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Abstract: In the process of service, reinforced concrete structures have to bear both load and multi-
environmental factors. The deterioration of reinforced concrete beams is critical to the durability,
safety, and sustainability of reinforced concrete structures. The main aim of the present research is to
determine the degradation mechanism of reinforced concrete beams subjected to sustained loading
and multi-environmental factors. Reinforced concrete beam specimens were prepared, loaded and
then exerted multi-environmental factors. At the end of each degradation period, the degradation
of concrete (chemical contents of concrete beam surfaces, carbonation depth, compressive strength
and maximum cracks) and the corrosion of steel bars (corrosion ratio and tensile strength) were
continuously measured. Moreover, degraded reinforced concrete beams were flexural loaded in
four-point bending failure tests. The degradation mechanism of reinforced concrete beams subjected
to sustained loading and multi-environmental factors was analyzed. Thus, this study can promote
a comprehensive understanding of reinforced concrete beams subjected to sustained loading and
multi-environmental factors.

Keywords: reinforced concrete beams; degradation; sustained loading; multi-environmental factors

1. Introduction

Due to its versatility and relatively low cost, concrete has turned into the most widely
used man-made material and preferred material for civil engineering and infrastructure
construction in environmental factors. As the main bearing members of concrete structures,
reinforced concrete beams have to bear loads in the process of actual service. Moreover,
reinforced concrete beams also suffer environmental factors attack, such as acid, salt,
temperature and periodic changes of temperature and humidity [1,2].

Concrete performance is associated with the characteristics of the raw material, in-
cluding cement types [3] and aggregate [4]. When chloride ions migrate into cementitious
concrete through diffusion, wicking and absorption, they cause complex chemical reac-
tions with cementitious concrete in environmental factors. [5,6]. In the migration process
of chloride ions, a specific proportion of chloride ions are bound by the cement matrix,
and some free chloride ions are preserved in pore solution [2,7]. Moreover, sulphate also
causes the deterioration of cementitious concrete in concrete structures [8–11]. In ordinary
Portland cement, Portlandite leads to the deterioration of concrete in sulphate environment,
because it is the hydration product most susceptible to sulphate attack. [12]. Because of the
constitutive relation change of degraded concrete, the mechanical properties of reinforced
concrete beams are decreased [13,14]. Usually, the presentation of deteriorated concrete is
the change of carbonation depth [15–18], compressive strength [19,20], and so on [21,22].

In corrosion environment, chloride ions and sulfates react with cementitious mate-
rial, which reduces basicity of concrete and destroys passivation film on surface of steel
rebar [23]. Then, chloride ion is absorbed on surface layer of steel rebar, and steel rebar
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starts to corrode because of the chloride ions. More severely, sufficient oxygen and mois-
ture accelerates corrosion rate [24]. With corrosion occurrence, the expanded volume of
the corrosion product is about two to six times the original volume. Volume expansion
will produce increasing extensive pressure on the interface between the steel rebar and
concrete [25]. Moreover, volume expansion after steel corrosion will lead to cracking along
steel rebar, surface delamination, the spalling of concrete, the loss of the adhesion between
steel and concrete and the decrease of the transverse-sectional area of a reinforced concrete
beam [26,27].

For the reinforced concrete beam, the strength [28,29], stiffness, ductility [30] and
energy consumption capacity [31] are decreased with the sustained aging and deterio-
ration through environmental factors during its service life. Some researchers have in-
vestigated the capacity decrease of deteriorated reinforced concrete beams in a marine
environment [32–36]. In the initial stage, the flexural strength of a reinforced concrete beam
is not significantly affected by the corrosion of longitudinal reinforcement. In contrast,
stiffness and flexural strength are remarkably reduced, owing to a deficit of the longitudinal
section [13,14].

In a previous study, a coal mine’s condition was given by specifying the parameters of
acid–salt mist, carbon dioxide and temperature and humidity. Based on this, the deteriora-
tion behavior of reinforced concrete beam was presented [1] and the degradation model of
bond performance between deteriorated concrete and corroded deformed steel bars was
proposed [37]. However, the coal mine condition in existing research simply simulates
environmental factors and lacks the loading condition.

The main contribution in this work is the combined use of sustained loading and
multi-environmental factors: acid–salt mist, carbon dioxide and the periodic change of
temperature and humidity. The effect of each of these factors has been previously investi-
gated but only when acting independently. In this study, the concrete deterioration, steel
corrosion and flexural performance of deteriorated reinforced concrete beams subjected to
sustained loading and multi-environmental factors are further studied. First, reinforced
concrete beam specimens are made and the interaction action of sustained loading and
multi-environmental factors on the reinforced concrete beam specimens are introduced in
Section 2. In Section 3, concrete deterioration, steel corrosion and flexural performance of
deteriorated reinforced concrete beams are presented, and the deterioration mechanism of
reinforced concrete beams subjected to sustained loading and multi-environmental factors
is discussed. Section 4 concludes the paper.

2. Experimental Program
2.1. Materials

In our study, Portland cement with a 2.5% loss on ignition is adopted to make beam
specimens. Table 1 lists the chemical composition of the cementitious material. Gravels
with sizes 5–31.5 mm were used as coarse aggregate. River sand with a fineness modulus
of 2.9 and the maximum size of 9.5 mm was used as fine aggregate. The laboratory tap
water was used. Table 2 gives the mix proportion of concrete used in this study.

Table 1. Chemical composition of cementitious material (% by mass).

Chemical
Composition SiO2 Al2O3 Fe2O3 CaO MgO SO3

Content (%) 21.5 5.61 3.27 53.9 3.3 2.3

Table 2. Mix proportion of concrete.

Water (kg/m3) Cement (kg/m3) Sand (kg/m3) Gravel (kg/m3)

325 195 762 1144
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2.2. Beam Specimen

The beam specimens used in this experiment are 2 m long double-reinforced rectan-
gular reinforced concrete beams with the cross-sectional dimension of 200 mm × 400 mm
(width × height). Figure 1 shows beam specimen configuration from side and cross-
sectional views. Two ribbed bars with the diameter of 14 mm were placed on the top of
the beam as hangers. Two ribbed bars with an 18 mm diameter and one ribbed bars with
a 16 mm diameter were placed on the bottom of the beams as a tensile rebar. Round bars
with an 8 mm diameter were used as stirrups, and the stirrup spacing was 100 mm and
150 mm in the encrypted zone and the unencrypted zone, respectively.
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A total of 22 beam specimens were made for the implemented degradation experiment.
The degradation of the reinforced concrete beams was tested after each degradation period,
and a total of 10 degradation periods were set. In each test, 2 beam specimens were adopted.
As control group, the test data of 2 beam specimens without degradation were collected as
degradation period zero.

2.3. Accelerated Deterioration Experiment of Reinforced Concrete Beams Subjected to Sustained
Loading and Multi-Environmental Factors

In our study, environment parameters used to simulate multi-environmental factors
were derived from coal mines in Xuzhou City, Jiangsu Province, in China. Since 2003, we
have monitored temperature and humidity from several coal mines in Xuzhou. In the
coal mines, corrosive substance exists in the form of gas and liquid. For the gas corrosive
substance, CO2 concentration is set at 27,692 mm/m3 in our accelerated experiment, ac-
cording to GB/T50082-2009 in China. For the liquid corrosive substance, acidic corrosive
substance HCl, Cl2, H2S, SO2 and NOx in the coal mines were converted into HCl acid
mist with a concentration of 157.2 mg/m3. Saline corrosive substance included NaCl,
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MgCl2 and Na2SO4 in the coal mines. They were set as NaCl, MgCl2 and Na2SO4 salt
mist with concentrations of 0.814 g/L, 9.95 g/L and 37.88 g/L, respectively. Table 3 lists
the experiment parameters of the acid–salt mist, carbon dioxide and periodic change of
temperature and humidity. The duration of each experiment period was set to 56 days.

Table 3. Experiment parameters of acid–salt mist, carbon dioxide and periodic change of temperature
and humidity.

NaCl
(g/L)

MgCl2
(g/L)

Na2SO4
(g/L)

CO2
(mg/m3)

HCl
(mg/m3) Temperature/◦C Relative

Humidity/%

0.814 9.95 37.88 27,692 157.2

15 80
26 95
15 80
2 10

Simulation equipment of loads and environment was used to implement the acceler-
ated deterioration experiment of reinforced concrete beams in our study. Figure 2 shows
the experiment setup of the accelerated deterioration experiment of reinforced concrete
beams subjected to sustained loading and multi-environmental factors. After the reinforced
concrete beam specimens were placed into the simulation equipment according to the way
shown in Figure 2, two symmetrical concentrated forces were applied to beams using a
steel spreader beam connected with a stainless steel dowel bar and an electro-hydraulic jack
in the simulation equipment. The forces were increased until the designated value. Then,
mixed acid and salt fog were sprayed into the environment equipment, and the temperature
and humidity were adjusted regularly according to the parameters listed in Table 3.
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3. Experimental Results and Mechanism Discussion

The performance degradation of the reinforced concrete beams dues to extremely
complex corrosive factors of the acid–salt mist, carbon dioxides and the periodic change of
temperature and humidity. By simulating the sustained loading and multi-environmental
factors, the concrete and steel bars of reinforced concrete beams in 0–10 periods are mea-
sured. This section presents the degradation of concrete, the corrosion of steel bars and the
flexural performance of degraded reinforced concrete beams. Moreover, the performance
degradation mechanisms of concrete, steel bars and beams are discussed.

3.1. Degradation of Concrete

At the end of each degradation period, the concrete on the degraded beam surface
was ground into powders with 74 µm or less size. The chemical contents of concrete beam
surfaces were measured using dried powders according to X-ray fluorescence. Moreover,
two concrete core samples with 100 mm diameter and 200 mm height were drilled at the end
area of the degraded beam specimen. According to the Chinese standard GB/T50344-2004,
the carbonation depth of concrete was measured by spraying 1% alcohol phenolphthalein
solution around the surface of a concrete core sample. Another core sample was made
into a specimen with a 100 mm diameter and 100 mm height. According to the Chinese
standard JGJ/T384-2016, the uniaxial compression method was adopted to measure the
remaining compressive strength of the degraded concrete. In addition, the maximum crack
widths on degraded reinforced concrete beams were manually measured.

3.1.1. Chemical Contents of Concrete Beam Surfaces

In the chemical contents on concrete beam surfaces, CaO was main component of
cementitious material, and its decrease indicates the degradation of concrete. HCl and
NaSO4 are major aggressive factors of concrete in our experiment. Therefore, the changes
of CaO, Cl and S can reflect the degradation of concrete and the accumulation of aggressive
factors on concrete surfaces. The major chemical reactions during the degradation processes
in which CaO is consumed by HCl and NaSO4 are listed as follows:

CaO + H2O→ Ca(OH)2 (1)
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Ca(OH)2 + 2HCl→ CaCl2 + 2H2O (2)

Ca(OH)2 + Na2SO4 → CaSO4 + 2NaOH (3)

Figure 3 shows the changes of CaO, Cl and S on degraded concrete beam surfaces in
0–10 degradation periods, where the Cl and S represent the compounds related to them.
With the increase of deterioration time, the contents of Cl and S on the beam surface
increase significantly, while the content of CaO decreases gradually. The phenomenon
means that the CaO is gradually consumed. It should be noted that the CaO in coarse
aggregate could cause inaccuracies in the results of Figure 3. However, the total content
of CaO (included in cement and coarse aggregate) falls with the increase of degradation
period, and even the CaO in coarse aggregate is taken into account. In the 0–3 deterioration
periods, the contents of Cl and S as a corrosive medium were close to zero, because there is
no accumulation of Cl and S on concrete beam surfaces due to fewer degradation periods.
Correspondingly, the content of CaO was nearly constant, because no chemical reaction
had taken place between concrete and aggressive factors. In the 4–10 deterioration periods,
CaO reacted with aggressive factors, resulting in a rapid decline in its content, because the
CaCl2 dissolved in the water and decreased as the sand rises. With the CaSO4 accumulating
continuously, a diaphragm was formed on concrete surfaces, which decreases the reaction
rate of aggressive factors with a concrete inside of beams. The diaphragm intercepted the
aggressive factors. As a result, decline rate of CaO slows down after eight deterioration
periods, and the contents of Cl and S on concrete beam surfaces increase.
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Figure 3. CaO, Cl and S on degraded concrete beam surfaces in 0–10 degradation periods.

3.1.2. Carbonation Depth

When exposed to environmental factors, CO2 will carbonize concrete. The carbonation
of concrete reduces durability. The major chemical carbonation reactions of concrete, in
which CaCO3 is formed, are presented in Equations (4) and (5). In acid–salt mist, carbon
dioxide and the periodic change of temperature and humidity in the environment, HCl
dissolves CaCO3. The chemical dissolution reaction is shown in Equation (6).

CO2 + H2O→ H2CO3 (4)

Ca(OH)2 + H2CO3 → CaCO3 + 2H2O (5)

CaCO3 + HCl→ CaCl2 + CO2 + H2O (6)

Figure 4 presents a concrete core sample sprayed with 1% alcohol phenolphthalein solu-
tion for carbonation depth measurement. The junction of discoloration and non-discoloration
is defined as the interface of concrete carbonation. A vernier caliper is used to measure
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the vertical distance from the interface to the concrete surface multiple times, and the
average value is the carbonation depth value of deteriorated concrete. Figure 5 shows the
carbonation depth of degraded concrete in 0–10 degradation periods. It can be observed
that carbonation depth increases with deterioration period. In the process of carbonation,
CaCO3 is produced contiguously. At the initial stage of carbonation, CaCO3 blocks the
internal pores of concrete. Then, the internal pores are broken by excess CaCO3, which
opens routes for CO2 to invade. As a result, the opened routes in turn accelerate the
carbonation of concrete. Moreover, HCl dissolves CaCO3 and opens concrete pores, which
also promoted carbonation in the concrete. In addition, cracks and spalls also accelerate
the carbonation of concrete. When the carbonation depth is equal to the thickness of the
concrete protective layer, it will lead to the corrosion of steel bars.

Buildings 2022, 12, x FOR PEER REVIEW 7 of 16 
 

Ca(OH)2 + H2CO3 → CaCO3 + 2H2O (5) 

CaCO3 + HCl → CaCl2 + CO2 + H2O (6) 

Figure 4 presents a concrete core sample sprayed with 1% alcohol phenolphthalein 
solution for carbonation depth measurement. The junction of discoloration and non-dis-
coloration is defined as the interface of concrete carbonation. A vernier caliper is used to 
measure the vertical distance from the interface to the concrete surface multiple times, and 
the average value is the carbonation depth value of deteriorated concrete. Figure 5 shows 
the carbonation depth of degraded concrete in 0–10 degradation periods. It can be ob-
served that carbonation depth increases with deterioration period. In the process of car-
bonation, CaCO3 is produced contiguously. At the initial stage of carbonation, CaCO3 
blocks the internal pores of concrete. Then, the internal pores are broken by excess CaCO3, 
which opens routes for CO2 to invade. As a result, the opened routes in turn accelerate the 
carbonation of concrete. Moreover, HCl dissolves CaCO3 and opens concrete pores, which 
also promoted carbonation in the concrete. In addition, cracks and spalls also accelerate 
the carbonation of concrete. When the carbonation depth is equal to the thickness of the 
concrete protective layer, it will lead to the corrosion of steel bars. 

 
Figure 4. Concrete core sample sprayed with 1% alcohol phenolphthalein solution to measure car-
bonation depth. 

 
Figure 5. Carbonation of degraded concrete in 0–10 degradation periods. 

  

0

5

10

15

20

25

30

0 2 4 6 8 10

C
ar

bo
na

tio
n

de
pt

h 
(m

m
)

Degradation period

Figure 4. Concrete core sample sprayed with 1% alcohol phenolphthalein solution to measure
carbonation depth.

Buildings 2022, 12, x FOR PEER REVIEW 7 of 16 
 

Ca(OH)2 + H2CO3 → CaCO3 + 2H2O (5) 

CaCO3 + HCl → CaCl2 + CO2 + H2O (6) 

Figure 4 presents a concrete core sample sprayed with 1% alcohol phenolphthalein 
solution for carbonation depth measurement. The junction of discoloration and non-dis-
coloration is defined as the interface of concrete carbonation. A vernier caliper is used to 
measure the vertical distance from the interface to the concrete surface multiple times, and 
the average value is the carbonation depth value of deteriorated concrete. Figure 5 shows 
the carbonation depth of degraded concrete in 0–10 degradation periods. It can be ob-
served that carbonation depth increases with deterioration period. In the process of car-
bonation, CaCO3 is produced contiguously. At the initial stage of carbonation, CaCO3 
blocks the internal pores of concrete. Then, the internal pores are broken by excess CaCO3, 
which opens routes for CO2 to invade. As a result, the opened routes in turn accelerate the 
carbonation of concrete. Moreover, HCl dissolves CaCO3 and opens concrete pores, which 
also promoted carbonation in the concrete. In addition, cracks and spalls also accelerate 
the carbonation of concrete. When the carbonation depth is equal to the thickness of the 
concrete protective layer, it will lead to the corrosion of steel bars. 

 
Figure 4. Concrete core sample sprayed with 1% alcohol phenolphthalein solution to measure car-
bonation depth. 

 
Figure 5. Carbonation of degraded concrete in 0–10 degradation periods. 

  

0

5

10

15

20

25

30

0 2 4 6 8 10

C
ar

bo
na

tio
n

de
pt

h 
(m

m
)

Degradation period

Figure 5. Carbonation of degraded concrete in 0–10 degradation periods.

3.1.3. Compressive Strength

The compressive strength of concrete directly affects mechanical properties of rein-
forced concrete beams. Therefore, to measure the compressive strength of concrete, we
drilled two concrete core samples at the end area of the degraded reinforced concrete beams
after each degradation period. The compressive strengths of the two concrete core samples
were computed as compressive strength in each degradation period.

The average compressive strengths of concrete core samples in 0–10 degradation
periods are presented in Figure 6. The compressive strengths of concrete core samples
increased first and then decreased with the increase of deterioration periods. At the initial
stage of carbonation, the concrete was dense because the CaCO3 blocked the internal pores
of concrete. The compacted concrete causes a slight increase in compressive strength in
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1st–3rd degradation periods. With degradation intensifying, the internal pores of concrete
were broken by accumulated CaCO3, which makes the concrete loose. As a result, the
compressive strengths of concrete reduced constantly in 4th–10th degradation periods.
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Figure 6. Compressive strengths of concrete core samples in 0–10 degradation periods.

3.1.4. Maximum Crack Width

Cracks are typical indicator of reinforced concrete beam deformation, and they can
visually reflect the decrease of the bearing capacity, durability and waterproofness of
reinforced concrete beams. Under sustained loading and multi-environmental factors, the
maximum crack widths of degraded reinforced concrete beams are measured after each
degradation period.

Figure 7 shows maximum crack widths measured on the surface of degraded re-
inforced concrete beams in the degradation periods 0–10. The maximum crack widths
increase slowly in exponential form in the degradation periods 0–10. There is an uncompact
interface area at the interface between reinforcement and concrete, which provides space
for the accumulation of corrosion products. Therefore, in the degradation periods 0–3,
although rebar corrosion occurred, there was no increase of maximum crack width. After
the interface area is filled, micro cracks in concrete provide routes for aggressive factors,
which accelerate the corrosion of steel bars. As a result, maximum concrete crack widths
increased rapidly in the degradation periods 4–10.
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Figure 7. Maximum crack widths measured on the surface of degraded reinforced concrete beams in
the degradation periods 0–10.
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3.2. Corrosion of Steel Bars

During the hydration of cement, Ca(OH)2 is produced and dissolved in internal
pores of concrete, which provide an alkaline environment for steel bars. In the alkaline
environment, a passivation film covers the surface of steel bars. In our experimental
environment, there were a lot of Cl ions and H ions. Due to their small particle size and
high activity, they easily entered the interior of reinforced concrete beams and reacted
with the Ca(OH)2 in concrete pores. With the decrease of PH value in concrete pores, the
passivation film on surface of steel bars is destroyed and then corrosion of steel bars occurs.
In the acid–salt mist, carbon dioxide and the periodic change of temperature and humidity
in the environment, HCl acid mist accelerates the decrease of PH value in concrete pores.
Moreover, sustained loading produces cracks in the internal concrete structure, which
provides transmission routes for HCl and aggravates the corrosion of steel bars.

At the end of each degradation period, two degraded beam specimens are broken
to take corroded steel bars out. Figure 8 shows some corroded steel bars of degraded
reinforced concrete beams. Before measuring the corrosion rate, refrain steel bars and
stirrups were preserved in a dry environment to prevent them from being corroded by the
surrounding environment. The corroded steel bars are cleaned by hydrochloric acid, and
then polished and dried to measure the corrosion rate according to weight loss. The two
ends of the longitudinal steel bars were cut off for the tensile test, as shown in Figure 8b. The
yield strength and ultimate strength of the corroded steel bars were measured. To reduce
inaccurate measurements, the corrosion rate and strength were tested as fast as possible.
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Figure 8. Corroded steel bars from degraded reinforced concrete beams: (a) skeleton, (b) longitudinal
steel bars and (c) stirrups.

3.2.1. Corrosion Rate

Corrosion of steel bar makes the cross section of steel bar smaller, which reduces the
strength of steel bar. In addition, the accumulation of the steel corrosion products produces
the expansion force that causes concrete cracking, which reduces the bond between steel
and concrete.

Figure 9 shows the average corrosion rate of stirrups and longitudinal steel bars with
original diameters of 14, 16 and 18 mm in the degradation periods 0–10. It was found that
corrosion rates of the steel bars were about zero in the first degradation period but increased
almost linearly in the degradation periods 1–10. Moreover, because stirrups are more easily
exposed to erosive substances, stirrups corrode more severely than longitudinal steel bars.
In addition, tension bars (longitudinal steel bars with original diameters of 16 mm and
18 mm) corroded more severely than compression bars (longitudinal steel bars with original
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diameter of 14 mm), because beams create cracks at the bottom, which provide passages
for aggressive factors to enter. For the tension bars with original diameters of 16 mm and
18 mm, the corrosion rates of steel bars with original diameters of 18 mm were slightly
larger. The possible reason for this phenomenon is that concrete is usually damaged by
sulfate erosion at edges, and the edges of beams are easily damaged during transportation.
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Figure 9. Average corrosion rate of stirrups and longitudinal steel bars with diameters of 14, 16 and
18 mm in the degradation periods 0–10.

3.2.2. Tensile Strength

Corrosion reduces the tensile strength of steel bars, which decreases the bearing
capacity of reinforced concrete beams. Figure 10 shows tensile test experiment of corroded
longitudinal steel bars according to the Chinese standard GB/T228.1-2010. Figures 11a,b,
respectively, show the changes of the average yielded strengths and the ultimate strengths
of corroded longitudinal steel bars with diameters of 14, 16 and 18 mm. In the first
degradation period, yielded strengths and ultimate strengths show little change compared
with the initial stage. The phenomenon is matched with the change of corrosion rate in
Figure 9, where the corrosion rates were about zero during the first degradation period. In
the degradation periods 1–10, the tensile strengths of steel bars show a downward trend on
the whole, because the gradually increased corrosion rates reduce the cross-sectional areas
of steel bars with the increase of the degradation periods.
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Figure 10. Tensile test experiment of corroded longitudinal steel bars.
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Figure 11. Tensile strengths of corroded longitudinal steel bars: (a) average yielded strengths and
(b) average ultimate strengths.

3.3. Flexural Performance of Degraded and Reinforced Concrete Beams

The deterioration of concrete and steel bars affects the performance of beams. To check
the flexural performance of degraded reinforced concrete beams, load-deflection curves
are measured.

To measure the flexural performance of degraded reinforced concrete beams, four-
point bending failure tests were implemented. Figure 12 shows the four-point bending
failure test setup of degraded reinforced concrete beams. A steel spreader beam were used
to transfer load from a hydraulic jack. Three linear variable displacement transducers were
located at the mid-span supports. The reinforced concrete beams were loaded with two
point loads spaced at 500 mm. The distance between the point load and the support was
650 mm, while the beam extended 100 mm from the support.
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Figure 12. Four-point bending failure test setup of degraded, reinforced concrete beams (unit: mm).

According to the four-point bending failure test results, load versus mid-span deflec-
tion curves in the mid-span of degraded reinforced concrete beams in the degradation
periods 0–10 are drawn in Figure 13. In the approximate elastic stage, the slopes of load-
deflection curves gradually increase with the degradation periods. It should be noted that
the load–deflection curve of the 6th degradation period does not show a yield point of
degraded, reinforced concrete beams compared with other curves. The reason may be that
the linear variable displacement transducers loosen in the four-point bending failure test.
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Figure 13. Load versus mid-span deflection relationship in the degradation periods 0–10:
(a) 0 degradation period to (k) 10th degradation period.

Figure 14 records the ultimate loads of the degraded reinforced concrete beams in
the degradation periods 0–10. The ultimate loads of the degraded reinforced concrete
beams descend gradually throughout the degradation periods. As the degradation periods
increasing, the performance of concrete and steel bars is weakened. As a result, the ultimate
loads of degraded reinforced concrete beams descend gradually. The decrease of concrete’s
compressive strength and steel bars’ tensile strength is the main cause of the loss of ultimate
loads. Moreover, the cracks on beam surfaces resulting from sustained loading provide
routes for aggressive factors, which promotes the degradation processes of beams.
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4. Conclusions

This paper studied the degradation of reinforced concrete beams subjected to sustained
loading and multi-environmental factors: acid–salt mist, carbon dioxide and the periodic
changes of temperature and humidity. In the end of each experimental period, degraded
concrete performance and corrode steel bar performance were measured, and degraded
reinforced concrete beams were flexurally loaded in four-points bending failure tests. Some
conclusions are as follows:

(1) With the deterioration periods increasing, the carbonation depth of degraded
concrete increases and more wider cracks are presented on the beam surface. Moreover,
the tensile strengths of the corroded longitudinal steel bars declined continuously with the
increase in their corrosion rate. As a result of concrete deterioration and steel corrosion,
the ultimate loads of degraded reinforced concrete beams subjected to more deterioration
periods are obviously lower.

(2) In terms of aggressive factors, the acid–salt mist and carbon dioxide penetrate into
reinforced concrete beams and react with concrete and steel bars. The periodic change of
temperature and humidity speed up the transmission rate of aggressive factors.

(3) Sustained loading make concrete at bottom of beams loose, which accelerates
the degradation of reinforced concrete beams. Compared with individual environmental
factor, acid–salt mist, carbon dioxide and the periodic change of temperature and humidity
aggravates the degradation of reinforced concrete beams, because the interaction of envi-
ronmental factors on the beams intensifies the chemical reaction of aggressive factors on
concrete or steel bars.
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