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Abstract: This paper formulates a modified differential quadrature finite element method (DQFEM)
by a combination of the standard DQFEM and the virtual boundary spring technique, which makes
it easy to implement arbitrary elastic restraints by assigning reasonable values to the boundary
spring stiffnesses. This new formulated method can offer a unified solution for flexural vibrations of
composite laminates subjected to general elastic boundary combinations including all the classical
cases. The influences of the number of Gauss–Lobatto nodes and the boundary spring stiffnesses
on the convergence characteristics of natural frequencies are investigated, and some conclusions are
drawn in terms of the minimum number of unilateral nodes required to generate convergent solutions
and the optimal values of the boundary spring stiffnesses to simulate classical boundaries. Numeri-
cal examples are performed for composite laminates under various classical boundary conditions.
Excellent accuracy, numerical stability, and reliability of the present method are demonstrated by com-
parisons with available exact and numerical solutions in open literatures. Additionally, for elastically
constrained composite laminates, which are beyond the scope of most existing approaches, numerous
new results obtained by the present method may serve as reference values for other research.

Keywords: differential quadrature finite element method (DQFEM); virtual boundary spring; com-
posite laminates; arbitrary elastic boundary; flexural vibration

1. Introduction

Composite laminates are increasingly used in various engineering structures, such
as space vehicles, aircraft, naval ships, and submarines, which are usually subjected to
frequent dynamic loads. Hence, a thorough understanding of the vibration characteristics
of laminates is critical for the design and analysis of composite structures.

In the past few years, many efforts have been devoted to developing accurate and
efficient methods to determine the vibration behaviors of composite laminates. A com-
prehensive review of the recent works on this subject has been provided by Sayyad and
Ghugal [1], covering both analytical and numerical methods. By contrast with analytical
methods known to be limited to only a few cases, numerical methods are more effective in
a wide range of cases involving various physical properties, arbitrary boundary conditions,
and sophisticated loading configurations. Various numerical procedures are available
for flexural vibrations of multi-layered composite plates [2–12], among which the most
representative and widely used one is the finite element method (FEM) that has already
been successfully incorporated into commercial software. However, FEM generally uses
low-order approximating functions; consequently, a higher accuracy can only be achieved
by mesh refinement, resulting in a higher computation cost. To tackle this problem, more
intensive research activities are motivated, focusing on high-order schemes such as the
mesh-free method [13,14] and differential quadrature (DQ) method [15,16], which tend to
yield highly accurate solutions with far fewer degrees of freedom (DOFs) than low-order
ones owing to the use of high-order basis functions.
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Although increased interest is still in the extension of various numerical methods to
the vibration analysis of composite laminates, most of the previous research was confined
to the classical boundary conditions comprised of simply supported, clamped, and free
boundaries. However, the boundary conditions of numerous engineering structures might
not always be ideal essentially. Actually, elastic supports are more commonly seen in
practice, and a relative lack of corresponding research still exists.

Motivated by the state-of-the-art, this paper aims to seek for an accurate, efficient,
and reliable method for the flexural vibration analysis of composite laminates subjected to
arbitrary elastic boundaries. The current work draws on the idea of a well-established high-
order scheme referred to as the differential quadrature finite element method (DQFEM) [17,18],
in which the DQ rule and the Gauss–Lobatto integration rule are utilized to discretize the
energy functional of structures. Fast convergence, high precision, and efficiency, as well as
remarkable versatility of the DQFEM, have been validated in the previous research [17,18].
The boundary conditions in both DQFEM and the standard FEM are implemented via the
same way, that is, the elimination method. However, this classical approach is only limited
to dealing with the classical boundaries but is unable to process general elastic boundaries.

On the purpose of extending the applicability of DQFEM to elastically restrained
composite structures, a modified DQFEM is proposed by introducing the virtual boundary
spring technique [19–28], in which general elastic restraints including several classical
boundary conditions can be easily realized by assigning reasonable values to the virtual
boundary spring stiffnesses.

It is well-known that equivalent single-layer laminate theories, which treat a laminated
plate as an equivalent homogeneous and orthotropic single layer, are adequate to predict
the global response behaviors of composite laminates. Therefore, in the present paper,
the widely acknowledged first-order shear deformation theory (FSDT) [29,30] is adopted
to model the flexural vibration behavior of composite laminates, since it affords the best
compromise between accuracy and efficiency. A detailed formulation of this modified
DQFEM is presented for flexural vibrations of rectangular laminates with general elastic
restraints. Numerical examples are carried out to discuss the convergence characteristics
and validate the accuracy of the present approach.

2. Modified DQFEM Formulation for Composite Laminates
2.1. Constitutive Relations for Composite Laminate

Figure 1 schematically shows a rectangular composite laminate (length a, width b,
and thickness h) composed of multiple orthotropic layers with the same thickness and
material properties. The xy plane of the Cartesian coordinate system is located on the
mid-plane of the laminate, with the origin placed at one corner.
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Figure 1. Schematic representation of a composite laminate. 
Figure 1. Schematic representation of a composite laminate.

Each single-layer of the laminate is usually assumed to be in the plane-stress state.
As shown in Figure 2, σ1 and σ2 are the normal stress components in the principle direc-
tions of the single-layer, and τ12 represents the shear stress component. The constitutive
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equations relating in-plane stresses and strains for each layer are expressed in the material
coordinate system as σ1

σ2
τ12

 =

Q11 Q12 0
Q12 Q22 0

0 0 Q66

 ε1
ε2
γ12

,
[

τ13
τ23

]
=

[
Q44 0

0 Q55

][
γ13
γ23

]
, (1)

in which εi (i = 1, 2) and γij (i, j = 1, 2, 3) are strain components; Qij are modulus components
with respect to the material coordinate system in the following form:

Q11 = E1/(1− υ12υ21), Q12 = υ12E2/(1− υ12υ21), Q22 = E2/(1− υ12υ21)
Q44 = G13, Q55 = G23, Q66 = G12

, (2)

where E1 and E2 are Young’s moduli in prime material axes; ν12 and ν21 are Poisson’s ratios.
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Figure 2. The plane-stress state. 
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For a unified formulation for each layer, Equation (1) should be transformed into the
plate (laminate) coordinate system as σx

σy
τxy

 =

Q11 Q12 Q16
Q21 Q22 Q26
Q61 Q62 Q66

 εx
εy
γxy

,
[

τxz
τyz

]
=

[
Q44 Q45
Q54 Q55

][
γxz
γyz

]
, (3)

in which Qij denotes the modulus component with respect to the plate (laminate) coordi-
nate, and the following relationships are satisfied:

Q12 = Q21, Q16 = Q61, Q26 = Q62, Q45 = Q54. (4)

2.2. Arrangement of Virtual Boundary Springs

To model the flexural vibration behavior of composite laminates, the first-order shear
deformation laminate theory is adopted, and the displacement field is given by

u1(x, y, z) = −zϕx(x, y)
u2(x, y, z) = −zϕy(x, y)
u3(x, y, z) = w(x, y)

(5)

where u1, u2, and u3 are displacement components with respect to the three global axes x, y,
z, respectively; w the deflection of a point on the middle surface. Based on the linear elastic
theory, the strain components in terms of displacements can be defined as

εb =
[
εx εy γxy

]T
= −z

[
∂ϕx
∂x

∂ϕy
∂y

∂ϕx
∂y +

∂ϕy
∂x

]T

εs =
[

γxz γyz
]T

=
[

∂w
∂x − ϕx

∂w
∂y − ϕy

]T (6)
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According to the basic assumptions of the virtual boundary spring technique, all the
classical boundary conditions can be imposed by setting extremely large or small stiffnesses
to the corresponding boundary springs, and any elastic boundary can be simulated by
assigning reasonable and moderate values to the boundary spring stiffness. In FSDT, there
are three generalized DOFs, namely, the deflection w and two rotations of the normal line
ϕx and ϕy. Therefore, one line spring and two torsion springs linking the laminates with
the foundation are arranged on each edge to restrain the three DOFs, as illustrated in
Figure 3. The four edges x = 0, y = 0, x = a, and y = b are numbered 1, 2, 3, and 4, respectively.
For clarity, Figure 3 only gives a detailed illustration of boundary spring arrangements at
sides 2 and 3.
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The notations of all the boundary springs are explained in Table 1. The subscript i
of line spring stiffness kti denotes the number of the side where the line spring is located;
the subscripts 1 and 2 of torsion springs krxi and kryi denote restrictions on normal rotations,
while 3 and 4 indicate constraints on tangent rotations.

Table 1. Notations and definitions of boundary springs.

Notations Definitions

kti (i = 1,2,3,4) Line spring of the i-th edge
krxi (i = 1,2) Torsion springs restricting normal rotations of edges 1 and 3
kryi (i = 1,2) Torsion springs restricting normal rotations of edges 2 and 4
krxi (i = 3,4) Torsion springs restricting tangent rotations of edges 2 and 4
kryi (i = 3,4) Torsion springs restricting tangent rotations of edges 1 and 3

2.3. Rectangular Plate Element

The previous studies [17,18] have shown that the DQFEM can afford highly accurate
results even if the entire structure is modeled by very few elements, which is mainly
attributed to the use of higher-order polynomials. In addition, the widely used Gauss–
Lobatto points have proved to be better than the equally spaced Chebyshev and Legendre
points [31–33] in boundary value problems. Therefore, in the present work, the whole
plate is divided into just one element, with M × N Gauss–Lobatto nodes distributed in the
domain, as shown in Figure 4.
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Introducing the Lagrange polynomials as the trial functions, the three generalized
displacements can be expressed as

w(x, y) =
M
∑

i=1

N
∑

j=1
li(x)lj(y)wij

ϕx(x, y) =
M
∑

i=1

N
∑

j=1
li(x)lj(y)ϕxij

ϕy(x, y) =
M
∑

i=1

N
∑

j=1
li(x)lj(y)ϕyij

(7)

in which li and lj are the Lagrange polynomials, and wij, ϕxij, and ϕyij are the deflections
and rotations of the Gauss–Lobatto nodes (xi, yi).

To obtain the governing equations, Hamilton’s principle is adopted:

δΠ = δ(U + V − T) = 0, (8)

where δ is the symbol of variation, and the total potential energy Π consists of the strain
energy U, the potential energy of boundary springs V, and the kinetic energy T.

For flexural vibrations of composite laminates, the strain energy can be expressed as
the sum of each layer as

U =
1
2

j

∑
i=1

∫ zi+1

zi

∫
A
(εT

bD(i)
b εb + κεT

s D(i)
s εs)dAdz, (9)

in which j is the number of layers; κ is the shear correction factor; zi and zi+1 denote the
z coordinates of the top and bottom surfaces of the i-th layer in the Cartesian coordinate
system; and D(i)

b and D(i)
s represent bending and shear rigidity matrices of the i-th layer in

the forms of

D(i)
b =

Q(i)
11 Q(i)

12 Q(i)
16

Q(i)
21 Q(i)

22 Q(i)
26

Q(i)
61 Q(i)

62 Q(i)
66

, D(i)
s =

[
Q(i)

44 Q(i)
45

Q(i)
54 Q(i)

55

]
. (10)

Considering that the boundary springs are arranged continually on four edges, elastic
potential energy stored in the boundary springs can be given in the integral form as

V = Vt + Vrx + Vry =
1
2

4

∑
i=1

∫ si

0
(ktiw2

i + krxi ϕ
2
xi + kryi ϕ

2
yi)ds, (11)
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in which si denotes the length of the i-th side; wi, ϕxi, and ϕyi represent the deflection and
rotations of the i-th side.

Since the displacement field is continuous through the thickness, thus, the kinetic
energy of the laminate can be written as

T =
1
2

x

A

ρω2(hw2 + Jϕ2
x + Jϕ2

y)dxdy, (12)

in which ρ is the density of the laminate, and J = h3/12 the axial moment of inertia; ω is the
radial frequency of free vibration.

It needs to be pointed out that the potential energy stored in boundary springs is
included in the total energy functional, and this special scheme has already taken boundary
conditions into account; thus, during the subsequent solution procedures, no additional
measures are required to process boundary conditions.

Three generalized node displacement vectors as defined as

ϕT
x =

[
ϕx11 · · · ϕxM1 ϕx12 · · · ϕxM2 · · · · · · ϕx1N · · · ϕxMN

]
ϕT

y =
[

ϕy11 · · · ϕyM1 ϕy12 · · · ϕyM2 · · · · · · ϕy1N · · · ϕyMN
]

wT =
[

w11 · · · wM1 w12 · · · wM2 · · · · · · w1N · · · wMN
] (13)

Then, using the two-dimensional DQ rule in conjunction with the Gauss–Lobatto
integration rule, the strain energy U, the potential energy of boundary springs V, and the
kinetic energy T are further expressed in a simpler form as

U = 1
2

j
∑

i=1

z3
i+1−z3

i
3



Q(i)
11ϕx

TA(1)TCA(1)
ϕx + Q(i)

12ϕx
TA(1)TCB(1)

ϕy

+Q(i)
21ϕy

TB(1)TCA(1)
ϕx + Q(i)

22ϕy
TB(1)TCB(1)

ϕy

+Q(i)
16ϕx

TA(1)TC(B(1)
ϕx + A(1)

ϕy)

+Q(i)
26ϕy

TB(1)TC(B(1)
ϕx + A(1)

ϕy)

+Q(i)
61(ϕx

TB(1)TC +ϕy
TA(1)TC)A(1)

ϕx

+Q(i)
62(ϕx

TB(1)TC +ϕy
TA(1)TC)B(1)

ϕy

+Q(i)
66(ϕx

TB(1)T +ϕy
TA(1)T)C(B(1)

ϕx + A(1)
ϕy)


+ 1

2

j
∑

i=1

zi+1−zi
3 κ


Q(i)

44(wTA(1)T −ϕx
T)C(A(1)w−ϕx)

+Q(i)
45(wTA(1)T −ϕx

T)C(B(1)w−ϕy)

+Q(i)
54(wTB(1)T −ϕy

T)C(A(1)w−ϕx)

+Q(i)
55(wTB(1)T −ϕy

T)C(B(1)w−ϕy)



, (14)

V =
1
2
(

4

∑
i=1

wTCKtiw +
4

∑
i=1

ϕx
TCKrxiϕx +

4

∑
i=1

ϕy
TCKryiϕy), (15)

T =
1
2

ρω2(hwTCw + Jϕx
TCϕx + Jϕy

TCϕy), (16)

in which A(1) and B(1) are weighting coefficient matrices given in Appendix A, and the
matrices C, Kti, Krxi, and Kryi (i = 1, 2, 3, 4) are defined as follows

C = diag
[
Cx

1 Cy
1 , · · · , Cx

MCy
1 , Cx

1 Cy
2 , · · · , Cx

MCy
2 , · · · , Cx

1 Cy
N , · · · , Cx

MCy
N

]
, (17)
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Kt1 = diag(

N︷ ︸︸ ︷
Kt1, Kt1, · · · , Kt1), Kt1 = diag(kt1,

M−1︷ ︸︸ ︷
0, · · · , 0)

Kt2= diag(

M︷ ︸︸ ︷
kt2, kt2, · · · , kt2,

(N−1)M︷ ︸︸ ︷
0, · · · , 0)

Kt3 = diag(

N︷ ︸︸ ︷
Kt3, Kt3, · · · , Kt3), Kt3 = diag(

M−1︷ ︸︸ ︷
0, · · · , 0, kt3)

Kt4 = diag(

(N−1)M︷ ︸︸ ︷
0, · · · , 0,

M︷ ︸︸ ︷
kt4, kt4, · · · , kt4)

, (18)

Krx1 = diag(

N︷ ︸︸ ︷
Krx1, Krx1, · · · , Krx1), Krx1 = diag(krx1,

M−1︷ ︸︸ ︷
0, · · · , 0)

Krx2 = diag(

N︷ ︸︸ ︷
Krx2, Krx2, · · · , Krx2), Krx2 = diag(

M−1︷ ︸︸ ︷
0, · · · , 0, krx2)

Kry1 = diag(

M︷ ︸︸ ︷
kry1, kry1, · · · , kry1,

(N−1)M︷ ︸︸ ︷
0, · · · , 0)

Kry2 = diag(

(N−1)M︷ ︸︸ ︷
0, · · · , 0,

M︷ ︸︸ ︷
kry2, kry2, · · · , kry2)

, (19)

Kry3 = diag(

N︷ ︸︸ ︷
Kry3, Kry3, · · · , Kry3), Kry3 = diag(kry3,

M−1︷ ︸︸ ︷
0, · · · , 0)

Kry4 = diag(

N︷ ︸︸ ︷
Kry4, Kry4, · · · , Kry4), Kry4 = diag(

M−1︷ ︸︸ ︷
0, · · · , 0, kry4)

Krx3 = diag(

M︷ ︸︸ ︷
krx3, krx3, · · · , krx3,

(N−1)M︷ ︸︸ ︷
0, · · · , 0)

Krx4 = diag(

(N−1)M︷ ︸︸ ︷
0, · · · , 0,

M︷ ︸︸ ︷
krx4, krx4, · · · , krx4)

, (20)

where Cx
M and Cy

N given in Equation (A6) are the M-th and N-th Gauss–Lobatto weights
with respect to x and y, respectively.

Define a displacement vector as

w =
[
ϕT

x ϕT
y wT

]T
. (21)

Then the total potential energy can be further written in a compact form as

Π =
1
2

wTKw− 1
2

ω2wTMw, (22)

where the stiffness matrix K and mass matrix M are given by

K = KU + KV , M = ρdiag(JC, JC, hC ), (23)

in which KU and KV account for the contributions of the strain energy and elastic potential
energy of boundary springs, respectively, which are obtained as

KU =

K11 K12 K13
K21 K22 K23
K31 K32 K33

, KV= diag(
4

∑
i=1

CKrxi,
4

∑
i=1

CKryi,
4

∑
i=1

CKti). (24)

The matrices in expressions of KU are given below.



Buildings 2022, 12, 1380 8 of 19

K11 = 1
2

j
∑

i=1

z3
i+1−z3

i
3 (

Q(i)
11A(1)TCA(1)

+ Q(i)
16A(1)TCB(1)

+Q(i)
61B(1)TCA(1)

+ Q(i)
66B(1)TCB(1) ) + 1

2

j
∑

i=1

zi+1−zi
3 κQ(i)

44C

K12 = 1
2

j
∑

i=1

z3
i+1−z3

i
3


(Q(i)

12 + Q(i)
21 + Q(i)

66)A
(1)TCB(1)

+(Q(i)
61 + Q(i)

16)A
(1)TCA(1)

+(Q(i)
26 + Q(i)

62)B
(1)TCB(1)

+Q(i)
66B(1)TCA(1)

+ 1
2

j
∑

i=1

zi+1−zi
3 κQ(i)

54C

K13 = − 1
2

j
∑

i=1

zi+1−zi
3 κ(Q(i)

44CA(1)
+ Q(i)

45CB(1)
)

K21 = 1
2

j
∑

i=1

z3
i+1−z3

i
3


(Q(i)

12 + Q(i)
21 + Q(i)

66)B
(1)TCA(1)

+(Q(i)
61 + Q(i)

16)A
(1)TCA(1)

+(Q(i)
26 + Q(i)

62)B
(1)TCB(1)

+Q(i)
66A(1)TCB(1)

+ 1
2

j
∑

i=1

zi+1−zi
3 κQ(i)

54C

K22 = 1
2

j
∑

i=1

z3
i+1−z3

i
3

{
Q(i)

22B(1)TCB(1)
+ Q(i)

26B(1)TCA(1)

+Q(i)
62A(1)TCB(1)

+ Q(i)
66A(1)TCA(1)

}
+ 1

2

j
∑

i=1

zi+1−zi
3 κQ(i)

55C

K23 = − 1
2

j
∑

i=1

zi+1−zi
3 κ(Q(i)

54CA(1)
+ Q(i)

55CB(1)
)

K31 = − 1
2

j
∑

i=1

zi+1−zi
3 κ(Q(i)

44A(1)TC + Q(i)
54B(1)TC)

K32 = − 1
2

j
∑

i=1

zi+1−zi
3 κ(Q(i)

54A(1)TC + Q(i)
55B(1)TC)

K33 = 1
2

j
∑

i=1

zi+1−zi
3 κ

(
Q(i)

44A(1)TCA(1)
+ Q(i)

45A(1)TCB(1)

+Q(i)
54B(1)TCA(1)

+ Q(i)
55B(1)TCB(1)

)

. (25)

The DQFEM formulation for free vibration analysis of composite laminate is eventu-
ally equivalent to an eigenvalue problem governed by a standard characteristic equation
obtained from the Hamilton’s principle as

(K−ω2M)w = 0 (26)

It is noteworthy that the stiffness matrix K and mass matrix M are nonsingular due
to the inclusion of boundary spring potential energy into the energy functional; thus,
the characteristic Equation as (26) can be directly solved without reducing the order of
the matrix in this equation, and the directly obtained modal vector is complete. Moreover,
the boundary conditions can be conveniently changed simply by altering the boundary
spring stiffness, without the need of researching and eliminating the zero DOFs.

3. Numerical Examples and Discussions

To investigate the convergence characteristics and accuracy of the modified DQFEM
in application to flexural vibrations of composite laminates, a series of numerical examples
are carried out.

In the following numerical examples, the shear correction factor κ is taken as π2/12,
and a three-layered symmetric cross-ply laminate with the stacking sequence 0◦/90◦/0◦ is
considered. The elastic constants of each single-layer are given as [34,35]

E1/E2 = υ12/υ21 = 40, G12 = G13 = 0.6E2, G23 = 0.5E2, υ12 = 0.25

To facilitate comparison with other published results, a nondimensional natural fre-
quency parameter is defined as [34,35]

Ω = (ωb2/π2)
√

ρh/D0, (27)
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in which D0 = E2h3/12(1− υ12υ21).

3.1. Convergence Characteristics

To obtain the required number of Gauss–Lobatto nodes to ensure convergent re-
sults and the recommended values of virtual boundary spring stiffnesses that make the
boundaries strictly constrained, the convergence characteristics of the present method are
investigated, covering both thin (h/b = 0.001) and thick (h/b = 0.2) geometries. Additionally,
the specific cases of two boundary combinations, i.e., CCCC and SSSS, are considered.
For these two cases, the virtual spring stiffnesses of all the four boundaries are identical.
Note that for the sake of clarity, the line spring stiffness is denoted by kt, and the stiffnesses
of torsion springs that restrict the normal rotation and tangent rotation are referred to as kr1
and kr2, respectively.

3.1.1. Varying the Number of Gauss–Lobatto Nodes

In order to facilitate the calculation, set the same number of Gauss–Lobatto nodes
along the x- and y-direction. To simulate CCCC boundary combinations, theoretically,
the stiffnesses of all line and torsion springs should be assigned infinitely large values to
restrict both translational and rotational DOFs of all boundaries. However, infinite values
cannot be processed by numerical computations; thus, a relatively large value (i.e., 108) is
assigned instead. Similarly, to model SSSS laminates, the stiffnesses of all line springs kt and
tangent torsion springs kr2 should be infinitely large to restrict the transverse deflections
and tangent rotations of all edges, and a large value of 108 is assigned to them, while the
stiffness of normal torsion springs kr1 should be zero to set the normal rotation free.

For square laminates (h/b = 0.001 and 0.2) with CCCC and SSSS boundary combina-
tions, the variations of nondimensional natural frequencies versus the number of unilateral
Gauss–Lobatto nodes are depicted in Figures 5 and 6, in which the fiducial lines indicate
the convergence values of frequency parameters. Note that in the present paper, if the result
with three decimal digits reaches a constant value, the calculation is seen as converged.
One can find from Figures 5 and 6 that for both CCCC and SSSS plates, the minimum
number of unilateral nodes required to make the nondimensional frequencies converge is
11 when h/b = 0.001 and 0.2.
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Figure 5. Variations of nondimensional frequencies Ω for CCCC laminates (0°, 90°, 0°) versus the 
number of nodes: (a) h/b = 0.001, kt = kr1 = kr2 = 108; (b) h/b = 0.2, kt = kr1 = kr2 = 108. 

Figure 5. Variations of nondimensional frequencies Ω for CCCC laminates (0◦, 90◦, 0◦) versus the
number of nodes: (a) h/b = 0.001, kt = kr1 = kr2 = 108; (b) h/b = 0.2, kt = kr1 = kr2 = 108.

To sum up, the modified DQFEM is capable of yielding convergent results with only
a few Gauss–Lobatto nodes required. In the following calculation for square laminates
with thickness ratios between 0.001 and 0.2, the number of nodes per side is taken as 11 to
ensure good convergence without sacrificing computational efficiency.
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3.1.2. Effect of the Boundary Spring Stiffness on Convergence

For the convenience of calculation, we assign the same value k to the stiffnesses
of boundary springs corresponding to the DOFs that need to be strictly constrained.
For instance, set kt = kr1 = kr2 = k, when simulating a clamped edge, and kt = kr2 = k,
kr1 = 0 for a simply supported edge. During the calculation, set M = N = 11.

Figures 7 and 8 display the variations of nondimensional frequencies with respect to
k when simulating boundary combinations of CCCC and SSSS. The straight line with an
arrow points to the lower limit of k that makes the first five frequency parameters with four
significant digits converge.
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Figure 7. Variations of nondimensional frequencies Ω for CCCC laminates (0°, 90°, 0°) versus the 
stiffness of boundary spring (kt = kr1 = kr2 = k): (a) h/b = 0.001; (b) h/b = 0.01; (c) h/b = 0.1; (d) h/b = 0.2. 

Table 2 lists the optimal values of the boundary spring stiffnesses for clamped and 
simply supported boundaries. It should be emphasized that the lower limit of k is rigor-
ously determined by the point where the first five frequency parameters accurate to four 
decimal places converge. This may not be shown clearly shown in Figures 7 and 8 due to 
the slight variation in the nondimensional frequency during the stationary part of the 
curve. 

  

Figure 7. Variations of nondimensional frequencies Ω for CCCC laminates (0◦, 90◦, 0◦) versus the
stiffness of boundary spring (kt = kr1 = kr2 = k): (a) h/b = 0.001; (b) h/b = 0.01; (c) h/b = 0.1; (d) h/b = 0.2.
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Figure 8. Variations of nondimensional frequencies Ω for SSSS laminates (0°, 90°, 0°) versus the 
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As is seen in Figures 7 and 8, for both CCCC and SSSS laminates with various thickness
ratios ranging from 0.001 to 0.2, the frequencies experience an increase when k is relatively
small so as to simulate the general elastic restraints, and the increase rate grows as the
plate gets thicker. When k reaches a certain value (for instance k = 102 when h/b = 0.01),
the frequencies will remain almost constant; this observation coincides with the basic
assumption that when the spring stiffness is large enough, the corresponding DOF can
be considered as strictly restricted so as to simulate the classical boundary conditions.
It is noteworthy that for composite laminates with a thin geometry (h/b = 0.001 and 0.01),
the frequency parameters are slightly influenced by the value of k as long as it is larger
than 10, while the frequencies of moderately thick laminates (h/b = 0.1 and 0.2) are more
susceptible to k.

Table 2 lists the optimal values of the boundary spring stiffnesses for clamped and
simply supported boundaries. It should be emphasized that the lower limit of k is rigorously
determined by the point where the first five frequency parameters accurate to four decimal
places converge. This may not be shown clearly shown in Figures 7 and 8 due to the slight
variation in the nondimensional frequency during the stationary part of the curve.

One can also see that the spring stiffness in Table 2 varies from 103 to 108, which
is totally within the calculation ability of a personal computer. Additionally, there is an
associated increase in the recommended value of k as the plate thickness increases. It should
be pointed out the calculation may not converge if k is below the recommended value,
and numerically ill-conditioned problems may occur if k is too large.
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Table 2. Optimal values of the stiffness k for boundary springs of laminates (0◦, 90◦, 0◦).

Thickness Ratio h/b CCCC SSSS

0.001 103 102

0.01 106 105

0.1 108 107

0.2 108 108

3.2. Composite Laminates with Classical Boundary Conditions
3.2.1. Verification of Accuracy

To demonstrate the accuracy of Ω estimated from the modified DQFEM, a series of
numerical comparisons is performed.

As is known, more accurate solutions can be generated by increasing Gauss–Lobatto
nodes, but higher requirements on computing resources will be caused at the same time.
Therefore, taking both accuracy and computational cost into account, and according to the
discussions of the convergence characteristics above, 11 × 11 Gauss–Lobatto nodes are
selected to discretize the square laminates in the following numerical examples. The values
of boundary spring stiffnesses to simulate clamped and simply supported boundaries
corresponding to various thickness ratios are listed in Table 3.

Table 3. Boundary spring stiffness for clamped and simply supported boundary.

Thickness Ratio h/b
The Stiffness k of Boundary Spring

Clamped Boundary (C) Simply Supported Boundary (S)

0.001 103 102

0.01 106 105

0.05 1 107 106

0.1 108 107

0.15 1 108 107.5

0.2 108 108

1 The corresponding stiffness are obtained by interpolation.

The first eight nondimensional natural frequencies of square laminates with various
thickness ratios are calculated and listed in Tables 4–10, as well as the exact solutions by
Liu [34] and numerical solutions generated by the p-Ritz method [35]. Several boundary
combinations such as CCCC, SSSS, SCSC, SFSF, SSSF, SSSC, and SCSF are covered. Exten-
sive comparisons show that the present results are highly consistent with the exact solutions
for three digits. For most results, the relative errors approach zero. The non-zero relative
errors exist in only a very small number of results mostly involving SFSF plates, and the
maximum percentage error is less than 0.02% for the worst case. Therefore, the accuracy of
the present method in free vibration of composite laminates is verified.

Table 4. The nondimensional frequency Ω for CCCC laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.001 Present 14.666 17.614 24.511 35.532 39.157 40.768 44.786 50.323
p-Ritz 14.666 17.614 24.511 35.532 39.157 40.768 44.786 50.297

0.05 Present 10.953 14.028 20.388 23.196 24.978 29.237 29.369 36.266
p-Ritz 10.953 14.028 20.388 23.196 24.978 29.237 29.369 36.266

0.1 Present 7.411 10.393 13.913 15.429 15.806 19.572 21.489 21.620
p-Ritz 7.411 10.393 13.913 15.429 15.806 19.572 21.489 21.620

0.15 Present 5.548 8.147 9.904 11.622 12.025 14.645 14.911 16.123
p-Ritz 5.548 8.147 9.904 11.622 12.025 14.645 14.911 16.123

0.2 Present 4.447 6.642 7.700 9.185 9.738 11.399 11.644 12.466
p-Ritz 4.447 6.642 7.700 9.185 9.738 11.399 11.644 12.466
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Table 5. The nondimensional frequency Ω for SSSS laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.001 Present 6.625 9.447 16.205 25.115 26.498 26.657 30.314 37.785
Exact 6.625 9.447 16.205 25.115 26.498 26.657 30.314 37.785
p-Ritz 6.625 9.447 16.205 25.115 26.498 26.657 30.314 37.785

0.05 Present 6.138 8.888 15.110 19.354 20.665 24.070 24.344 31.028
Exact 6.138 8.888 15.110 19.354 20.665 24.070 24.344 31.028
p-Ritz 6.138 8.888 15.110 19.354 20.665 24.070 24.344 31.028

0.1 Present 5.166 7.757 12.915 13.049 14.376 17.788 19.502 21.051
Exact 5.166 7.757 12.915 13.049 14.376 17.788 19.502 21.051
p-Ritz 5.166 7.757 12.915 13.049 14.376 17.788 19.502 21.051

0.15 Present 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590
Exact 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590
p-Ritz 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590

0.2 Present 3.594 5.769 7.397 8.688 9.145 11.208 11.223 12.117
Exact 3.594 5.769 7.397 8.688 9.145 11.208 11.223 12.117
p-Ritz 3.594 5.769 7.397 8.688 9.145 11.208 11.223 12.117

Table 6. The nondimensional frequency Ω for SCSC laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.05 Present 6.890 11.246 18.664 19.619 21.801 26.689 28.260 34.348
Exact 6.890 11.246 18.664 19.619 21.801 26.689 28.260 34.348
p-Ritz 6.890 11.246 18.664 19.619 21.801 26.689 28.260 34.348

0.1 Present 5.871 9.454 13.340 14.878 15.340 19.229 21.231 21.275
Exact 5.871 9.454 13.340 14.878 15.340 19.229 21.231 21.275
p-Ritz 5.871 9.454 13.340 14.878 15.340 19.229 21.231 21.275

0.15 Present 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590
Exact 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590
p-Ritz 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590

0.2 Present 4.137 6.474 7.664 9.159 9.643 11.377 11.625 12.448
Exact 4.137 6.474 7.664 9.159 9.643 11.377 11.625 12.448
p-Ritz 4.137 6.474 7.664 9.159 9.643 11.377 11.625 12.448

Table 7. The nondimensional frequency Ω for SFSF laminates.

Thickness
ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.05 Present 5.734 5.933 7.398 11.918 19.124 19.284 19.603 20.087
Exact 5.734 5.933 7.397 11.917 19.124 19.284 19.602 20.086
p-Ritz 5.734 5.933 7.397 11.918 19.124 19.284 19.602 20.086

0.1 Present 4.781 4.935 6.320 10.345 12.851 12.959 13.677 16.070
Exact 4.781 4.935 6.319 10.345 12.851 12.959 13.677 16.070
p-Ritz 4.781 4.935 6.319 10.345 12.851 12.959 13.677 16.070

0.2 Present 3.213 3.311 4.619 7.195 7.273 7.599 8.004 10.043
Exact 3.213 3.311 4.619 7.195 7.272 7.599 8.004 10.043
p-Ritz 3.213 3.311 4.619 7.195 7.272 7.599 8.004 10.043

Although the above convergence study concentrates on CCCC and SSSS plates, one can
see from the numerical comparisons that the conclusions regarding the required node
number and recommended boundary spring stiffnesses have been successfully extended
into the analysis of other boundary conditions. Additionally, it implies that a slight variation
in the values of boundary spring stiffnesses within a specific interval might have an
influence on the obtained results, but only to a limited extent. Therefore, it can be reasonably
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inferred that the present approach is numerically stable and highly accurate, regardless of
boundary conditions.

Table 8. The nondimensional frequency Ω for SSSF laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.05 Present 5.785 6.657 10.301 17.279 19.165 19.655 21.520 25.971
Exact 5.785 6.657 10.301 17.279 19.165 19.655 21.519 25.970

0.1 Present 4.821 5.641 8.976 12.879 13.304 14.614 15.144 19.121
Exact 4.821 5.641 8.976 12.879 13.304 14.614 15.144 19.121

0.2 Present 3.240 4.017 6.654 7.216 7.642 9.323 10.195 11.077
Exact 3.240 4.017 6.654 7.216 7.642 9.323 10.195 11.077

Table 9. The nondimensional frequency Ω for SSSC laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.05 Present 6.429 9.983 16.848 19.459 21.172 25.460 26.159 32.661
Exact 6.429 9.983 16.847 19.459 21.172 25.460 26.159 32.661

0.1 Present 5.450 8.587 13.165 13.914 14.832 18.510 20.413 21.123
Exact 5.450 8.587 13.165 13.914 14.832 18.510 20.412 21.123

0.2 Present 3.835 6.140 7.513 8.931 9.401 11.282 11.429 12.286
Exact 3.835 6.140 7.513 8.931 9.401 11.282 11.429 12.286

Table 10. The nondimensional frequency Ω for SCSF laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.05 Present 5.8293 7.1375 11.5836 19.1261 19.1837 19.8523 22.1823 27.2341
Exact 5.8293 7.1375 11.5836 19.1261 19.1837 19.8523 22.1823 27.2341

0.1 Present 4.8650 6.0724 9.8872 12.8983 13.4994 15.6061 15.6911 19.8715
Exact 4.8650 6.0724 9.8872 12.8983 13.4994 15.6061 15.6911 19.8715

0.2 Present 3.2877 4.3135 7.0132 7.2389 7.7982 9.5741 10.4079 11.0930
Exact 3.2877 4.3135 7.0132 7.2389 7.7982 9.5741 10.4079 11.0930

Figure 9 presents the first three modes for SSSS, SCSC, and SSSF laminates with
h/b = 0.1, illustrating the physical patterns of the modes.

3.2.2. Verification of Efficiency

To assess the efficiency of the present method in free vibration of composite lami-
nates, comparisons of computation time are carried out with the classical FEM. Square
laminates with thickness ratio h/b = 0.1 and boundary combinations of SSSS and CCCC
are considered.

Varying the number of unilateral nodes, the first six nondimensional frequencies
are calculated by the present method and the FEM adopting the commonly used Q4
element. It should be pointed out that all the calculations are made by running the same
software program on the same computer to guarantee the effectiveness of comparisons.
The variations of both the runtime and frequencies in terms of node number per edge
are presented in Figures 10 and 11. Note that for clarity, only the variations of the first,
third and fifth frequencies are depicted in these figures. One can see that for both CCCC
and SSSS cases, when using the present method, only 11 Gauss–Lobatto nodes per edge
are needed to make the first six frequency parameters with three decimal digits converge,
and the calculation time is less than 0.5 s. In contrast, when using FEM, the first six
modes do not converge even when the number of nodes per edge reaches 60, and the
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calculation time already exceeds 45 s. These results demonstrates that the present method
has incomparable advantages in computation efficiency over the classical FEM, and the
remarkable convergence of the current solution is also demonstrated.
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Figure 9. The first three modes for square laminates (0°, 90°, 0°) with h/b = 0.1: (a) SSSS; (b) SCSC; 
(c) SSSF. 
Figure 9. The first three modes for square laminates (0◦, 90◦, 0◦) with h/b = 0.1: (a) SSSS; (b) SCSC;
(c) SSSF.
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Figure 10. Variations of nondimensional frequencies and the corresponding calculation time vs. the 
number of unilateral nodes for CCCC laminates with h/b = 0.1: (a) the present method; (b) FEM using 
Q4 element. 
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Figure 11. Variations of nondimensional frequencies and the corresponding calculation time vs. the 
number of unilateral nodes for SSSS laminates with h/b=0.1: (a) the present method; (b) FEM using 
Q4 element. 
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The number of unilateral nodes for CCCC laminates with h/b = 0.1: (a) the present method; (b) FEM
using Q4 element.
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3.3. Composite Laminates with Elastic Boundary Conditions

The above numerical examples focus on composite laminates with classical boundaries,
the free vibration characteristics of which are comprehensive in the published literatures,
while those involving arbitrary elastic boundaries are relatively rare. To provide some
supplementary and reference results, the following numerical examples are carried out
covering three types of elastic boundaries often encountered in practical engineering.
The first type referred to as E1 makes only lateral deflection of plate boundary elastically
constrained; two rotations strictly constrained, the corresponding spring stiffness for which
is given as: kt = 102, kr1 = kr2 = 108. Similarly, the second type E2 allows two rotations
elastically restrained with the boundary spring stiffness being set as kr1 = kr2 = 102 and
kt = 108, while in the third type E3, both lateral deflection and two rotations are elastically
restrained (i.e., kt = kr1 = kr2 = 102).

The non-dimensional frequencies for composite laminates with thickness ratios of
0.01, 0.1, and 0.2 are shown in Table 11. It is shown that the natural frequencies have not
changed much for composite laminates with a thin geometry (h/b = 0.01) regardless of
boundary conditions, which coincide with the conclusions made in the previous analysis.
Additionally, one can find that when only the lateral deflection of plate boundary is
elastically constrained (E1E1E1E1), the natural frequencies decrease obviously compared
to those of the fully clamped laminates, while for the case wherein only two rotations
are elastically restrained (E2E2E2E2), there is a slight decline in the natural frequencies,
which indicates that constraints on the lateral deflection rather than rotations play a more
important role on the natural frequencies for composite laminates with elastic boundaries.

Table 11. The nondimensional frequency Ω for composite laminates with elastic boundary conditions.

Thickness
Ratio h/b

B.C.
Order of Frequency

1st 2nd 3rd 4th 5th 6th

0.01 CCCC 14.4339 17.3892 24.2667 35.1818 37.7770 39.3875
E1E1E1E1 14.4271 17.3823 24.2583 35.1684 37.7253 39.3352
E2E2E2E2 14.4336 17.3890 24.2665 35.1817 37.7762 39.3867
E3E3E3E3 14.4268 17.3820 24.2581 35.1682 37.7245 39.3344

0.1 CCCC 7.4108 10.3927 13.9129 15.4287 15.8056 19.5720
E1E1E1E1 6.7022 9.5265 11.9340 13.8435 13.8624 17.2335
E2E2E2E2 7.3785 10.3671 13.9005 15.4083 15.7924 19.5584
E3E3E3E3 6.6796 9.5084 11.9316 13.8306 13.8579 17.2287

0.2 CCCC 4.4466 6.6419 7.6996 9.1852 9.7378 11.3991
E1E1E1E1 3.5877 5.2085 5.9962 7.1819 7.5080 9.0682
E2E2E2E2 4.4054 6.6109 7.6925 9.1741 9.7175 11.3933
E3E3E3E3 3.5673 5.1971 5.9838 7.1720 7.5030 9.0614

Although the results presented in this section are for three types of elastic boundary
combinations only, the present solution procedure can be readily applied to plates subjected
to more complex boundary conditions such as point supports, partial supports, non-
uniform elastic restraints, and their combinations.

4. Conclusions

This paper introduces the virtual boundary spring technique into DQFEM to deal with
the flexural vibrations of composite laminates. In this new formulated method, boundary
conditions are considered in the first step by including the potential energy stored in
boundary springs when constructing the energy functional; thus, during the subsequent
solution procedures, no special schemes are required to deal with boundary conditions,
which is different from the standard DQFEM.

The most significant superiority of the present approach is that it can be universally
applicable to composite laminates with any combinations of elastic boundary conditions
including all the classical cases without the need of making any change to the solution
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procedure. Another advantage of the modified DQFEM over the standard one is that the
former facilitates switches of boundary conditions, while in the latter, changing boundary
conditions requires researching and eliminating the zero node displacements, which will
increase computational cost.

Well-behaved convergence characteristics of the present method are demonstrated.
The minimum number of unilateral Gauss–Lobatto nodes to generate convergent solu-
tions and the recommended values of boundary spring stiffnesses are obtained as well.
The nondimensional natural frequencies of square laminates under various classical bound-
ary conditions and thickness ratios agree well with available analytical and numerical
results from other analyses, which validates the high accuracy of the present method.

Some new results are presented for elastically restrained composite laminates, which
can serve as reference values. Moreover, the present solution procedure can be readily
extended to composite laminates with more complicated boundary conditions such as
multi-point supports, partial supports, non-uniform elastic constraints, and so on.
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Appendix A

For completeness of the present paper, a brief review of the two-dimensional DQ
rule is outlined here. The partial derivatives of f (x, y) can be expressed as the following
compact form:

∂r f
∂xr

∣∣∣∣
k
= A(r)f,

∂s f
∂ys

∣∣∣∣
k
= B(s)f,

∂r+s f
∂xr∂ys

∣∣∣∣
k
= A(r)B(s)f, (A1)

where

A(r)
=


A(r) 0 · · · 0

0 A(r) · · · 0
...

...
. . .

...
0 0 · · · A(r)


(M×N)×(M×N)

, A(r) = (A(r)
ij )

M×M
, (A2)

B(s)
=


B(s)

11 B(s)
12 · · · B(s)

1N
B(s)

21 B(s)
22 · · · B(s)

2N
...

...
. . .

...
B(s)

N1 B(s)
N2 · · · B(s)

NN


(M×N)×(M×N)

, B(s)
ij = diag(B(s)

ij , · · · , B(s)
ij )

M×M
, (A3)

f =
[

f11 · · · fM1 f12 · · · fM2 · · · · · · f1N · · · fMN
]T, (A4)
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in which M and N represent the number of grid points in the x and y directions, respectively,
and k = (j− 1)M + i, (i = 1, 2, . . . , M; j = 1, 2, . . . , N); A(r)

ij and B(s)
ij are the weighting

coefficients associated with the rth-order partial derivative with respect to x and the sth-
order partial derivative with respect to y.

To make the paper self-contained, an overview of the Gauss–Lobatto integration rule
is also provided here. The Gauss integration of function f (x) in the interval [−1, 1] with a
precision degree of (2n − 3) is given as

∫ 1

−1
f (x)dx =

n

∑
j=1

Cj f (xj), (A5)

in which the weighting coefficients are given by

C1 = Cn =
2

n(n− 1)
, Cj =

2

n(n− 1)[Pn−1(xj)]
2 (j 6= 1, n), (A6)

where xj is the (j−1)th zero of P′n−1(x), the zeros of which are the eigenvalues of its
companion matrix; and the Legendre polynomial Pn(x) of degree n is expressed as

Pn(x) =
[n/2]

∑
k=0

(−1)k(2n− 2k)!
2nk!(n− k)!(n− 2k)!

xn−2k. (A7)
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