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Abstract: Metakaolin (MTK) has received a lot of interest in the past two decades as a supplemental
cementitious ingredient. MTK is actively being utilized in concrete and there is a large body of
literature on the characteristics of concrete containing MTK. A rigorous evaluation of the use of MTK
in concrete, however, is lacking, which is required to better know its (MTK) benefits, mechanisms,
past and current progress. As a result, the objective of this study is to deliver an overview of MTK
utilized in concrete. The physical and chemical characteristics of MTK, as well as the hydration,
workability, mechanical qualities, hydration durability, and microstructure analysis of MTK-based
concrete, are discussed. A comparison of the findings of diverse literature is presented, as well as
some key recommendations. The findings suggest that adding MTK to concrete enhances certain
characteristics, particularly mechanical capabilities, but decreases concrete flowability. Improvement
in the durability of concrete with MTK was also observed but, for this, less information is available.
For optimal performance, the right dosage is crucial. The typical ideal range is between 10 to 20% by
weight of the binder. Further research gaps into the characteristics of concrete containing MTK are
also recommended.

Keywords: metakaolin; supplementary cementitious materials; sustainable concrete; mechanical
and durability

1. Introduction

Concrete production and usage in the building business have recently increased due
to its dependability in terms of strength, durability, and economic characteristics when
compared to other construction materials [1–5]. Globally, about one ton of concrete is
produced yearly by each human [6].

The manufacturing of Portland cement, which is the primary ingredient in concrete,
has a number of drawbacks, including significant energy consumption and pollution [7,8].
It is well known that the chemical process of calcination results in the release of a large
quantity of carbon dioxide CO2 both indirectly and directly due to the heating of limestone
and the burning of fossil fuels to manufacture cement [7,9–11].

Cement is one of the most important ingredients in concrete since it uses water to
bond fine and coarse particles. Cement production was over 4111.1 million tons per year in
2018 and this demand is continually increasing, releasing massive volumes of CO2 into the
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environment and contributing to global warming [12]. As a result, the necessity to discover
an alternate supply of cement is a major worry in today’s society.

As a result, optimizing cement output and consumption is critical. The use of sup-
plemental cementitious materials (SCMs) such as fly ash [13,14], silica fume [15], waste
glass [16], waste marble [17], waste oil [18] and ground granulated blast furnace slag [19]
is one solution to this problem while manufacturing concrete or as a partial substitute for
cement in the cement industry. Higher ultimate strength, better durability, avoidance of ex-
cessive surface cracking of concrete in certain situations, economic benefits, and enhanced
sustainability are all advantages of using most of the extra cementitious ingredients in
concrete. The quantity of Portland cement replaced by secondary Cementitious material is
determined by their pozzolanic activity [20]. A study also claims that coloured ultra-thin
functional overlays contribute to infrastructure sustainability [21]. Several researchers have
shown that MTK may be used as a cementitious ingredient in concrete [22–24].

The use of high reactivity MTK as a supplemental cementitious ingredient in the
concrete industry has gained popularity. Although metakaolin has been known since the
1960s, researchers are still interested in its use as a pozzolanic ingredient in cement or as a
cementitious material in concrete to further improve its performance [25,26]. MTK is an
ultrafine pozzolana made by calcining purified kaolinite clay at temperatures between 700
and 900 ◦C to remove chemically bonded water and disrupt the crystalline structure [27].
Figure 1 shows the production process of MTK.
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Figure 1. The production process of MTK [28].

Because of its higher level of purity, pozzolanic reactivity, and finer grading, the
use of MTK is known to significantly refine the pore structure and reduce the calcium
hydroxide of the cement matrix (hardened state) of the concrete. This is achieved as a
result of the finer grading of the MTK. The reaction of MTK with Ca(OH)2, which is
produced during the hydration of cement, results in the formation of additional secondary
cementitious compounds such as calcium silicate hydrates (CSH) gel that modify the
microstructure of concrete and contribute to an improvement in the material’s durability.
This improvement can be measured in terms of the material’s porosity, permeability, and
chloride ion diffusivity [29,30].

Unlike industrial by-products such as fly ash, silica fume, and blast-furnace slag, MTK
is thoroughly refined to lighten its color, eliminate inert impurities and regulate particle size.
MTK particles are typically less than 2 microns in size, which is much smaller than cement
particles but not as tiny as silica fume [30]. Furthermore, the usage of MTK in concrete is a
good idea [31]. Research has shown that adding MTK to concrete has a significant impact
on its mechanical and durability qualities [32,33].

In terms of strength, permeability, and chemical resistance, it was also established that
concrete mixes with high-reactivity MTK performed similarly to silica fume mixtures [34,35].
This material is also ecologically benign since it helps to reduce CO2 emissions into the
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atmosphere by lowering the amount of ordinary Portland cement (OPC) used [36]. MTK
may be used in place of ordinary Portland cement (OPC) in the manufacturing of con-
crete [37]. The use of MK may drastically reduce cement use which can assist to relieve
environmental issues.

Based on the above, the purpose of this study is to provide an overview of the use
of MTK in concrete. The qualities of MTK are first discussed, which mostly involve
physical and chemical characteristics. After that, the hydration, workability, mechanical
characteristics, durability and scan electronic microscopy of MTK concrete are thoroughly
examined. Furthermore, the most relevant results and recommendations are offered, which
will aid future concrete investigations using MTK. Figure 2 shows a different section of
the review.
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Figure 2. Different sections of the review.

2. Physical Properties

The physical properties of MTK are displayed in Table 1. It should be noted that MTK
has a specific gravity of 2.5, which is lower than cement’s (3.1 g/cm3). The color of MTK is
normally white as shown in Figure 3a. As demonstrated in Figure 3b, MTK has a multi-
modal particle allocation with a mean particle size of 21.44 microns and a D90 of 78 microns.
Figure 3c displays the MTK’s X-ray spectra and mineralogical analyses (kaolinite, hematite,
quartz unreactive, and a little quantity of illite) as well as its amorphous phase.

Table 1. The physical properties of Metakaolin (MTK).

Reference [38] [39] [40] [41] [42]

Specific gravity 2.5 2.62 2.5 2.5 2.5
Fineness cm2/g 14,600 - 10,200 - 12,800

Moisture Content (%) - - - - -
Specific surface area, (m2/kg) - 12,680 - 458 -

According to previous investigations, MTK has the chemical compounds displayed
in Table 2. The increased strength qualities are due to the production of additional C-S-H
gel due to the high oxide percentages. As per ASTM [29], For a material to be classified as
pozzolanic, the total of the three primary oxide ingredients, namely SiO2, Al2O3 and Fe2O3
must be at least 50%. All of the MTK samples utilized in the different research projects may
be characterized as pozzolanic, according to Table 2 [45].
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Table 2. Chemical composition of Metakaolin (MTK).

Reference [43] [46] [47] [38] [39]

SiO2 53.26 53.15 54 56.10 53.2
Al2O3 43.93 38.44 43 40.23 43.9
Fe2O3 0.3 2.65 <1.3 0.85 0.38
MgO 0.49 0.47 <0.8 0.16 0.05
CaO 0.36 0.17 <0.8 0.19 0.02

Na2O - 0.08 <0.7 - 0.17
K2O - 3.43 <0.7 - 0.10

The gradation curve and morphological features of the MTK sample determine its
efficacy as supplemental cementitious material. The engineering qualities of concrete
containing MTK are directly influenced by the shape of MTK. Scanning electron microscope
(SEM) investigations are the most extensively used tool for determining the morphology
of MTK. Morphology serves as a useful material property for assessing the feasibility of
MTK as an alternative cementitious material for combating chloride attacks [48]. Figure 4
depicts an uneven and coarse particle surface that reduced concrete flowability because of
excessive friction with concrete components.
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3. Fresh Properties
Workability

Workability is described as the smooth with which new concrete may be laid, vibrated,
and finished without the component ingredients segregating [50]. The most frequent
metric used to determine the flowability of concrete in its fresh condition is a slump. The
workability qualities of concrete are directly influenced by particle size distribution, particle
shape, water to cement ratio (w/c), temperature, and the quantity of additive supplied
to the mix [51]. Figure 5 depicts the slump flow of concrete when MTK is used instead
of cement.

The flowability of concrete was seen to diminish when MTK was substituted. The
reduced flowability is attributed to MTK’s rough surface, which boosted resistance between
concrete components, resulting in lower flowability. This loss of workability is due to
the MK particles being much smaller than the OPC particles and the fibers themselves
absorbing free water, resulting in a slump decrease [52].

MTK had a harmful influence on the flowability of recycled aggregate concrete, accord-
ing to research (RAC) [40]. The addition of Corban nanotubes and metakaolin to the pastes
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enhances the plastic viscosity and yield stress [53]. This negative impact is dependent
on the MK content since the effect increases as the MTK content increases. The slump
of ultra-high performance concrete drops dramatically and MTK particle agglomeration
becomes more problematic. As a result of MTK unfavourable involvement in hydration,
materials with a homogenous and dense microstructure cannot be created. Based on the
findings of the workability and mechanical qualities of ultra-high performance concrete,
it can be inferred that a 10% MK content is ideal [54]. At the same dose of plasticizer
and water to cement ratio, MTK-blended cement had poorer fluidity than PC with MTK,
according to a research [25].

Water requirement rose when MTK dose was raised owing to the larger surface area of
the binder containing MTK [55] and the MK’s increased responsiveness [56] in comparison
to cement. It should be highlighted that the greater the surface area of the binder, the
higher the water requirement for OPC with high Al2O3 concentration and minimal loss on
ignition [57]. Results indicate that depending on their physical and chemical characteristics,
MTK may generate significant changes in the flow of mortars. The distribution of the
constituent particles’ morphologies and the water requirement of MTK are particularly
influenced by the kind and amount of contaminants [58]. Superplasticizer was added in
greater amounts when MTK was added to concrete, which has a high degree of fineness [59].
To maintain precise standards for the flowability of fresh concrete. Contrarily, using calcite
as a substitute for cement in concrete decreased the quantity of superplasticizer required to
maintain the particular flowability value [60].

Buildings 2022, 12, x FOR PEER REVIEW 6 of 24 
 

to the MK particles being much smaller than the OPC particles and the fibers themselves 
absorbing free water, resulting in a slump decrease [52].  

MTK had a harmful influence on the flowability of recycled aggregate concrete, ac-
cording to research (RAC) [40]. The addition of Corban nanotubes and metakaolin to the 
pastes enhances the plastic viscosity and yield stress [53]. This negative impact is depend-
ent on the MK content since the effect increases as the MTK content increases. The slump 
of ultra-high performance concrete drops dramatically and MTK particle agglomeration 
becomes more problematic. As a result of MTK unfavourable involvement in hydration, 
materials with a homogenous and dense microstructure cannot be created. Based on the 
findings of the workability and mechanical qualities of ultra-high performance concrete, 
it can be inferred that a 10% MK content is ideal [54]. At the same dose of plasticizer and 
water to cement ratio, MTK-blended cement had poorer fluidity than PC with MTK, ac-
cording to a research [25].  

Water requirement rose when MTK dose was raised owing to the larger surface area 
of the binder containing MTK [55] and the MK’s increased responsiveness [56] in compar-
ison to cement. It should be highlighted that the greater the surface area of the binder, the 
higher the water requirement for OPC with high Al2O3 concentration and minimal loss on 
ignition [57]. Results indicate that depending on their physical and chemical characteris-
tics, MTK may generate significant changes in the flow of mortars. The distribution of the 
constituent particles’ morphologies and the water requirement of MTK are particularly 
influenced by the kind and amount of contaminants [58]. Superplasticizer was added in 
greater amounts when MTK was added to concrete, which has a high degree of fineness 
[59]. To maintain precise standards for the flowability of fresh concrete. Contrarily, using 
calcite as a substitute for cement in concrete decreased the quantity of superplasticizer 
required to maintain the particular flowability value [60].  

 
Figure 5. The slump flow of concrete with MTK [61]. 

4. Mechanical Strength 
4.1. Compressive Strength (CS) 

As indicated in Table 3 and Figure 6, some studies believe that substituting cement 
MTK increases compressive strength (CS). It has been discovered that adding the right 
quantity of MTK to cementitious materials increases their compressive strengths [62]. 

60

65

70

75

80

85

90

95

100

105

110

0 5 10 15 20 25

Sl
um

p 
(m

m
)

MTK (%)

Figure 5. The slump flow of concrete with MTK [61].

4. Mechanical Strength
4.1. Compressive Strength (CS)

As indicated in Table 3 and Figure 6, some studies believe that substituting cement
MTK increases compressive strength (CS). It has been discovered that adding the right
quantity of MTK to cementitious materials increases their compressive strengths [62].
When the quantity of MTK used exceeds the optimal level, the compressive strength of
cementitious materials is reduced.
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Table 3. A summary of the compressive strength (CS) of concrete.

Reference Replacement Ratio of MTK Optimum Remarks

[43] 0%, 10%, 15%, 20%, 30% and 40% 15% Increased

[46] 0%, 5%, 10%, 15%, 20% and 25% - Decreased

[39] 0%, 5%, 10% and 20% - Increased

[40] 0%, 10%, 20% and 30% - Increased

[63] 0%, 5%, 10% and 15% - Increased

[54] 0%, 6%, 10% and 14% - Increased

[41] 0%, 5%, 10%, 15% and 20% - Decreased

[61] 0%, 5%, 10%, 15%, 20% and 25% 15% Increased

[64] 0%, 5%, 10% and 15% - Increased

[42] 0%, 4%, 8%, 16% and 20% - Increased

[65] 0%, 5%, 10%, 15% and 20% 5% Increased

[66] 0%, 5%, 10%, 15% and 20% 15% Increased

[67] 0%, 5%, 10%, 15% and 20% 15% Increased

[68] 0%, 5%, 10%, 15% and 20% 15% Increased

[36] 0%, 10% and 20% - Increased

[69] 0%, 5%, 10%, 15% and 20% 15% Increased

[44] 0%,6%,10% and 14% 10% Increased
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Figure 6. Compressive strength: data source [65].

This is owing to the excess MTK propensity to agglomerate and adsorb around cement
particles, causing a delay in the cement’s hydration process and a reduction in the calcium
trisilicate (C3S) and calcium disilicate (C2S) phases in the matrix [70]. Conversely, the
increased NMK causes less contact points among cement grains, which function as binding
centers [71] and the matrix’s dispersion defect causes a weak interfacial transition zone
(ITZ) [72]. The CS of concrete uses increasing concentrations of MTK as a partial cement
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substitute (5, 10, and 15%). The findings depict that as the MTK substitution ratio grew, the
CS improved with the 15% substituted specimens producing the best strength values [30].

The clinker dilution effect is used to explain the decrease in CS for 15% MTK as
compared to 10% MTK. The diluting effect results from adding an equal amount of MTK
to a portion of cement. In MTK concrete, the dilution effects are counteracted by the filler
effect, pozzolanic interaction of MTK with calcium hydroxide and compounding effect
(synergistic impact of mineral admixture) [73].

Although the mix proportion specifics such as water to cement ratio and the content of
MTK, as well as the curing circumstances, are more or less the same, the optimal contents
of MTK are not the same, notably the influence of the range of MTK on CS. The different
particle sizes and chemical compositions of the multiple MTK specimen used in the analysis
may be related to the difference in the optimal MTK percentages recorded throughout all
investigation experiments. As a result, further study is required to determine the exact
ideal replacement amount, particle size and chemical makeup of MTK for its purpose as a
cementitious material.

The strength age relationship of concrete made with partial substitutions of cement
with MTK which 28 days control compressive strength is reference concrete as displayed in
Figure 7. At 7 days of curing, 10% substitution of MTK show compressive strength 15%
less than as compared to 28 days control concrete CS. At 28 days of curing, the CS at 10%
replacement of MTK is just 5% more than the reference sample.
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Figure 7. The compressive strength age relation of concrete with different doses of MTK: Data
source [65].

The researchers also discovered that after 28 days, there was virtually little strength
gain [74]. This is due to the pozzolanic reaction slowing down, which is caused by the total
utilization of the calcium hydroxide created during the hydration phase. Nevertheless, at
a later age (91 days) considerable improvement in compressive strength (25% more than
the reference sample) was observed at 10% replacement of MTK. Therefore, MTK does not
improve initial age compressive strength; however, later age (91) compressive strength
improved significantly, which was due to the fact that the pozzolanic reaction continued
gradually, as it was associated with the hydration of OPC.
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4.2. Flexural Strength (FL)

As indicated in Table 4 and Figure 8, some studies believe that substituting ce-
ment MTK increases flexural strength (FL). The inclusion of MTK lowers the ultra-high-
performance mortar’s 1-day mechanical strength. After 14 days, however, all mortars
containing 5–20% MTK show stronger compressive and flexural strength than reference
concrete [69]. The compression strength (CS) is found to be larger than the FL which may
be explained by the fact that the water to binder ratio, mix qualities, aggregate proper-
ties, curing circumstances, and age all have varied effects on the compressive and tensile
capacity [75]. The impact of MTK in improving the FL of fiber-reinforced cementitious
composites (FRCCs) with a water to cement ratio of 0.3 and fiber content of 2% for building
surface plastering was investigated by a researcher [76].

Table 4. Summary of Flexural Strength of Concrete.

Reference Replacement Ratio of MTK Optimum Remarks

[40] 0%, 10%, 20% and 30% 20% Increased

[54] 0%, 6%, 10% and 14% - Increased

[61] 0%, 5%, 10%, 15%,20% and 25% 15% Increased

[64] 0%, 5%, 10% and 15% - Increased

[42] 0%, 4%, 8%, 16% and 20% - Increased

[65] 0%, 5%, 10%, 15% and 20% - Increased

[66] 0%, 5%, 10%, 15% and 20% 15% Increased

[67] 0%, 5%, 10%, 15% and 20% - Increased

[68] 0%, 5%, 10%, 15% and 20% 10% Increased

[69] 0%, 5%, 10%, 15% and 20% 15% Increased

[44] 0%, 6%, 10% and 14% 10% Increased
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Figure 8. Flexural strength: data source [65].

The findings revealed that, when compared to control FRCC, FRCC with 10% MTK
had a 67 percent increase in FL after 28 days, whereas the strength steadily reduced as
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the MTK contents rose further after 10% [76]. At high temperatures ranging from 400 ◦C
to 800 ◦C, the compressive and FL of MTK concrete decreased to variable degrees. At
high temperatures, however, MTK and fly ash have a strong synergistic impact [77]. The
addition of MTK increased the strength performance of ultra-high performance concrete,
according to the findings [54].

In comparison to the others, blended mortars containing 10% MTK had the greatest
compressive and FL. The interface was reinforced with the boost in curing time and the
microstructure of MTK as a consequence of Ca(OH)2 utilization via the pozzolanic reaction
of MTK. The blended mortar was denser than the mortar made without MTK [54]. Because
MTK is well-known to have strong pozzolanic activity, MTK replacement of 15% offered
the greatest outcomes from 3 to 120 days, with steadily rising flexural performance. The
typical increases in ultimate strength and strain capacity between 28 and 120 days are
4% and 27%, respectively [38]. When MTK is substituted for cement at a composition of
up to 20%, the FL of the mixes with recycled concrete aggregate (RCA) is comparable to
that of the control mix. The inclusion of tiny MTK particles and the resulting pozzolanic
reaction is responsible for the increased FL of the RCA [78]. Furthermore, the FL of MTK
rises and subsequently falls with the replacement rate of MK, which is consistent with the
compressive and splitting tensile strength trends [61].

Figure 9 depicts the link between concrete compressive strength (CS) and flexural
strength (FL). CS is a function of flexural strength (flexural strength is around 10% to 15%
of CS). As a result, as predicted, there is a substantial link between CS and FL. It seems that
a regression line is straight. The R square value is more than 90%, indicating that there is
a good connection between compressive and flexural strength of varying percentages of
MTK at different curing days. The equation may also be used to estimate flexural strength
from compressive strength using varying percentages of MTK at different curing days.
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4.3. Split Tensile Strength (STS)

As demonstrated in Table 5 and Figure 10, MTK may greatly increase the tensile
capacity of cementitious materials. The maximum values of STS were observed at 10%
replacement MTK, following the same pattern as the CS results [63]. MTK content must
be optimized for optimal performance. However, several studies have found varied ideal
MTK percentages. This is because MTK comes from several sources. The concentration
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of MTK in the optimal dosing range fluctuates between 10 and 15% by weight of the
binder. The results showed that substituting 15% of the cement with MTK improved
the mechanical qualities of the combinations [43]. The mechanical strength of concrete
improved significantly when 10% of cement was replaced with MTK [68].

Table 5. Summary of the tensile strength of concrete.

Reference Replacement Ratio of MTK Optimum Remarks

[43] 0%, 10%, 15%, 20%, 30% and 40% 15% Increased

[63] 0%, 5%, 10% and 15% 10% Increased

[41] 0%, 5%, 10%, 15% and 20% - Decreased

[61] 0%, 5%, 10%, 15%, 20% and 25% 15% Increased

[64] 0%, 5%, 10% and 15% - Increased

[42] 0%, 4%, 8%, 16% and 20% - Decreased

[65] 0%, 5%, 10%, 15% and 20% 15% Increased

[66] 0%, 5%, 10%, 15% and 20% 15% Increased

[68] 0%, 5%, 10%, 15% and 20% 10% Increased

[36] 0%, 10% and 20% 10% Increased
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Figure 10. Tensile strength: Data source [65].

According to research, adding 2 percent and 5 percent MTK to reactive powder
concrete enhanced the strength for 7 and 60 days by 3.04 to 3.41% and 6.95 to 7.98%,
respectively [79]. The research found that the STS of concrete containing 3% MTK at a
water to binder ratio of 0.53 cured for 7 to 90 days was not considerably enhanced and was
slightly lower or comparable to the strength of control concrete [80].

The findings indicated that 15 percent MTK and polyvinyl alcohol fibers significantly
improve the performance of RAC. The STS and FL enhancements were more substantial
in terms of mechanical characteristics. Internal holes and fibers of RAC with a 15% MK
substitution rate were greatly decreased, and a considerable volume of calcium silicate
hydrate (C-S-H) gel was produced within RAC, which had the best fiber adhesion. The most
substantially improved performance was thought to be RAC with PF and 15% MTK [61].
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The pozzolanic action of MTK which fills fractures, interconnecting pores, and micro-pores
in the ITZ and increases the matrix’s internal compactness, is primarily responsible for
the increase in STS [81]. However, according to the findings of the research, adding MTK
reduced the STS of the mixtures. The most significant reduction was seen in the mix with
the lowest water to cement ratio. The low specific surface area of MTK, which was only 20%
greater than that of Portland cement, is again to blame for the drop in STS [41]. Therefore,
the review suggests more detailed investigation is required for the STS of concrete with
MTK substitutions.

Figure 11 shows the relationships between CS and STS of concrete with substitution
MTK instead of cement. The relationship between the mentioned two strengths was
developed using experimental data from CS and STS testing as per a past study [54].
Figure 12 may be used to create a regression equation using linear regression analysis. It
can be noted that the CS and the STS of the MTK-based mixes have a strong correlation
coefficient with an R square value greater than 0.90.
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5. Durability

The ability of a concrete structure to withstand harsh exposure conditions for the
remainder of its service periods with no excessive failure of usability or the necessity
for refurbishment plans is referred to as durability. Concrete’s durability is linked to
its performance, which means that it may be resilient in one atmosphere but not in a
different [12].

5.1. Chloride Ion Penetration

The degradation of reinforced concrete maritime constructions has an influence on
daily life in terms of safety, economics, and sustainability [82]. The unnecessary quantity of
concrete manufactured to restore and revitalize deteriorating concrete rather than being
utilized in new building plans places a significant economic burden on society. Coastal
engineers must thus be aware of the aspects that impact the prolonged-term sustainability
of marine concrete constructions.

The principal issue impacting the permanence of reinforced concrete buildings in
maritime and seaside areas is chloride assault [83]. Chloride ion penetration into concrete is
also important for the physical and chemical processes that lead to concrete microstructure
degradation and steel reinforcement corrosion [84]. As a consequence, maritime construc-
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tions become dangerous and have a shorter service life. When a threshold concentration of
chloride ions has collected at the steel reinforcement, the corrosion process begins [85]. The
degradation of steel in buildings produced by chloride-induced corrosion is claimed to be
a serious durability issue not just in South Africa, but across the globe [82].

The MTK concentration and curing age increased and the chloride resistance of con-
crete improved. According to research, mixtures containing 5% and 10% MTK demon-
strated better resistance to chloride permeability [86]. The concrete design with the highest
chloride resistance was created by adding MTK to concrete and using artificial seawa-
ter as blending water. With the pozzolanic reaction and filling voids effect of MTK and
acceleration of hydration by saltwater, the addition of MTK and seawater increased the
microstructure of the concrete. At 18 mm, there were less fine corrosion products indicating
that combining saltwater with metakaolin enhances concrete chloride resistance while
limiting the influence of chloride intrusion in the microstructure [87]. The double-layer
structure and pozzolanic action of MTK efficiently prevented chloride ions from pene-
trating, according to research [20]. The pozzolanic reaction, which enhanced the binding
qualities of cement paste and therefore increased resistance to chloride penetration, the
MTK improved chloride resistance. The density of concrete was also improved, owing
to the micro filling effect which filled the spaces, resulting in greater resistance against
chloride assaults.

5.2. Water Absorption

Figure 12 describes the water absorption capacity with different percentages of MTK
ranging from 0% to 30% in 5-percent increments. The pozzolanic activity and filling voids
of MTK, and concrete water absorption were reduced when cement was replaced with MTK.
The impact of varied MTK 2 to 14 percent levels on the water absorption of cementitious
materials was examined in research [88]. The findings revealed that MTK reduced the
water absorption capacity of the matrix to varying degrees. When the MTK concentration
was more than 6%, however, the beneficial effect rapidly faded [88].

According to particular research, MTK decreased the water absorption of concrete
by 16.5 to 25% when compared to a control sample [80]. The research found comparable
findings, indicating that the mortar with 10% MTK and 5% silica fume had the lowest water
absorption [89]. The filling effect of ultrafine MTK and its pozzolanic reaction, according to
research, is what causes the decrease in water absorption [36].
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5.3. Porosity and Water Sportivity

The average effective porosity and water sportively fall of the mixture with incorpo-
rating MTK as compared to the reference samples as presented in Figure 13. The 10% MTK
mix had the smallest mean water sportively outcomes, whereas the 15% MTK mixture had
the least mean effective porosity. MTK capacity to fill the voids of aggregates is largely
accountable for the concrete’s normal porosity and water resistance [91]. The 10 percent,
15 percent, and 20 percent MTK specimens were found to give tremendous air permeability
defense, whereas all MTK-containing specimens gave acceptable water permeability protec-
tion. The water absorption increased as the MTK percentages improved, which contradicts
the findings of the water sportively and porosity test which showed that the 10% MTK
and 15% MTK samples generated the lowest water sportively index and average effective
porosity, respectively. Human error during the testing technique and defective equipment
are two possible explanations [92]. At 28 days of curing, the cement plates with the addition
of 5 to 20% MTK show a similar porosity. However, increasing the MTK dose reduces the
most likely pore radius, showing that the pore structure is favorably refined [69].

Buildings 2022, 12, x FOR PEER REVIEW 14 of 24 
 

5.3. Porosity and Water Sportivity  
The average effective porosity and water sportively fall of the mixture with incorpo-

rating MTK as compared to the reference samples as presented in Figure 13. The 10% MTK 
mix had the smallest mean water sportively outcomes, whereas the 15% MTK mixture 
had the least mean effective porosity. MTK capacity to fill the voids of aggregates is 
largely accountable for the concrete’s normal porosity and water resistance [91]. The 10 
percent, 15 percent, and 20 percent MTK specimens were found to give tremendous air 
permeability defense, whereas all MTK-containing specimens gave acceptable water per-
meability protection. The water absorption increased as the MTK percentages improved, 
which contradicts the findings of the water sportively and porosity test which showed 
that the 10% MTK and 15% MTK samples generated the lowest water sportively index 
and average effective porosity, respectively. Human error during the testing technique 
and defective equipment are two possible explanations [92]. At 28 days of curing, the ce-
ment plates with the addition of 5 to 20% MTK show a similar porosity. However, increas-
ing the MTK dose reduces the most likely pore radius, showing that the pore structure is 
favorably refined [69]. 

 
Figure 13. Porosity and water sportively [92]. 

5.4. Permeability 
The size, volume, and connectivity of a material’s pore system, which in turn depend 

on the type of binder used and how hydrated it is, as well as the presence of aggregates 
(such as in the case of haloes transition) and fines, whether reactive or not, all, play a role 
in a material’s permeability to a cementing matrix [93]. Permeability of chloride ions also 
effect the reinforcement durability due to corrosion [94].  

This characteristic determines a material’s resistance to the penetration of hostile 
chemicals and, therefore, its durability [95]. This low permeability is also of significant 
importance for the creation of gas- and water-tight containers, coatings, and storage facil-
ities for radioactive waste. 

The lowest coefficient of permeability was found at a 15 percent replacement level as 
shown in Figure 14. This may be a consequence of the pores being filled with hydration 
products, which would lead to pore refinement and increased concrete performance [96]. 

0

1

2

3

4

5

6

0.043

0.0435

0.044

0.0445

0.045

0.0455

0.046

0.0465

0.047

0 5 10 15 20
W

at
er

 s
po

rt
iv

ity
(%

)

Ef
fe

ct
iv

e 
Po

ro
sit

y 
(%

) 

MTK (%)

Effective Porosity Water Sorptivity

Figure 13. Porosity and water sportively [92].

5.4. Permeability

The size, volume, and connectivity of a material’s pore system, which in turn depend
on the type of binder used and how hydrated it is, as well as the presence of aggregates
(such as in the case of haloes transition) and fines, whether reactive or not, all, play a role
in a material’s permeability to a cementing matrix [93]. Permeability of chloride ions also
effect the reinforcement durability due to corrosion [94].

This characteristic determines a material’s resistance to the penetration of hostile
chemicals and, therefore, its durability [95]. This low permeability is also of significant im-
portance for the creation of gas- and water-tight containers, coatings, and storage facilities
for radioactive waste.

The lowest coefficient of permeability was found at a 15 percent replacement level as
shown in Figure 14. This may be a consequence of the pores being filled with hydration
products, which would lead to pore refinement and increased concrete performance [96].

Concrete sorptivity is comparatively decreased when metakaolin is added [97]. The
decrease in permeability due to the addition of pozzolanic materials can be attributed
due to pozzolanic reaction and micro filling which give more dense concrete [97]. The
conventional concrete exhibits a sorptivity of 0.114 mm/min0.5, whereas the sorptivity
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ranges from 0.062 to 0.097 mm/min0.5. Comparing concrete specimens with commercial
metakaolin (MKC) to specimens with MTK, MKC-concrete exhibits the best behavior, while
concrete with MKC and 20% replacement of sand exhibits the lowest sorptivity [29].
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6. Microstructure Analysis
6.1. Pozzolanic Activity

The thermogravimetry (TG) and differential scanning calorimetry (DSC) curves of
MTK paste at 28 days are shown in Figure 15. The DSC study traces as a function of
temperature for MTK–CH paste reveals four distinct zones of evident mass loss, which
correlate to four distinct peaks. The first peak, which occurs at about 90 ◦C is mostly because
of the desorption of calcium silicate hydrates (CSH) and stratlingite (C2ASH8) physiosorbed
and interlayer water molecules [98]. The grafting process of C2ASH8 interlayer anions
correlates to the second dehydration peak, which occurs at 165 ◦C. Dihydroxylation of
lattices and breakdown of C2ASH8 interlayer anions results in the third peak at 215 ◦C [99].
The fourth peak, at 670 ◦C, is caused by CaCO3 decomposition [100].
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The time histories of variations in pozzolanic reactivity for the MTK specimens are
shown in Table 6. It is evident that the majority of calcium hydrate (CH) has not responded
to MTK after three days. MTK pozzolanic reactivity index is 23.2 as a consequence. The
pozzolanic reactivity index of MTK increases by 13.7 days compared to 3 days as hydration
increases. Table 6 further reveals that a rapid spurt of reaction in MTK–CH mixed samples
between 7- and 28-days results in elevated pozzolanic reactivity indices of 94.3. A study
claimed that MTK has a 22.6 greater pozzolanic reactivity index than silica fume after
28 days, which is the greatest variation between all curing periods [44]. This conclusion
that MTK pozzolanic reactivity develops rapidly after 7 days is consistent with the findings
of the research [101].

Table 6. Pozzolanic activity results: Reprinted with permission from [44].

Time (days) Ca(OH)2 CaCO3 Total Ca(OH)2 Reactivity Index

3 7.39 4.21 38.41 23.2
7 7.01 1.46 31.56 36.9
28 0 1.68 2.89 94.3
56 0 1.45 2.46 95.1

The heat needed for the breakdown of the CSH and CH stages as a function of MTK
percent is shown in Figure 16. The heat of decay of CSH enhances as the quantity of MTK
enhances while the heat required for the decay of CH decreases, indicating that the mortars
modified with MTK have a high degree of hydration. Furthermore, as a consequence of
MTK’s use of CH, the quantity of heat needed for its breakdown is reduced. The pozzolanic
reaction with MTK causes the CH phase released during hydration of MTK-controlled
cement to have a crystalline structure (i.e., eroded crystals), as shown by the reduction
in CH enthalpy. Because amorphous hydration products have stronger strength qualities
than crystalline hydrates, the hardened cement made with MTK substitution has a denser
structure than the plain cement paste [97].
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6.2. Heat of Hydration

The experimental findings of controlled heat flow and cumulative heat developed of
various MTK mixed mortars are displayed in Figure 17. The hydration heat of new mortars
may be detected using an isothermal calorimeter for up to 100 h. The findings in Figure 17a
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reveal that the normalized heat flow is in the range of 6% > 0% > 10% >14 percent. In other
terms, temperature increases in concrete buildings follow the same pattern as heat transfer,
particularly at large scales. As a result, the mortars containing 6% MTK in this study
produce more microfractures and shrinkage than the others. When cementitious materials
with strong pozzolanic reactions, such as MTK and silica fume react with hydrated CH, the
hydration rate increases, contributing to the pozzolanic reactivity’s exothermal impact [98].
The increased hydration rate has an impact on the durability of mortars and concrete,
mostly owing to shrinkage and the production of tiny fractures. A study [99] conclude that
the accelerated impact of MTK on cement hydration was blamed for the higher temperature
increase of MTK blended mortars compared to pure cement-based mortar.
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Zhang et al. [34] concluded that the temperature increase was due to MK’s strong
reactivity with CH. Nevertheless, there is a strong indication that cementitious materials
(MTK), which react with calcium hydrate (CH), have a role in early heat released by
speeding up the hydration of Portland cement and swiftly interacting with CH produced
during cement hydration [34]. A combination with 14 percent MTK inclusion is favorable
in terms of temperature increase. However, given the importance of mechanical strength
in this study, 10 percent MTK is more useful in engineering than 14 percent MTK. The
cumulative heat developed for 100 h of various MTK concentrations is 103.32, 103.03, 101.74,
and 91.58 J, as shown in Figure 17b.

The overall heat evolved falls as the MTK content rises. When compared to mortars
with 6 and 10% MTK, the heat generated by a 14 percent MTK amount mortar is much
lower than that of a mortar without MTK. This is because, despite the accelerated impact
of MTK on cement hydration, the cement mass is insufficient to create enough CH to
react with pozzolans. The accelerating impact on cement hydration and the pozzolanic
interaction between MTK and hydrated CH are both reasons why mortars with 6 and 10%
MTK produce comparable heat to mortars with 0% MTK [74].

In addition, Figure 17b shows that the acceleration period for 6% MTK begins at 5
to 6 h, while MTK 0%, MTK 10% and MTK 14% all begin at 10 to 11 h. As a result, it can
be stated that only mortars containing 6% MTK have an acceleration impact on cement
hydration. This might be because of the water-absorbing impact of MTK hydrophilic
characteristic which causes the cement to take longer to hydrate. The negative impact of
MTK on cement hydration, on the other hand, is advantageous in reducing the likelihood of
shrinkage and micro-fractures which improves the durability and service life of MTK-based
cement concrete.
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6.3. Scan Electronic Microscopy (SEM)

The findings of the SEM investigation of the MTK-containing concrete samples are
shown in Figure 18. It is clear that there are several big fragments present that may be
categorized as anhydrate clinker grains. These particles are linked to the hydration process
in which the smaller clinker grains dissolve first, followed by the bigger grains [101]. In the
microstructure of the concrete sample, numerous tiny voids, haphazardly shaped capillary
spaces, and circular holes were discovered.
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The presence of the aforementioned sub-structures has a harmful influence on con-
crete’s strength and permeability. When the MTK content rises, the size and appearance
of tiny cracks, capillary cavities, and openings shrink. This is due to the fact that MTK
improves the porous structure of the matrix by filling up the spaces among the aggregate
particles which is consistent with the microstructural findings achieved by MTK [87].

A study also claimed that the increased percentages of MTK result in denser concrete,
particularly interfacial transition zone (ITZ). However, the addition of MTK beyond 10% re-
sults in cracks (14% substitution of MTK) which adversely affect concrete performance [54].
Similar, the influence of the sand particles’ interlocking structure was decreased because the
spaces in the calcareous sand were filled with calcium carbonate. Therefore, the pozzolanic
reaction and filling voids of MTK results in a denser structure which ultimately improved
concrete strength and durability properties. However, a higher dose of MTK results in
harmful effects due to a lack of flowability which causes more voids in concrete.

7. Conclusions

A comprehensive investigation of the performance parameters of concrete incorporat-
ing MTK as a partial cement substitute was provided in this review article. Physical and
chemical properties of MTK, flowability, strength, durability, SEM and heat of hydration
characteristics of concrete were all evaluated in this review. The following findings were
drawn from the study:

• Physical properties of MTK show rough surface texture which adversely affects the
slump flow of concrete.

• The chemical composition of MTK indicates that MTK has the potential to be employed
as a cementitious material.

• Increased the workability of concrete with the incorporation of MTK.
• The heat of hydration declined as the percentage of MTK increased. This is owing to

the fact that the pozzolanic response is slow.
• Pozzolanic activity of MTK shows an increase in CSH concentrations which improved

the binding properties of concrete.
• Mechanical performance such as compressive, flexural and tensile capacity improved

significantly with the replacement of MTK. The highest compressive capacity was
obtained at a 10% substation of MTK which is 25% more than the control sample
(28 days). However, the optimum amount is important. Based on the review, the
optimum dose differs from 10 to 20% changing on the basis of MTK. It can be also
noted that the enhancement in the initial age mechanical performance of concrete with
MTK was not significant. However, at a later age (91 days) considerable improvement
in strength was observed.

• An increase in durability performance of concrete with MTK was observed up to some
extent but less information is available.

• SEM results confirm the micro filling creditability MTK which gives more dense concrete.

8. Recommendations

• Thermal activation of MTK to improve further its pozzolanic activity should be explored.
• The creep and shrinkage properties of concrete with MTK should be investigated.
• Detailed study on durability characteristics of concrete (particularly acid attacks) with

MTK should be investigated.
• No data is available on the alkali-silica reaction (ASR).
• Thermal assets such as thermal conductivity and heat insulation with MTK should

be investigated.
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