stage, taking into account the features of modeling thin-sheet cylindrical
shells, the technical feasibility of manufacturing a model, and also taking into account the
possibility of applying a load and measuring the experimental parameters, a modeling
scale of 1:10 was adopted to the full-scale structures of a vertical cylindrical tank with a
volume of 2000 m3, according to a standard design [36,37]. Modeling was carried out on
the basis of the theory of similarity and dimensions.

To carry out the experiments, a large-scale model of a vertical cylindrical tank’s vertical
scale joint zone, with a geometric imperfection in the form of angularity, was made.

The overall model dimensions were 1200 × 850 × 550 mm. The field joint was formed
from two 2 mm thick VSt3sp grade steel sheets, rolled along a radius of 1520 mm and
welded at the joint. The joint imperfection in the form of depression was modeled by rolling
the sheet edge along a radius of 30 mm and 50 mm and the angularity formation in the
form of a “heart”. The geometric scheme of the wall imperfection in the field joint zone in
the model is presented in accordance with Figure 1.
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Figure 1. Geometric dimensions of the joint imperfection in the model.

The model’s back side was made of a thick-walled pipe 4 mm thick. The model’s
bottom and roof were made of metal plates 4 mm thick.

The chemical composition of steel was determined by the gas volume method accord-
ing to [38]. The mechanical characteristics of steel were determined by standard tests of
samples according to [39] and are given in accordance with Table 1.

Table 1. Mechanical characteristics of the model’s body material.

Steel

Mechanical Properties

МММn Si S P Cr Ni CuYield Strength,
MPa

Breaking Strength,
MPa

VStp 240–245 370–480 ≤0.65 0.15–0.30 0.050 0.040 ≤0.30 ≤0.30 0.30

To simulate overpressure, a fitting with a diameter of 15 mm was placed on the model
roof for air supply by a compressor and a branch pipe for installing a spring pressure gauge.
The tightness of the models was tested with compressed air at a pressure of 0.02 kg/cm2.
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To place dial indicators on the model, a rigid profile was additionally fixed, on which dial
indicators were mounted with special clamps.

The methodology for conducting experiments on reduced models defined the proce-
dure and principles for conducting the tests that solve the issues of creating effects that
are adequate to real loads, choosing and using equipment, apparatus and instruments
corresponding to the tests, recording and processing the results obtained, and assessing
measurement errors. The research method, measuring instruments, devices and equipment
were chosen in accordance with the tasks faced by the experimental research.

Relative strains of the model wall were measured by strain-measuring instruments [40–49].
As sensing devices for measuring relative strains, single-element, loop strain gauges with a
10 mm foil base were used. The strain gauges were mounted with Tsiacrin-30 glue, which
is factory-made and does not require heat treatment.

The TsTM-5 strain-measuring set and AID-4M automatic strain gauge with automatic
balancing of bridges (half-bridges), completed with an AP-1 automatic switch, served as
the recording equipment.

To register the vertical field joint axis movements in the characteristic four sections,
ICH-04 dial indicators with a division value of 0.01 mm were installed, which were fixed
on special brackets, in accordance with Figure 2. The strain gauges were glued along four
characteristic sections (C-I, C-II, C-III, C-IV) along the model height, in accordance with
Figure 3. For each section, 6 measurement points were considered. The strain gauges
were glued in such a way that at one point, it was possible to measure the hoop and axial
stresses in the model wall. In total, measurements were taken from 32 active and 16 control
strain gauges in the experiments. In this case, the total test zone height was taken equal to
600 mm, and its width was 300 mm.
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Figure 2. Placement of ICH-04 dial indicators.

The model is symmetrical with respect to the joint axis; in connection with this, strain
gauges were glued only on half of the model, and only control strain gauges were glued to
the second half.

The shell was loaded stepwise from 0 to 0.04 kg/cm2 and then the model was unloaded
stepwise. At each step, the relative strains were measured in four sections, as well as the



Buildings 2022, 12, 1445 5 of 19

weld point displacements, both under loading and unloading of the model. The obtained
data were processed in compliance with the procedures and methods for solving practical
problems of statistics, when the measured values are random and distributed according to
the normal law in accordance with the standard [50–60].
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The pressure in the model was created by a compressor and controlled by a spring
pressure gauge MVTP-160, with a division value of 0.02 MPa. The block diagram for
testing the models, instrumentation and data determined in the experiment are presented in
accordance with Figure 4. According to the relative strains measured during the experiment,
the stresses were recalculated and the stress-strain state of the wall in the field joint zone
was analyzed.
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The stress concentration factors were determined by the ratio of the maximum local
stresses in the joint imperfection zone to the nominal stresses in the defect-free tank body
zone. The dependence of the stress concentration factor on the geometric dimensions of
the imperfection, as well as data on the stress-strain state of the wall, were used in further
theoretical studies. The developed method of the experimental study of the tank field
joint’s imperfection effect on the wall stress-strain state on the reduced models allowed
us to fully solve the tasks set for the research. The data obtained on the true stress-strain
state of the field joint zone with geometric shape imperfections allowed us to evaluate the
geometric imperfection dimension effect on the stress concentration.

At the second stage, the typical vertical cylindrical tank design with a volume of
3000 m3 was considered, filled with liquid with an imperfection zone in the field welded
joint along the entire tank height, in accordance with Figure 5 [61].
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Figure 5. General view of the tank, taking into account the field joint [61].

For numerical simulation of the tank’s stress-strain state caused by the internal pres-
sure action, the ANSYS software package was used. The stress-strain state perturbations in
the joint zone are described by the stress concentration factor Kσ.

Experience in the tank operation has shown that the stress-strain state of the tank
wall in the field joint zone depends on the geometric imperfections of the joint itself. Such
imperfections include the angularity under the action of a uniformly distributed pressure,
determined by the joint deflection f, the angularity width a, the radius R and the tank wall
thickness t.

Based on the hypothesis described in the works, the stress concentration factor depends
on two dimensionless parameters f/t and a/√RT where t—the shell thickness; f —the joint
bend depth; R, t—the tank radius and thickness.

The final expression for the stress concentration coefficient is obtained (KT
σ ) in the

following form:

KT
σ ≈ α(

f
t

; a/√RT ) (1)

As a result of the calculations of the tank stress-strain state for various values of the
dent parameters f/t and a/√RT , polynomials that approximate the stress concentration
factor Kσ were constructed.

These approximating polynomials for the factor Kσ are extremely effective for carrying
out estimated calculations of the tank body stress-strain state with arbitrary geometry and
with arbitrary geometric dimensions of the field joint imperfections.
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The design of a typical vertical cylindrical tank with a volume of 3000 m3 and the
stress-strain state of the tank wall of variable thickness were considered in accordance with
the paper [61]. The tank material elasticity modulus and Poisson’s ratio were taken as
follows: E = 2.1 × 1011 Pa; v = 0.3. One must assume that the tank was completely filled
(h = 11.92 m) with the density of the liquid γ = 1000 kg/m3. The adequacy of the results
was assessed by comparing the stress concentration factor values obtained by calculations
in the ANSYS and the values obtained from the polynomials, which take into account the
cylindrical tank wall field joint imperfections.

3. A Cylindrical Tank Wall Vertical Field Joint Zone’s Stress-Strain State
Research Results
3.1. Experimental Research

In accordance with the developed methodology for conducting experiments, at the
initial stage, the annular and meridional deformation components were measured in the
characteristic sections of the tank field joint fragment model. An analysis of the hoop
stress diagrams in the model wall in the field joint zone at various values of the camber, in
accordance with Figure 6, showed that at the level of 500 mm from the model bottom, at
the level of the main nominal stresses of 60.8 MPa, the maximum stresses in the joint zone
amounted to 276 MPa, with a camber of 30 mm and 358 MPa with a camber of 50 mm.
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Figure 6. Distribution of the meridional stresses in the joint zone with the wall bend in the joint equal
to 30 mm and 50 mm.

The facts established by the tests prove the assumption of significant concentrations in
the field joint zone with a defect in the form of angularities, and also indicates the decisive
influence on the stress concentration in the joint zone of such imperfection parameters as
the camber and the reduced width of the bend zone. At significant values of the camber at
the boundary sections of the bend, the hoop stresses are somewhat lower than the nominal
ones, which, apparently, are associated with the expanding action of the bent wall part.
The hoop stress diagram curves (Figure 7) indicate the characteristic stress concentration,
which was observed at points located closer to the wall bend line.
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The meridional stress diagrams, constructed on the basis of experimental data, in
accordance with Figure 8, show that the bend of the field joint does not significantly affect
the meridional stress distribution in the joint zone.
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There is evidence of some (1.1 and 2.3 times) increase in the stresses in the bend place
and its uniform redistribution. An increase in the bend f from 30 mm to 50 mm does
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not have a significant effect on the stress distribution in the joint zone. The maximum
meridional stress value at an internal pressure of 8 kPa and a bend of 30 mm was 67 MPa,
and at a bend of 50 mm, it was 78 MPa. The nominal meridional stress level was 32 MPa.

According to the experimental data, the hoop and meridional stress concentrations
in the joint zone were estimated, in accordance with Figures 8–11, depending on the bend
value and internal pressure in the model.
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Figure 11. The meridional stress concentration in the field joint zone of the wall with a bend of 50 mm
in section C-3.

The maximum stress concentration in the joint zone was 4.54 for the model with a
bend of 30 mm, and 5.89 for a camber of 50 mm.

An analysis of the graphs, Figures 8–11, shows that with an increase in internal
pressure due to the field joint zone’s bend straightening, a decrease in the hoop stress
concentration value is observed.

A qualitatively similar distribution of the hoop and meridional stresses in the wall
field joint zone was also observed when a tank with a volume of 3000 m3 was tested.

Figures 12 and 13 show the hoop and meridional stress diagrams in the field joint zone
of a full-scale tank wall with a bend of 20 mm, 29 mm and 36 mm.
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Tests of the operated tank showed that the maximum hoop stresses at the level of
nominal stresses of 122 MPa and the field joint bend of 36 mm were 168 MPa, at 29 mm,
they were 153 MPa; at 20 mm, they were 141 MPa, which do not exceed the normative yield
strength values of the 09G2S grade steel tank wall, equal to 295 MPa.

The maximum meridional stresses were as follows: at the bend of 36 mm—83 MPa,
29 mm—75 MPa and 20 mm—72 MPa.

The tests established that the initial imperfection shape and its geometric dimensions
significantly affect the wall stress-strain state in the field joint zone.

Based on the experimental stress value results, the stress concentration factors were es-
timated for various field joint bend values. The calculation results are shown in accordance
with the graphs of Figure 14.
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The stress concentration in the tank wall joint zone with bends of 36 mm, 29 mm and
20 mm was 1.38, 1.25 and 1.16, respectively.
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The conducted studies allowed us to once again be convinced of the importance of
taking into account the tank wall joint zone imperfection, as well as assessing the stress
concentration in the wall imperfection zone.

3.2. Theoretical Research

At the second stage, numerical analysis of the stress-strain state of tanks with joint
imperfections was carried out in the ANSYS environment.

The tank body was divided into shell finite elements with a variable mesh. In the
region of the dent, the mesh sizes decreased. The lower tank belt finite elements mesh is
presented in accordance with [61]. The stress-strain state calculation convergence with a
decrease in the finite element mesh size was investigated. For this, the tank stress-strain
state was calculated for various finite element mesh sizes, and the required finite element
mesh was selected based on the comparison results. The results of the calculations of
equivalent stresses on the outer tank surface for various values of the tank wall field joint
imperfection bend and width are shown in accordance with Figures 15–18.
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Figure 18. Distribution of equivalent stresses in the field joint zone with the joint imperfection at
a = 15 cm; f = 10 cm.

Figures 15–18 show the equivalent stress calculation results for the following values of
the field joint imperfection parameters:

(a,f) = (50;1); (a,f) = (50;15);

(a,f) = (50;10); (a,f) = (15;10). (2)

The calculations showed that the highest stress concentration occurs at the tank base
in the bottom junction with the tank wall near the field joint zone.

When calculating the stress concentration factor at the initial stage, the node with
the highest equivalent stress value σmax was found, as well as the nominal equivalent
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stresses in the tank wall defect-free zone σθ. In this case, the stress concentration factor was
determined from the following expression:

K =
σmax

σθ
(3)

The stress concentration factor calculation results, using the ANSYS software pack-
age for various values of the dimensionless joint imperfection parameters, are presented
in Table 2.

Table 2. The stress concentration factor Kσ calculation results in the cylindrical tank wall field joint
imperfection zone [61].

Dimensionless Parameter ξ= r0√
R·t

Dimensionless Values of the Joint Bend ς= f
t

1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00 11.25 12.50

1.87 1.487 1.761 1.775 1.818 1.859 1.889 1.917 1.946 1.977 2.009
1.68 1.495 1.763 1.783 1.836 1.873 1.905 1.937 1.971 2.002 2.037
1.49 1.502 1.765 1.796 1.851 1.885 1.920 1.956 1.994 2.030 2.066
1.31 1.550 1.769 1.815 1.865 1.903 1.945 1.987 2.030 2.071 2.108
1.12 1.661 1.775 1.836 1.883 1.928 1.973 2.016 2.059 2.116 2.172
0.93 1.753 1.784 1.855 1.904 1.954 2.014 2.066 2.128 2.201 2.273
0.75 1.761 1.800 1.872 1.933 1.995 2.061 2.146 2.234 2.311 2.384
0.56 1.762 1.820 1.899 1.974 2.062 2.176 2.284 2.380 2.468 2.546

From the results of calculating the stress concentration factor, according to Table 2,
with an increase in the dimensionless parameters ς = f

t and ξ = r0√
R·t , the values Kσ increase.

Following relation (1), the interpolation polynomials for approximating the stress
concentration factor are considered to depend on the following two independent variables:
Kσ = α(ς, ξ) The interpolation polynomials take the following form:

KT
σ = ∑4

i=0 Bj(ς)ξ
jα; (4)

where
ξ =

r0√
R·t

; ς =
f
t

; Bj(ς) = ∑B
j=0 bjς

i

To construct this dependence, a two-stage application of the least square method was
carried out. First, a polynomial approximation of the dependence Kσ (ξ) for each of the
given values of the parameter ς was carried out and then, an approximate polynomial
dependence of the obtained approximating polynomial factors on ξ was constructed. To
construct the interpolation polynomial, the data of Table 2 were used [61].

Kσ = (9 − 34.820 ς + 51.233 ς2 + 4.828 ς3 − 92.993 ς4 + 110.249 ς5 − 60.477 ς6 + 16.520 ς7 − 1.818 ς8) +
(9 − 68.83 ς + 224.56 ς2 − 408.82 ς3 + 454.87 ς4 − 317.13 ς5 + 135.45 ς6 − 32.44 ς7 + 3.339 ς8)ξ +

(9 − 73.80 ς + 257.28 ς2 − 496.76 ς3 + 581.33 ς4 − 422.87 ς5 + 187.123 ς6 − 46.156 ς7 + 4.86 ς8)ξ2 +
(9 − 67.80 ς + 217.80 ς2 − 390.58 ς3 + 428.48 ς4 − 294.90 ς5 + 124.51 ς6 − 29.514 ς7 + 3.009 ς8)ξ3 +

(9 − 68.87 ς + 224.86 ς2 − 409.63 ς3 + 456.04 ς4 − 318.12 ς5 + 135.94 ς6 − 32.57 ς7 + 3.353 ς8)ξ4

(5)

Thus, the interpolation polynomial was obtained that takes into account the cylindrical
tank wall field joint imperfection + ns.

The stress concentration factor calculations, which depended on the geometric field
joint imperfection dimensions, were performed using the ANSYS software package and
using the polynomials (5). The comparison results are presented in Figures 19 and 20.
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As can be observed, the relative error of the results is no more than 1%, that is, it is
within the acceptable limits [61].

The obtained dependences of the stress concentration factor Kσ on the dimensionless
joint bend depth ς and the dimensionless joint imperfection width ξ confirmed the deter-
mining influence on the stress concentration in the joint zone of its depth f. At the same
time, the obtained dependences of the stress concentration factor on the joint imperfection
parameters are important from the point of view of obtaining an engineering empirical
calculation formula.
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4. Discussion

Experimental tests of the tank wall fragment models with the field joint imperfections
assessed the field joint zone’s stress-strain state and established the stress concentration
dependence in the joint zone on the bend, zone width and tank wall thickness.

The maximum hoop stresses in the joint zone in the model at the level of the main
nominal stresses of 60.8 MPa with a 30 mm camber were 276 MPa and 358 MPa with a
50 mm camber. The maximum stress concentration in the joint zone was 4.54 for a 30 mm
camber and 5.89 for a 50 mm camber. The maximum meridional stresses in the joint zone in
the model with 30 mm and 50 mm cambers at the nominal stress level of 32 MPa amounted
to 67 MPa and 78 MPa, respectively. At the same time, the results of the calculations
of the equivalent stresses on the outer tank surface for various values of the tank wall
field joint imperfection width and bend are shown in Figures 17–20. The above figures
substantiate the initial assumption about the change in the stress field and significant stress
concentrations in the field joint shape defect zone. From the results of the calculations of the
stress concentration factor, according to Figures 17–20 and Table 2, it can be observed that
when the dimensionless parameters ς and ξ increase, the values of the stress concentration
factor Kσ also increase.

The numerical analysis of tanks with joint imperfections estimated, in the ANSYS
environment, the tank stress-strain state for various values of the joint bend parameters ς
and ξ. The stress concentration factor dependence on the geometric dimensions of the tank
wall imperfection, radius and thickness was also obtained. As a result of the calculations,
the interpolation polynomial (5) was obtained, approximating the stress concentration
factor Kσ, which can be used to assess the tank strength, durability and residual life. In
addition, the obtained results can be used to normalize the limiting dimensions of the
joint imperfections and establish the factor values, taking into account the features of the
operation of structures at stress concentrations.

The resulting dependence of the stress concentration factor Kσ on the dimensionless
joint bend depth ς and the dimensionless joint imperfection width ξ confirmed the decisive
influence on the stress concentration in the joint zone of the defect depth f. At the same time,
the obtained stress concentration factor dependence on the joint imperfection parameters
is important from the point of view of obtaining an engineering empirical calculation
formula. Taking into account the limited application of the stress concentration dependence
on the field joint imperfection size, subsequent studies should focus on obtaining a more
advanced mathematical model for determining the stress concentration in the defect zone.
In particular, such a model should take into account other operational factors and the joint
imperfection shape.

It would be useful to note that this study is part of the research conducted as part of
the study of the actual operation of vertical cylindrical tanks for oil and oil products. In the
future, there is a need for full-scale studies of the stress-strain state of tank structures, with
various geometric imperfections of field joints. At the same time, the obtained results can
be used in the problems associated with assessing the strength, durability and residual life
of tanks, taking into account the stress concentration in the field joint zone.

5. Conclusions

Experimental and theoretical studies were carried out to assess the influence of the
vertical mounting joint zone of tanks on the stress-strain state of the defect zone. Thus,
experimental tests of models of a tank wall fragment with an imperfection of the mount-
ing joint evaluated the stress-strain state of the mounting joint zone and established the
dependence of the stress concentration in the joint zone on the deflection.

Based on the major findings of this study, the following conclusions can be drawn:

− By testing the tank wall fragment models with field joint imperfections, the field joint
zone’s stress-strain state was assessed and the stress concentration dependence in the
joint zone on the bend, zone width and tank wall thickness was established.
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− The maximum hoop stresses in the joint zone in the model at the level of the main
nominal stresses of 60.8 MPa with a 30 mm camber were 276 MPa and 358 MPa with
a 50 mm camber. The maximum stress concentration in the joint zone was 4.54 for a
30 mm camber and 5.89 for a 50 mm camber.

− The maximum meridional stresses in the joint zone in the model with 30 mm and
50 mm cambers at the nominal stress level of 32 MPa amounted to 67 MPa and
78 MPa, respectively.

− Numerical analysis of tanks with joint imperfections estimated, in the ANSYS environ-
ment, the tank stress-strain state for various values of the joint bend parameters f /t
and a/

√
Rt and obtained the stress concentration factor dependence on the geometric

dimensions of the tank wall imperfections, radius and thickness.
− As a result of the calculations, the interpolation polynomial (5) was obtained, approx-

imating the stress concentration factor Kσ, which can be used to assess the tank’s
strength, durability and residual life, to normalize the limiting dimensions of the joint
imperfection and establish the factor values, taking into account the features of the
operation of structures at stress concentrations.
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