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Abstract: The reliable bond of steel fibers to concrete matrix is fundamental to ensure they work
together under internal and external actions throughout their service life. Due to the lack of research
on the long-term bond property, this paper conducted an experimental study on the bond of hook-end
steel fiber in the manufactured sand mortars with different water to binder ratios cured for different
ages from 7 days to 360 days. The characteristic pull-out load-slip curves are measured, and bond
performance indexes at different curing ages are analyzed by using the multi-index synthetical
evaluation method. The results show that the bond strengths, the fiber strength use efficiency, the
debonding work and the pull-out work increased with the increase in curing age up to to 90 days,
which became stable with little variation with the follow-up curing age. The variations are closely
associated with the development of mortar strength. Steel fibers embedded in high-strength mortar
presented a higher debonding ductility and a lower slipping ductility. In addition, the prediction
formulas of long-term debonding strength, bond strength and residual bond strength are proposed.

Keywords: hook-end steel fiber; manufactured sand mortar; pull-out load-slip curve; long-term
bond property

1. Introduction

A reliable bond is the foundation of steel fiber combined with cementitious materi-
als [1–3]. It significantly affects the mechanical properties of steel fiber reinforced concrete
(SFRC), both on the scales of materials and structures by confining the appearance of initial
micro-cracks in SFRC, and enhancing the post-cracking behaviors due to the stress transfer
of steel fibers bridging cracks [4,5].

Normally, research on the bonds of steel fibers to concrete matrix have been conducted
on dog-bone shape specimens of fibers embedded in mortar cured for 28 days as per the
standard method [6]. The chemical adhesive, physical friction and mechanical anchoring
have been recognized as three actions acted on the interface between steel fibers and mortar,
while the deformed geometry and size of steel fiber, and the mortar strength are domain
to the bond behavior [7–9]. However, since the strength development of mortar changes
with the increasing curing age [10–13], the bond of steel fiber to mortar should possess an
inherent time-varying nature [14]. This induces a doubt regarding if the bond is consistent
to the change in the compressive ability or tensile strength of the mortar.

A few studies investigated the effect of curing age from 1 day to 28 days on the bond
properties of straight-smooth steel fiber embedded in mortar with a compressive strength
of 45 MPa [15], and on those of brass-coated straight steel fibers embedded in ultra-high-
performance SFRC with a compressive strength of 129.6 MPa and a tensile strength of
11.11 MPa [16]. Results indicated that a fast increase of the bond strength presented with
the curing age from 1 day to 7 days, and a slower growth from 7 days to 28 days. This was
attributed to the increase in the strength of concrete matrix with the increase in curing age.
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Meanwhile, some studies focused on the bond at a much longer curing age. The
study of Wu [17] reported that for the brass-coated straight steel fiber embedded in ultra-
high strength cement mortar with compressive strength of 90–116 MPa and the flexural
strength of 19–25 MPa, the bond strength increased quickly from 1 day to 7 days, slowly
from 7 days to 28 days and then gently from 28 days to 91 days. A similar result was
obtained by Gray [18] on the bond strength of straight-smooth steel fiber to mortar with
a compressive strength of 45 MPa, whether the specimens were cured in water or a fog
room from 7 days to 90 days. Lex [19] investigated the bond strength of brass-coated
straight steel fibers embedded in mortar with compressive strength about 70 MPa. With a
rapid increase before 28 days and a continuous increase up to 56 days, the bond strength
decreased at 120 days in water curing in contrast to that which monotonically increased
in air conditions. Jewell [20] reported about the effect of curing age on the bond strength
of straight-smooth steel fiber embedded in the ordinary Portland cement paste and the
calcium sulfoaluminate cement paste. The bond strength of steel fibers increased from
1 day to 28 days and decreased a little at 56 days, even if the compressive strength of the
pastes increased monotonically, and calcium sulfoaluminate cement paste contributes to a
larger bond strength and energy consumption.

Given this information, there has been a lack of study on the bond strength of steel
fiber at a much longer curing age than 120 days, and no study has been conducted on
the long-term bond strength of deformed steel fibers which have been widely applied in
engineering practice. This is not commensurate to the vast research of SFRC with deformed
steel fibers. Moreover, there is lack of a deep understanding on how the bond changed with
the time-dependent properties of concrete matrix [17,21]. This raises a topic of research on
the relationship of the bond of steel fiber to the strength of concrete matrix. A systematical
experiment needs to be conducted in terms of comprehensively understanding the bond
mechanisms and ensuring the reliability of SFRC structures.

Therefore, in this paper, the pull-out test was carried out for the hook-end steel
fiber embedded in manufactured sand mortar. The compressive strength of mortar at
28 days varied from 41.4 MPa to 102.5 MPa, and the curing ages extended from 7 days to
360 days. Based on the complete pull-out load-slip curves (PL-S curves) of test specimens,
the characteristic PL-S curves are obtained for each trial of tests. The long-term bond
strength, bond energy and bond toughness were assessed by the multi-index synthetical
evaluation method. Formulas are proposed to build the relationships of bond properties
with mortar strength.

2. Experimental Work

This experimental program was designed as seen in Figure 1, to investigate the effect
of curing age on the bond property of hook-end steel fiber embedded in manufactured
sand mortars with different strength. Compressive and flexural tests were carried out to
investigate the corresponding performance of mortars.

2.1. Materials and Mixture Proportions

The normal Portland cement, class-II fly ash, silica fume and grain granulated blast-
furnace slag-powder (GGBS) were used as binder materials. The cement had a fineness of
8.6% passing 45 µm screen, a density of 3195 kg/m3, a consistency of 26.6%, a compressive
strength of 53.8 MPa and a flexural strength of 8.83 MPa at curing age of 28 days. The
fly ash had a fineness of 0.1% passing 45 µm screen, a density of 2349 kg/m3, a specific
surface area of 406 m2/kg and a strength activity index of 80.9%. The silica fume had the
percentage of SiO2 of 91.3%, a density of 2040 kg/m3 and a strength activity index of 101.4%.
GGBS had a fineness of 1.0% passing 45 µm screen, a density of 2950 kg/m3, a specific
surface area of 439 m2/kg, a fluidity ratio of 97%, and the strength activity indexes of 76.0%
and 97.6% at 7 days and 28 days, respectively. Their physical and mechanical properties
met the specifications of China standards GB175 [22] and GB/T 51003 [23]. Manufactured
sand was used as aggregate with the fineness modulus of 2.73, an apparent density of
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2740 kg/m3, and a stone-powder content of 7.3%, a bulk density of 1620 kg/m3 and a
closed pack density of 1850 kg/m3. The polycarboxylic acid superplasticizer was PCA-I
with a water reduction of 30% and a solid content of 35%. The mixture water was tap water.
The hook-end steel fiber was used with a nominal length lf of 29.8 mm, a diameter df of
0.5 mm, and a tensile strength f sf of 1150 MPa.
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Figure 1. Experimental program.

The details of mixture proportion and the fresh performance of mortar are presented
in Table 1. Three mortars with water to binder ratio w/b of 0.40, 0.31 and 0.24 were designed,
named as M40, M31 and M24 in succession.

Table 1. Mixture proportion and workability of mortars.

No. M40 M31 M24

mixture proportion

water to binder ratio w/b 0.4 0.31 0.24
water (kg/m3) 307.6 277.9 239.7
cement (kg/m3) 461.3 627.6 699.3
fly ash (kg/m3) 307.6 269.0 –
GGBS (kg/m3) – – 199.8
silica fume (kg/m3) – – 99.9
manufactured sand (kg/m3) 984 1110.4 1010.8
water reducer (kg/m3) 4.08 8.06 23.00

micro slump flow (mm) 250 250 245

2.2. Sample Design and Preparation

The bond performance of steel fiber embedded in mortar was measured with the
pull-out test of dog-bone shape specimens. As shown in Figure 2, for each specimen, four
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steel fibers were first fixed by clapboard to keep the embedded length lf,em of 12 mm,
then mortar was casted in the dog-bone shape mold. Three series of pull-out test were
designed with the steel fibers embedded in mortars M40, M31 and M24, respectively. Each
series has seven trials of tests corresponding to curing ages of 7, 28, 60, 90, 180, 270 and
360 days. Four pull-out specimens were cast as a group of each trial. Therefore, eighty-four
specimens in twenty-one groups were tested in this study. Accompanied with the pull-out
specimens, three prism specimens of 40 mm × 40 mm × 160 mm were cast as a group for a
mortar. Thus, sixty-three mortar specimens in twenty-one groups were cast to determine
the long-term compressive and flexural strengths of mortar. All specimens were casted in
the lab room, and cured for designed curing age under the condition with a temperature of
20 ± 2 ◦C and humidity higher than 95%.
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2.3. Test Method

The compressive and flexural strength tests of mortar were carried out as per the
specification of China code GB/T17671 [24] and the European Standard BSEN 196-1 [25].

The same as the previous study [8,9], the pull-out test was in accordance with the
specification of China code CECS 13 [6]. The uniaxial tension was exerted by an electronic
universal testing machine with a limit of 10 kN. The loading speed is 0.3 mm/min. The
relative displacement between fibers and mortar was obtained by the average displacements
of two linear variable displacement transducers (LVDTs). The test was finished when the
relative displacement exceeded 6.5 mm. Finally, the pull-out load-slip curve (PL-S curve) of
each specimen was determined.

2.4. The Pull-Out Evaluation Method

In this test, the four PL-S curves determined for each trial at a curing age should be
treated as a characteristic PL-S curve [9]. Therefore, the validity of the four PL-S curves
was firstly judged by excluding the curve with peak load exceeds 15% of the average peak
load. A valid trial of the test should use no fewer than three valid PL-S curves. Secondly,
the valid PL-S curve was transformed to be a unit curve with the pull-out load divided by
its peak load and the slip divided by the corresponding slip at peak load. Thirdly, for the
valid PL-S curves of each trial, the ascending segment of the unit curve was obtained by
averaging the slip ratios corresponding to the same load ratio, the descending segment of
the unit curve was obtained by averaging the load ratios corresponding to the same slip
ratio. Finally, the characteristic PL-S curve is obtained by the unit curve multiplying the
average peak load and corresponding slip.

The bond properties of steel fiber in mortar can be evaluated by the multi-index
synthetical indices based on the characteristic PL-S curve [8,9]. For the convenience of
explanation, the three key points D, P and R on the characteristic PL-S curve are marked in
Figure 3. They are the points with the slope of the curve changing suddenly in ascending
portion, at peak and in descending portion, successively. The pull-out loads and slips at D,
P and R are successively represented by the debonding load Pd,t and slip sd,t, the peak load
Pmax,t and slip sp,t, and the residual load Pr,t and slip sr,t.
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Corresponding to the three points, the debonding strength τd,t, bond strength τmax,t
and residual bond strength τres,t can be calculated as follow:

τd,t =
Pd,t

4πdf

(
l f ,em − sd,t

) (1)

τmax,t =
Pmax,t

4πdf

(
l f ,em − sp,t

) (2)

τres,t =
Pr,t

4πdf

(
l f ,em − sr,t

) (3)

At the point P, the pull-out load reaches the peak. This means the maximum use of
steel fiber with a peak tensile stress σp,t which can be further represented by the strength
use efficiency usf,t:

σp,t= 4τmax,t ×

(
l f ,em − sp,t

)
df

(4)

usf,t =
σp,t

fsf
(5)

where f sf is the tensile strength of steel fiber.
At points D and R, the strength ratios ude,t and ures,t of hook-end steel fiber at t days

are calculated as:
ude,t =

τd,t

τmax,t
(6)

ures,t =
τres,t

τmax,t
(7)

As presented in Figure 3, the debonding work Wd,t, the slipping work Wp,t and the
pull-out work Wr,t are the areas under the PL-S curve with the slip from 0 to the key points
D, P and R, respectively. They represent the dispersion energy to reach a bond-slip feature.
Formulas are listed as follow:

Wd,t =
∫ sd,t

0
Pds (8)

Wp,t =
∫ sp,t

0
Pds (9)

Wr,t =
∫ sr,t

0
Pds (10)
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Thus, the debonding energy ratio Rd,t, the slipping energy ratio Rdp,t and the pull-out
energy ratio Rpr,t of hook-end steel fiber at t days are calculated as follow:

Rd,t =
Wd,t

Wr,t
(11)

Rdp,t =
Wp,t − Wd,t

Wr,t
(12)

Rpr,t =
Wr,t − Wp,t

Wr,t
(13)

3. Test Results and Analyses
3.1. Strength Development of Mortar

Table 2 presents the compressive strength f cm,t and flexural strength f tm,t of mortar
at different curing ages. Generally, due to a rich content of tricalcium silicate, dicalcium
silicate and tetracalcium aluminate at the early ages [9–12], the quick hydration caused a
rapid increase in the strength of mortar. With the increase in curing age, the growth of the
strength became slower with a decreased hydration rate due to the gradual consumption
of tricalcium silicate and other substances involved in the hydration [26,27].

Table 2. Test strengths of mortars at different curing ages.

No. Item.
Curing Age t (days)

7 28 60 90 180 270 360

M40

f cm,t (MPa) 23.58 41.38 56.81 58.08 71.39 74.43 75.45
COV (%) 4.32 3.34 2.14 4.91 1.27 5.41 6.13

f tm,t (MPa) 6.37 9.91 10.31 10.47 10.54 10.98 11.32
COV (%) 2.3 2.7 3.3 3.6 5.1 6.3 2.4

M31

f cm,t (MPa) 45.67 69.77 81.19 88.69 98.04 98.66 106.89
COV (%) 1.64 4.01 3.94 1.83 5.12 3.72 2.81

f tm,t (MPa) 10.20 11.00 11.02 11.02 11.02 12.59 12.61
COV (%) 0. 54 3.73 0.90 12.82 3.22 4.94 1.83

M24

f cm,t (MPa) 78.58 102.53 105.56 115.48 117.96 120.79 125.45
COV (%) 0.031 0.041 0.025 0.056 0.028 0.074 0.048

f tm,t (MPa) 13.72 12.98 13.95 15.55 15.3 15.44 15.41
COV (%) 1.84 4.91 4.74 4.24 4.11 7.80 3.72

Meanwhile, the strength development of mortar related to the water to binder ratio
and the mineral admixture content. With the fly ash as the mineral admixture, the mortars
M40 and M31 presented a similar development of compressive strength that was lower
at the early curing age and a bit of higher growth at a later curing age. The compressive
strength f cm,7 only reached 31.3% and 42.7% of the f cm,360, and the f cm,28 just reached 54.8%
and 65.3%. This is a typical characteristic of strength development of cement matrix mixed
with fly ash [28,29]. The activity of fly ash can be excited after the hydration of cement
which provides enough Ca (OH)2 to generate the secondary hydration. With the GGBS and
silica fume as mineral admixture, the mortar M24 presented a higher compressive strength
at early age and a slow growth at latter. The compressive strength f cm,7 and f cm,28 reached
62.6% and 81.7% of the f cm,360, respectively. This came from a higher activity of GGBS to
participate the hydration of cementitious to promote the strength growth. Silica fume has
the functions of filling and hydration to optimize the interfacial transition zone, refine the
pore structure, and significantly improves the early strength of matrix [16]. Moreover, the
binary addition of silica fume and GGBS can promote the strength development at early
and later ages [30].
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Compared with the compressive strength, the flexural strength seems to increase faster
in the early age, while undergoing lower growth in the latter. The flexural strength f tm,7
was more than 80% of the f tm,360 for M31 and M24, and could reach 56.3% for M40.

Referring to the compressive strength development of concrete [10,11], the long-term
compressive strength of mortar can be predicted by Formula (14).

fcm,t = (clg(t/28) + 1) fcm,28 (14)

where, c is the regression coefficient determined by tests data. It is 0.800 for M40 with Adj.
R2 of 0.989, 0.478 for M31 with Adj. R2 of 0.990, and 0.213 for M24 with Adj. R2 of 0.905.
Figure 4 presents the comparison of the calculated to the test compressive strength. Good
fitness can be obtained from these curves with the experimental results.
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The relationship between the tensile and compressive strengths of concrete is always
described by the power function, and it was not affected by the curing age [31]. Thus,
the relationship of flexural strength and compressive strength of mortar is expressed
as Formula (15) in this study. Where the regression coefficients of 1.491 and 0.476 are
determined by the fitted test data. Figure 5 presents the comparison of the fitted curve with
test data.

ftm,t = 1.491 fcm,t
0.476 (15)
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Then, the Formula (16) is obtained as follow,

ftm,t = 1.491
{[

clg
(

t
28

)
+ 1
]

fcm,28

}0.476
(16)

As shown in Figure 6, the calculated curves fit well with the test data; the average
ratios of calculated to test values of f tm,t for M40, M31 and M24 are 0.999, 1.060 and 0.965
with variation coefficients of 0.064, 0.057 and 0.046, respectively.
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3.2. Characteristics on PL-S Curves of Steel Fiber at Different Curing Ages

Figure 7 shows the characteristic PL-S curves of steel fiber in M40, M31 and M24 at
different curing age. Similar shapes are presented on all characteristic curves. The peak
pull-out loads, the slopes of ascending and descending portions gradually increase with the
curing age. Especially the PL-S curves of M40 and M31 in 7 days are significantly flatting
with lower peak loads compared with the curves after 28 days. This is consistent with the
mortar strength development discussed above.
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In the characteristic PL-S curves of M40, the pull-out load and slip varies continuously,
corresponding to the failure of fibers pulled out with the whole-fiber hook ends being
straightened. The descending portion of curves after 28 days have an obvious “step” shape.

The pull-out load and slip of M31 varies continuously at 7 to 180 days with the steel
fibers which were basically pulled out with straightened fiber ends. The pull-out load
drops abruptly in the descending portion of the curves at 270 and 360 days, corresponding
to the failure of one or two fibers fractured at the first corner of the hook-end.

With continuous variation in the pull-out load and slip, the characteristic PL-S curves
of M24 were basically pulled out with straightened fiber hook ends at 7 and 28 days. While
the pull-out load drops abruptly in the descending portion after 60 days, corresponding to
the fracture of one or two fibers.

The fiber is aligned embedded in the mortar in this study, while the hook-end has a
certain angle of 45◦ with the fiber length. It means that the hook-end of fiber is inclined
with the pull-out load direction. The hook-end of fiber is not only subjected to the bond
stress of the mortar at the contact surface, but also subjected to the local pressure stress of
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the mortar [32] during the pull-out process. Therefore, the maximum local tensile stress of
the fiber will appear at the hook-end. In this study, the mortar strength gradually increases
with the curing age. When the strength of mortar is higher than a certain value, the local
tensile stress of the fiber hook-end may reach its tensile strength, and a fracture occurs. At
this time, the pull-out load slip curve will be sharply reduced.

The loads and slips extracted for three points D, P and R presented in Figure 3 are
listed in Table 3. The curing age and mortar strength has little influence on the debonding
slip, except that the sd,t at 7 days to 60 days increase with the decrease in mortar strength.
sp,t and sr,t of all tests decrease with the increasing curing age and mortar strength.

Table 3. The loads and slips at key points of the characteristic PL-S curves.

Item
Curing Age (days)

7 28 60 90 180 270 360

Key point
of M40

D
Pd,t (N) 161.9 232.1 322.5 280.2 328.5 400.0 361.1

sd,t (mm) 0.13 0.15 0.21 0.26 0.26 0.32 0.21

P
Pmax,t (N) 373.5 547.4 606.9 567.0 583.2 584.9 618.2
sp,t (mm) 1.25 1.13 1.05 0.88 0.99 0.83 0.90

R
Pr,t (N) 240.8 339.8 359.1 320.5 305.9 355.6 377.4

sr,t (mm) 3.10 2.60 3.00 2.40 2.90 2.33 2.44

Key point
of M31

D
Pd,t (N) 254.2 504.7 533.2 520.1 563.5 597.7 513.5

sd,t (mm) 0.16 0.27 0.21 0.26 0.25 0.28 0.33

P
Pmax,t (N) 563.1 782.4 754.9 778.8 801.5 845.2 853.5
sp,t (mm) 1.11 0.97 0.61 0.81 0.64 0.67 0.75

R
Pr,t (N) 345.1 444.1 357.0 500.5 451.0 505.1 460.2

sr,t (mm) 3.00 3.00 2.70 2.20 2.30 2.46 2.21

Key point
of M24

D
Pd,t (N) 594.6 541.2 480.9 686.1 625.9 589.5 643.6

sd,t (mm) 0.33 0.18 0.39 0.30 0.30 0.20 0.17

P
Pmax,t (N) 773.6 795.4 863.4 883.1 875.2 830.3 898.1
sp,t (mm) 0.77 0.60 0.93 0.63 0.66 0.61 0.53

R
Pr,t (N) 580.1 573.7 670.9 650.6 533.2 563.9 661.8

sr,t (mm) 2.00 1.98 1.99 1.90 1.93 2.15 1.71

3.3. Bond Strength Development of Steel Fiber in Mortar

Test results of debonding strength τd,t, bond strength τmax,t and residual bond strength
τres,t related to the compressive strength of mortar are presented in Figure 8. Power function
can be used for describing the relationships. By fitting regression with Adj. R2 of 0.839,
0.814 and 0.645, respectively, formulas are expressed as follow,

τmax,t = 1.300 fcm,t
0.471 (17)

τd,t = 0.147 fcm,t
0.850 (18)

τres,t = 0.642 fcm,t
0.559 (19)
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Combined with Formula (14), Formulas (20)–(22) are obtained. The average ratios and
corresponding variation coefficients of tested to the calculated values of bond strengths for
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Table 4. Comparison results between test and calculated values of bond strengths.

No.
τmax,t τd,t τres,t

M40 M31 M24 M40 M31 M24 M40 M31 M24

Average ratios of test to the
calculated values 0.950 1.044 0.992 0.918 1.055 1.053 0.979 0.992 1.073

Standard deviation 0.090 0.060 0.042 0.109 0.145 0.129 0.179 0.121 0.120
Variation coefficients 0.095 0.057 0.042 0.119 0.138 0.123 0.183 0.122 0.112

It is noted that the bond strengths of the same steel fiber in mortar with the same
strength were smaller in a previous study [8]. This is due to the different characteristics
of river sand and manufactured sand used for mortars in the previous study and this
experiment. Due to the rough surface of manufactured sand [33,34], the density and the
interfacial transition zone of matrix is improved [35,36], which is beneficial to the bond
performance of steel fiber to mortar.

3.4. The Strength Ratios Development of Steel Fiber in Mortar

Figure 9 displays the strength use efficiency usf,t of steel fibers in M40, M31 and
M24.The usf,t of steel fiber in M40 ranged from 41.4% to 68.5% with the curing age from 7
to 360 days. The usf,t of steel fiber in M31 increased from 62.4% to 88.8% from 7 to 180 days,
and were higher than 90% at 270 days and 360 days. The usf,t of steel fiber in M24 ranged
from 85.7% to 88.1% with the curing age from 7 to 28 days, and are above 90% from 60 to
360 days. Compared with the failure modes, when the strength use efficiency reaches 90%,
the possibility of fiber fracture increases.
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Figure 9. The usf,t of steel fibers in M40, M31 and M24.

Figure 10 displays the strength ratios ude,t and ures,t of steel fibers in M40, M31 and M24,
which reflects the debonding resistance of steel fiber during the ascending loading portion
and the loss rate of bond strength during the descending loading portion, respectively. The
ude,t of steel fiber in M40 tended to increase with the curing age from 7 to 360 days. The
ude,t of steel fiber in M31 increased from 7 to 28 days, and ranged from 58.0% to 68.3% at
the curing age from 60 to 360 days. No obvious regularity was observed in the ude,t of steel
fiber in M24, which ranged from 53.1% to 75.5% with the curing age from 7 to 360 days.
The ude,t increase with the decrease in water to binder ratio w/b at the same curing age,
which means steel fiber will have better debonding resistance in mortar with low w/b. The
increase in chemical adhesion with the decrease in w/b is greater than that of mechanical
anchorages and physical fraction in this study. The ures,t of steel fibers in M40, M31 and
M24 are ranged from 63.5 to 77.9 %, 57.7 to 74.1% and 68.6 to 85.9% with the curing age
from 7 to 360 days, successively. No obvious influence of curing age was observed on the
ures,t. The ures,t of steel fiber in M24 are higher than those in M31 and M24 at same curing
age. It may be due to the addition of silica fume in M24.
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Based on the Formulars (21)–(23), the formulas of ude,t and ures,t can be expressed
as Formulas (23) and (24). The average ratios and corresponding variation coefficients of
calculated to the tested values of the strength ratios for steel fibers in M40, M31 and M24
are listed in Table 5.

ude,t =
τd,t

τmax,t
= 0.113

{[
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(

t
28

)
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}0.379
(23)

ures,t =
τres,t

τmax,t
= 0.494
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(

t
28

)
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fcm,28

}0.088
(24)

Table 5. Comparison results between calculated and test values of bond strengths.

No.
ude,t ures,t

M40 M31 M24 M40 M31 M24

Average ratios of
calculated to tested values 1.041 1.002 1.006 1.002 1.085 0.933

Standard deviation 0.110 0.120 0.132 0.096 0.114 0.079
Variation coefficients 0.106 0.119 0.131 0.096 0.105 0.085

3.5. Energy Dissipation in the Process of the Pull-Out Test

Table 6 presents the debonding work Wd,t, the slipping work Wp,t and the pull-out
work Wr,t and their corresponding energy ratio Rd,t, Rdp,t and Rpr,t of steel fibers in M40,
M31 and M24.
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Table 6. Energy dissipation in the process of pull-out test.

Item
Curing Age (days)

7 28 60 90 180 270 360

M40

Works
(N.mm)

Wd 10 18 37 24 45 66 34
Wp 365 464 468 359 416 339 411
Wr 946 1119 1418 1037 1283 1017 1124

Energy
ratios (%)

Rd 1.1 1.6 2.6 2.3 3.5 6.5 3
Rdp 37.5 39.9 30.4 32.3 28.9 26.8 33.5
Rpr 61.4 58.5 67 65.4 67.6 66.7 63.5

M31

Works(N.mm)
Wd 19 70 59 75 71 73 74
Wp 462 562 338 460 358 379 387
Wr 1308 1804 1469 1358 1417 1535 1388

Energy
ratios (%)

Rd 1.5 3.9 4 5.5 5 4.8 5.3
Rdp 33.9 27.3 19 28.4 20.3 19.9 22.6
Rpr 64.6 68.8 77 66.1 74.7 75.3 72.1

M24

Works(N.mm)
Wd 105 55 93 92 85 62 54
Wp 421 360 490 364 372 377 360
Wr 1243 1318 1316 1185 1281 1446 1229

Energy
ratios (%)

Rd 8.4 4.2 7.1 7.8 6.6 4.3 4.4
Rdp 25.4 23.1 30.2 23 22.4 21.8 24.9
Rpr 66.1 72.7 62.8 69.3 71 73.9 70.7

The Wd,t of steel fiber in M40 increased from 7 to 60 days, then kept constant at
41.2 N.mm with a variation coefficient of 0.38 after 60 days. The Wd,7 and Wd,28 are 29.4%
and 52.9% of those at 360 days. The Wd,t of steel fiber in M31 increased from 7 days to
28 days, then kept constant of 70.3 N.mm with a variation coefficient of 0.08 after 28 days.
The Wd,7 is 25.7% of the Wd,360, Wd,28 reaches 94.6% of the Wd,360. The Wd,t of steel fiber in
M24 shows opposite regularity, which decreases from 7 to 360 days.

The curing age has little influence on the Wp,t. The Wp,t for M40, M31 and M24 kept
constant at 403 N.mm, 421 N.mm and 395 N.mm, with variation coefficients of 0.13, 0.19
and 0.13, respectively. The Wp,t is slightly influenced by the mortar strength..

The Wr,t of M40 and M31 increased from 7 days to 28 days, then kept constant at
1166 N.mm with a variation coefficient of 0.13 and 1495 N.mm with a variation coefficient of
0.11 after 28 days. The Wr,t of M24 was constant at 1208 N.mm with a variation coefficient
of 0.07. M31 had a higher Wr,t compared to that of M40 and M24 at the same curing age.

The relationship of bond works and the compressive strength of mortar are presented
in Figure 11. The debonding work Wd,t is sensitive to the mortar strength, which increased
with the compressive strength with Adj-R2 of 0.502. The slipping work Wp,t shows a slight
decrease with the increase in the mortar strength. The pull-out work Wr,t shows a tendency
to increase with the compressive strength in large discreteness.

The Rd,t of M40 and M31 increased from 7 days to 90 days, then kept constant at
3.8% and 5.15% with a variation coefficient of 0.48 and 0.06 after 90 days. The Rd,t of M24
decreased from 7 days to 28 days, then kept constant at 5.73 with a variation coefficient
of 0.28. The Rd,t at the same curing age tended to increase with the increase in mortar
strength. However, all the Rd,t were smaller than 9% and with a high variation coefficient.
This means that the energy dissipation capacity of steel fiber at the cracking resistance of
SFRC plays a small part and is unstable in the whole pull-out process.

The Rdp,t of M40 and M31 decreased from 7 days to 90 days, then kept constant at
30.4% and 22.8% with a variation coefficient of 0.10 and 0.17 after 90 days. The Rdp,t of M24
kept constant at 24.4% with a variation coefficient of 0.11. The Rdp,t of M40 were higher
than those of M31 and M24 at the same curing age.
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Figure 11. Relationship of bond work and compressive strength of mortar. 
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The curing age has little influence on the Rpr,t. The Rpr,t of M40, M31 and M24 kept
constant of 64.3%, 71.2% and 69.5% with variation coefficient of 0.05, 0.07 and 0.06 from 7
to 360 days, successively. The Rpr,t of M31 was higher than those of M40 and M24 at the
same curing age. This indicates the energy dissipation capacity of steel fiber at the bearing
capacity of SFRC plays an important role in the whole pull-out process.

The relationship of energy ratios and the compressive strength of mortar are presented
in Figure 12. The Rd,t and the Rpr,t increased with the mortar compressive strength. The
Rdp,t decreased with the increase in mortar compressive strength, which reflects the increase
in bond brittleness with the mortar strength. This phenomenon needs to be paid attention
in the normal serviceability of SFRC structures.
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3.6. Relationship of Bond Slips and Mortar Strength

The relationship of slips and the compressive strength of mortar are presented in
Figure 13. The slips sp,t and sr,t decrease with the increase in mortar compressive strength
with Adj-R2 of 0.764 and 0.657, respectively. No regularity was observed in the slip sd,t.
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4. Conclusions

This paper carried out the pull-out test of hook-end steel fiber embedded in manufac-
tured sand mortar. Seven curing ages from 7 days to 360 days, and three water to binder
ratios of mortar at 0.24, 0.31 and 0.40 were considered as the main factors. The pull-out load
vs bond-slip curves were measured and treated to be a characteristic curve for a trial of
tests. The values of load and slip at three key points at the characteristic pull-out load-slip
curve are extracted. The bond strength, bond energy and bond toughness are analyzed and
discussed based on the multi-index synthetical evaluation method. The conclusions can be
drawn as follows:

With the increase in curing age, the debonding strength, the bond strength, the residual
bond strength, the strength use efficiency, and the debonding work presented different
developments for steel fiber embedded in mortar with different strengths. The variations
are closely associated with the development of mortar strength. The bond strength, the
fiber strength use efficiency, the debonding and pull-out work increased with the curing age
from 7 days to 90 days and became stable in a slight range with the continuously increased
curing age.

The addition of silica fume in mortar would reduce the loss rate of bond strength
during the descending portion. Steel fiber embedded in mortar with a water to binder ratio
of 0.31 has best bond energy and bond energy dissipation capacity.

More debonding ductility and less slipping ductility are observed for steel fibers
embedded in high strength mortar. The slips at slipping and pull-out states decrease
with the increase in mortar strength. The debonding, bond and residual bond strengths,
debonding and pull-out works, debonding and pull-out energy ratios increase with the
mortar strength.

The relationship of bond strength, bond slip, bond strength ratios, bond energy and
energy ratios with mortar strength are analyzed, respectively. Good fitness for describing
the relationships between bond strengths, bond strength ratios with compressive strength
of mortar can be obtained by power functions.
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