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Abstract: A new fracture model is developed to predict the ductile fracture of structural steel under
multiaxial stress states. First, the Lee–Mear void growth theory is used to establish the quantitative
relationship between the stress triaxiality and material’s ductility. A stress triaxiality dependence
function, which accounts for the material’s strain hardening, is derived from modifying the dilatation
rate of a spherical void in a typical unit cell. Subsequently, the Tresca failure model is used in
conjunction with the Swift hardening law to establish a Lode dependence of fracture strain. Then, the
theoretical formula of the new fracture model is obtained by combining both stress triaxiality and
Lode angle dependence functions. The proposed fracture model has a unique advantage: i.e., this
model has only two material parameters. These two parameters can be easily calibrated through a
simple standard coupon test, which significantly reduces the difficulty of model calibration work
and facilitates its application in practical engineering. In order to verify the new fracture model,
the test results of five types of Q460 steel specimens were used to calibrate the model parameters.
The prediction accuracy of the new model is then checked by calculating the average error between
the test results and the predicted fracture strain envelope. Finally, the new fracture model was
applied in the numerical analysis of two types of steel connections. The validation of the proposed
fracture model is verified by comparing the load–displacement curve and failure modes of the steel
connections obtained from both test and numerical analysis.

Keywords: ductile fracture model; structural steel; steel connection; fracture prediction

1. Introduction

Fracture is one of the major factors inducing the failure of steel structures. It was
reported in the Northridge and Kobe earthquakes that severe damage or collapse occurred
on many steel frames due to the fracture that occurred at the local regions of the beam-to-
column connections [1]. Further, in the 2011 Tohoku-Oki earthquake, fractures were also
observed at the connection regions of many braced steel frames, which seriously weakened
the bearing capacity of the whole structure [2]. Meanwhile, some experimental research
also proves the effect of fracture on the macroscopic behavior of the steel components.
Okazaki et al. [3] conducted cyclic loading tests on a series of shear links in eccentrically
braced frames and found that the plastic rotation capacity of the link member was controlled
by the fracture at the stiffener welds on the web. This phenomenon was also confirmed
in the failure analysis of the shear link member conducted by Chao et al. [4]. The above
failure events and test results indicate that the fracture behaviors of materials in the
vulnerable parts of the steel component control the overall safety of the structure. In
this context, investigating the fracture behavior of structural steel and developing an
appropriate fracture prediction model becomes a key issue for improving the survivability
of steel structures.

The fracture mode of steel structures can generally be divided into two types. The first
type of fracture is caused by the geometric defects in the steel components (e.g., the corner,
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notches or crack-like defect induced by the manufacturing process). Stress concentrations
usually occur at the tip of these geometric defects, which leads to a premature fracture
and unstable crack propagation on the steel component. It should be noted that this type
of fracture usually results in limited plastic deformation at the fracture region, which is
not the research focus of this study. The second type of fracture mainly occurs in the
smooth region of the steel component. For this type of failure, a deep plastic deformation
combined with an obvious strain localization would occur at the failure region of the
member. Microscopic observation analysis shows that this type of ductile fracture is mainly
caused by the evolution of micro-void defects inside the material [5,6] and the evolution
of these micro-void defects is further affected by the stress state [7–11]. In general, when
the material is subjected to a tension-dominated loading, a necking would occur on the
investigated material with a local high-stress triaxiality state being formed. Under such
a condition, the micro-voids would grow with their volume enlarging, which results in
a crack through the coalescence of adjacent voids. On the contrary, when the material
is subjected to a shear-dominated loading, a localization shear band with a low-stress
triaxiality state would be formed. Then, the micro-voids would evolve with their shape
distorting and stretching along the direction of the maximum shear stress with a macro
crack being finally formed along the shear localization band. To characterize the effect of
stress state on the fracture behavior of the material, two stress state parameters, i.e., stress
triaxiality and Lode angle, were proposed in the fracture mechanics’ community [12–18],
where the stress triaxiality is defined as the ratio of hydrostatic stress to the von Mises
equivalent stress, which control the enlargement of micro-void defects, whereas the Lode
angle is related to the third invariant of the deviatoric stress tensor, which controls the
shape change of the micro-void defects. Both of these two stress parameters can be used
to characterize the stress state and control the evolution of the micro-defects during the
loading process. In this context, how to accurately determine the quantitative relationship
between the stress triaxiality, Lode angle and the evolution of the micro-void defects
becomes a key work for developing a reasonable fracture model.

Currently, there are mainly two types of methods, i.e., coupled and uncoupled fracture
models that can be used to predict the ductile fracture of metals. The coupled fracture
model introduces an internal variable into the constitutive equation of the material to
characterize the failure caused by the void defects. The Gurson–Tvergaard–Needleman
porous constitutive model [19,20] and continuum damage model [21] are two typical
examples of coupled fracture models, where the former uses the void volume fraction as
the internal variable to characterize material’s plastic damage, whereas the latter defines the
evolution of plastic damage according to the thermodynamic potential function. Differently,
the uncoupled fracture model defines the constitutive equation and fracture criterion
separately. A fracture index, i.e., the fracture strain, is defined as an external warning index
in this type of approach to show the limit of the onset of crack at the local material point.
Since the uncoupled model has many advantageous features, many uncoupled models
were developed in recent decades. Typical examples of uncoupled fracture models include
the Xue–Wierzbicki model [22], Bai–Wierzbicki model [23], modified Mohr–Coulomb
model [13], Lou–Huh model [15,24], Hosford–Coulomb model [6] and extended unified
strength theory [25], etc. Some of these models were successfully applied in the fracture
prediction analysis of the steel components. For example, Liao et al. [26] conducted a
failure analysis on a typical beam-to-column connection and used the void growth fracture
model to predict the fracture initiation and propagation of the crack on the connection.
Quan et al. [27] used a modified Mohr–Coulomb fracture model to numerically simulate
the ductile failure of the cold-formed steel lap joints. More relevant works concerning the
application of fracture prediction methods in the failure analysis of steel components can
be found in Refs. [28,29].

It should be noted although the above fracture models provide good approaches for
failure analysis of practical structures, a shortcoming remains unsolved for most of these
models: i.e., the detailed parameter calibration work of these fracture models is relatively
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complex. Generally, to accurately characterize the material’s ductility under different stress
states, the theoretical formula of most fracture models needs to incorporate a series of
material parameters in a phenomenological manner. Correspondingly, calibration of these
model parameters requires one to conduct a series of notched specimen experiments and
complicated numerical iterations analysis, where such work is apparently not suitable for
application in a practical engineering project. In this context, if a fracture model with an
easy-calibrated feature could be developed, it will promote the application of the fracture
model in practical structural engineering, which is the main objective of this study.

This study aims to develop a simple easy-calibrated uncoupled fracture model to
predict the ductile fracture of structural steel under multiaxial stress states. Firstly, the
Lear–Mear void growth theory was used to establish the analytical relationship between the
stress triaxiality and material’s fracture strain, where a simple stress triaxiality dependence
function is derived from analyzing the dilatation rate of a spherical cavity in a typical
unit cell. Subsequently, the classical Tresca failure criterion is used in conjunction with the
Swift hardening law to derive the material’s Lode angle dependence function. Then, the
theoretical formula of the new fracture model was established by combining both obtained
stress triaxiality and Lode angle dependence functions. The proposed new fracture model
has two advantageous features: (1) The new model accounts for the influence of the stress
triaxiality and Lode angle simultaneously. Thus, this model can be used to predict the
failure of structural steel under different stress states. (2) The theoretical formula of the
new fracture model contains only two parameters, which can be calibrated via the test
data of a standard smooth round bar specimen. This significantly reduces the difficulty
of model calibration work. Further, to verify the proposed fracture model, test results
obtained from five types of Q460 high-strength steel specimens were used to calibrate
the new model. The prediction accuracy of the new model is checked by comparing the
experimental data with the prediction results of the model. Finally, the new model is
applied to the fracture prediction analysis of two types of steel connections. The validation
of the proposed fracture model is verified by comparing the load–displacement curve and
failure modes of steel connections obtained from both the test and numerical simulation
analysis. The new fracture model proposed in this study provides a quick and convenient
tool for engineers to evaluate the ductile failure of steel members.

2. Characterization of Material’s Ductility and Stress State

The ductility of a metallic material can be characterized by the accumulated equivalent
plastic strain at fracture:

ε f =
∫ ε f

0
dεp (1)

where ε f is the equivalent plastic strain at fracture, and εp is the equivalent plastic strain.
Generally, the fracture strain of a material is not a constant value. Its magnitude is affected
by the stress state.

Stress triaxiality is a stress state parameter for characterizing the degree of hydrostatic
pressure. The magnitude of this parameter controls the volume dilatation rate of the
micro-void defects inside the material, which, thus, controls the material’s ductility. Stress
triaxiality is defined as the ratio of mean stress σm to the von Mises equivalent stress σ:

η =
σm

σ
(2)

where σm denotes the hydrostatic stress, which is equal to the mean value of the sum of the
three principal stresses σ1, σ2, σ3, i.e., σm = (σ1 + σ2 + σ3)/3, σ is the von Mises equivalent
stress with its expression represented as:

σ =

√[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]
/2
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Lode angle is a stress state parameter used for characterizing a material’s deviatoric
stress state. This parameter has a quantitative relationship with the shear stress, which
controls the shape of the micro-void defects during the loading process [24]. The value of
the Lode angle can be determined through the following functions of J2 and J3:

θ =
1
3

arccos

(
3
√

3J3

2J3/2
2

)
(3)

where J2 and J3 denote the second and third invariants of the deviatoric stress tensor.
For better understanding, Figure 1 shows a geometrical representation of the Lode

angle in the principal stress space, where one can find that the Lode angle θ corresponds to
the azimuth angle between the current stress vector OA (used to represent the current stress
state) and the projection of the axis of first principal stress σ1 on the deviatoric stress plane.
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It should be noted that the Lode angle θ can be further normalized through the
following equation [13,23]:

θ= 1− 6
π

θ (4)

The normalized Lode angle θ in Equation (4) is referred to as the Lode angle parameter [13,23]
with its range being [−1, 1]. This parameter can be used to characterize the deviatoric
stress state of the material, where θ = 1 means that the investigated material subjects to a
generalized tensile state, θ = 0 means that the investigated material subjects to a pure shear
or plane strain tensile state, whereas θ = −1 means that the investigated material subjects
to a generalized compression state. When the magnitude of θ is between the above values,
the material undergoes a combined multiaxial stress state.

Since both stress triaxiality and Lode angle parameter affect material ductility, the
fracture strain of the investigated material can be expressed as a function of stress triaxiality
and Lode angle parameter:

ε f = ε f
(
η, θ
)

(5)

Equation (5) corresponds to a three-dimensional surface in the space of stress triaxiality,
Lode angle parameter and fracture strain. This surface is usually referred to as the fracture
envelope, which can be used to characterize material’s ductility under different stress states.

Here, if we assume that the dependence of material ductility on the stress triaxiality
and Lode angle parameter is independent from each other [30,31], then the fracture strain
of the investigated material can be expressed as the following expression:

ε f = ε f 0α(η)β
(
θ
)

(6)
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where ε f 0 denotes a reference strain value (a material constant), α(η) and β(θ) are referred
to as stress triaxiality and Lode dependence functions, which are used to characterize the
effect of stress triaxiality and Lode angle on the fracture strain. According to Equation (6),
one can find that the key work for establishing a ductile fracture model is to determine the
specific form of the two stress state dependence functions, which will be discussed in detail
in the following Section 3.

3. Theoretical Derivation of the New Ductile Fracture Model
3.1. Determination of Stress Triaxiality Dependence Function

Since the ductile fracture of metallic materials is induced by the evolution of micro-
void defects, the analytical relationship between the stress triaxiality and the material’s
fracture strain can be obtained from a micro-mechanism analysis on a representative volume
element containing a void defect. Lee and Mear [11] conducted an analysis of the growth
of a micro-void in a ductile material subjected to a remote tension (see Figure 2). In their
analysis, the strain hardening behavior of the investigated material matrix is assumed to
obey the following Swift power function:

σ = K
(
ε0 + εp

)n (7)

where σ is the equivalent stress, ε0 denotes the initial yield strain, K is a strain hardening
parameter, and n is the hardening exponent.
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Further, assume the micro-void defects inside the material are ideal spherical cavities
(see Figure 2), then Lee and Mear derive the following dilatation rate of the spherical
cavities by using a numerical method [11]:

dV
V

= Edεp (8)

E =
1
2

(
3
2

nη + G
) 1

n
(9)

G =

(
1
n
− 1
)(

1
n
+ 0.4319

)
n2 (10)

where dV/V denotes the dilatation rate of the void defect under remote tension, E is a
parameter used to characterize the influences on the void dilatation rate, dεp denotes the
equivalent plastic strain increment. According to Equations (8)–(10), one can find that
the dilatation rate of the spherical void defects is quantitatively controlled by both stress
triaxiality η and hardening exponent n.
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Further, if we assume that a proportional loading is applied to the investigated mate-
rial, the stress triaxiality will keep constant. Accordingly, by incorporating Equations (8)–(10)
together and integrating on the equivalent plastic strain, we can derive the fracture strain
of the investigated material as:

ε f =
C

[1 + (1.5η − 0.5681)n− 0.4319n2]
1
n

(11)

where C is a material constant.
Assume that the stress triaxiality and the fracture strain obtained under uniaxial

tension are η0 and ε f 0, respectively; then, by substituting them into Equation (11), the exact
expression of parameter C can be derived as:

C = ε f 0

[
1 + (1.5η0 − 0.5681)n− 0.4319n2

] 1
n (12)

Then, substitute Equation (12) into Equation (11), a fracture strain formula with an
explicit stress triaxiality dependence can be obtained as:

ε f = ε f 0

[
1 + (1.5η0 − 0.5681)n− 0.4319n2

1 + (1.5η − 0.5681)n− 0.4319n2

] 1
n

(13)

Equation (13) is the fracture strain prediction formula obtained from the classical
Lee–Mear void growth theory. This equation was also modified in Ref. [31] to construct an
advanced uncoupled fracture model for structural metals. Comparing Equation (13) with
Equation (6), one can find that ε f 0 corresponds to the fracture strain under uniaxial tension
and the stress triaxiality dependence function α(η) can be obtained as:

α(η) =

[
1 + (1.5η0 − 0.5681)n− 0.4319n2

1 + (1.5η − 0.5681)n− 0.4319n2

] 1
n

(14)

Generally, the value of the stress triaxiality under uniaxial tension is theoretically
equal to 1/3 [12], i.e., η0 = 1/3. However, since most metals possess an obvious ductility,
a necking would always occur on the material under a uniaxial tension before fracture.
Accordingly, the stress state at fracture initiation of the material would vary from a uniaxial
state to a triaxial state with the value of η0 increasing, where the exact value of the η0
depends on the necking degree of the fracture region. Generally, the accurate value of η0 of
the investigated material can be extracted from an associated numerical simulation of the
coupon specimen. Since the stress triaxiality at the necking region of the coupon specimen
varies during the loading process, the average value of the stress triaxiality is often used
for η0. Some experimental results in the literature show that the average stress triaxiality
value under uniaxial tension for the commonly used structural steel is roughly in the range
of 1/3–2/3 [32–34]. Table 1 lists the values of η0 for some typical structural steels. Here,
for convenience, we empirically choose an intermediate value 1/2 as the stress triaxiality
value under uniaxial tension, i.e., η0 = 1/2. Accordingly, the stress triaxiality dependence
function becomes:

α(η) =

[
1 + 0.1819n− 0.4319n2

1 + (1.5η − 0.5681)n− 0.4319n2

] 1
n

(15)

Table 1. Values of η0 for some typical structural steels.

Material Q345 Steel [32] Q460 Steel [33] Q690 Steel [34]

η0 0.44 0.57 0.64

3.2. Determination of the Lode Angle Dependence Function

Xue [35] proposed a simple Lode angle dependence function for ductile fracture
prediction. This Lode angle dependence function is derived by incorporating the Swift
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hardening function into the Tresca failure criterion. The specific derivation process for such
a function is given as follows.

According to Xue’s point of view [35], the maximum shear stress criterion (i.e., Tresca
criterion) generally provides a reasonable prediction on the failure stress for most metallic
materials. Thus, the fracture stress of the investigated material under different stress state
can be expressed as follow:

σ f = σf 0

√
3

2 cos
(
−π

6 θ
) (16)

where σ f refers to the equivalent stress at fracture, σf 0 refers to the fracture stress under
uniaxial tension.

In addition, recall that the strain hardening of the investigated material obeys a Swift
law in Equation (7); the equivalent stress at fracture σ f thus can be expressed as:

σ f = K
(

ε0 + ε f

)n
(17)

Then, according to Equation (17), the fracture stress under uniaxial tension σf 0 can be
expressed as:

σf 0 = K
(

ε0 + ε f 0

)n
(18)

where ε f 0 denotes the fracture strain under uniaxial tension (θ = 1). Then, substitute
Equations (17) and (18) into Equation (16), the stress-based Tresca fracture model can be
converted to the following strain-based form:

ε f =
(

ε0 + ε f 0

)( √
3

2 cos
(
−π

6 θ
)) 1

n

− ε0 (19)

Generally, the initial yield strain of most metallic materials is relatively small, thus, we
can assume ε0 ≈ 0. Then, Equation (19) can be simplified as:

ε f = ε f 0

( √
3

2 cos
(
−π

6 θ
)) 1

n

(20)

Equation (20) is the strain-based Tresca failure criterion. Comparing Equation (20)
with Equation (6), one can find that, under the assumption of the Tresca failure criterion,
the Lode angle dependence function can be derived as:

β
(
θ
)
=

( √
3

2 cos
(
−π

6 θ
)) 1

n

(21)

3.3. Theoretical Formula of the New Fracture Model

Since the stress triaxiality and Lode angle dependence functions were established in
the previous Sections 3.1 and 3.2, see Equations (15) and (21), then, a new fracture strain
prediction formula can be obtained by combining Equations (6), (15) and (21):

ε f = ε f 0

[
1 + 0.1819n− 0.4319n2

1 + (1.5η − 0.5681)n− 0.4319n2

] 1
n
( √

3
2 cos

(
−π

6 θ
)) 1

n

(22)

Equation (22) is the theoretical formula of the new fracture model. As it can be
seen from Equation (22), the new fracture model accounts for the effects of both stress
triaxiality and Lode angle on the material’s ductility. Thus, this model can be used to
predict the failure of structural steel under different stress states. In addition, there are only
two parameters, i.e., the hardening index n and the fracture strain under uniaxial tension
ε f 0, which are need for calibration. These two parameters can be easily calibrated via a
uniaxial tensile test on a smooth round bar coupon specimen (i.e., the standard test used
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for obtaining the engineering stress–strain curve of the investigated material), where the
fracture strain under uniaxial tension ε f 0 can be approximately determined by measuring
the geometry of the smooth round bar specimen through the following formula:

ε f 0 = ln

(
A0

A f

)
(23)

where A0 corresponds to the initial cross-sectional area of the smooth round bar specimen,
and Af corresponds to the cross-sectional area at the fracture region (i.e., necking region) of
the smooth round bar specimen.

The exact value of the hardening exponent n, which is actually a plasticity material
parameter, can be determined by fitting the material’s true stress-true strain curve using a
reasonable hardening function, e.g., Equation (7). Further, for convenience, this parameter
can also be determined through the following equation:

n =
ln
(

σf 0
σy0

)
ln
(

1 +
ε f 0
ε0

) (24)

where σy0 is the material’s initial yield stress, σf 0 is the fracture stress under uniaxial tension
whose value can be converted from the engineering failure stress through the following
equation proposed by Bridgman [36]:

σf 0 =
σf ,nom(

1 + 2
R f
r f

)
ln
(

1 + 2
r f

2R f

) (25)

where σf,nom denotes the failure stress obtained from the engineering stress–strain curve of
the material, rf and Rf refer to the minimum cross-section radius and curvature radius of the
local fracture region of the smooth specimen. According to the above derivation process,
one can find that, compared with other complex ductile fracture models, the fracture model
proposed in this study can be easily calibrated through a simple coupon test with the
difficulty of model calibration work being significantly reduced. As a result, this new
fracture model can be applied easily in the failure analysis of large steel structures.

4. Verification of the New Fracture Model via Structural Steel Notched Specimens

Li et al. [33] conducted fracture tests on five types of specimens (including smooth
round bar, notched round bar, pure-shear plate, tensile-shear plate and grooved plate)
and obtained the fracture strains of Q460 high-strength structural steel in a wide range of
stress triaxiality and Lode angle. Tables 2 and 3 list the mechanical property indexes of the
Q460 structural steel and the stress triaxiality, Lode angle parameter and fracture strain
from the experiment. It should be noted since the stress triaxiality and Lode angle of each
test specimen were variable in the original test, the average value of these two stress state
parameters was used to determine the corresponding fracture strain of each specimen (see
Table 3). Further, Figure 3 shows the stress triaxiality and Lode angle parameter variation
history and the corresponding fracture strain data obtained under the average values of
the above two stress state parameters from each test specimen. These experimental data
are used to verify the proposed fracture model.

Table 2. Mechanical properties of the Q460 high-strength steel [33].

Young’s Modulus
E(GPa) Poisson’s Ratio µ

Hardening Parameter
K(MPa)

Hardening Exponent
n

222.8 0.3 969.14 0.2
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Table 3. Experimental data obtained from the Q460 high-strength structural steel specimens [33].

Test
No. Test Specimen ηav

¯
θav

¯
ε f ε̂f,new-model ε̂f,Tresca χi,new-model χi,Tresca ∆new-model ∆Tresca

1 Smooth round bar 0.566 1 1.599 1.452 1.599 0.092 0.000

17.3% 56.8%

2 Notched round bar
(Notch radius = 6.25 mm) 0.835 1 0.951 0.999 1.599 0.051 0.681

3 Notched round bar
(Notch radius = 3.125 mm) 1.029 1 0.739 0.776 1.599 0.050 1.165

4 Notched round bar
(Notch radius = 1.5 mm) 1.330 1 0.542 0.536 1.599 0.011 1.951

5 Pure-shear flat plate 0.106 0.21 1.460 1.487 0.803 0.019 0.450
6 Tensile-shear flat plate 0.433 0.71 1.264 1.221 1.105 0.034 0.126

7 Grooved plate
(Notch radius = 10 mm) 0.755 0 0.945 0.542 0.779 0.426 0.176

8 Grooved plate
(Notch radius = 3 mm) 0.884 0 0.846 0.456 0.779 0.461 0.080

9 Grooved plate
(Notch radius = 1 mm) 1.204 0 0.524 0.304 0.779 0.420 0.487
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According to Tables 2 and 3, the hardening exponent n and uniaxial tensile fracture
strain ε f 0 of the Q460 steel can be directly determined through the test result of the smooth
round bar specimen, i.e., n = 0.2, ε f 0 = 1.599. Then, the fracture strain of the Q460 steel
under different stress states can be directly determined through Equation (22). Figure 4a
shows the fracture envelope (i.e., the fracture strain surface in terms of the stress triaxiality
and Lode angle parameter) of the investigated Q460 steel predicted from the calibrated new
fracture model, where the difference between the test data points and fracture envelope
is represented by the corresponding vertical error bar. Further, to better distinguish the
ductility limit of the material under each stress state, two-dimensional fracture strain
locus under generalized tension (θ = 1), generalized compression (θ = −1), pure-shear
and plane strain tension (θ = 0) are also shown in the figure. As shown in Figure 4a,
the new fracture model can reasonably predict the ductility limit of the Q460 steel under
different stress states. The fracture strain data points obtained from each notch specimen
(see Table 3) are located close to the fracture strain surface predicted by the new fracture
model. Furthermore, to quantitatively investigate the accuracy of the new fracture model,
the following formula is used to calculate the prediction error of the new fracture model:
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∆ =
1
N

N

∑
i=1
|χi| (26)

χi =
ε̂ f ,i − ε f ,i

ε f ,i
(27)

where ∆ denotes the average error between the predicted fracture envelope and the test
data, N denotes the number of the tests, χi denotes the relative error between the fracture
surface predicted by the corresponding fracture model and the ith test data point, ε̂ f denotes
fracture strain predicted from the corresponding fracture model for the ith specimen and
ε f denotes fracture strain obtained from the ith test specimen. By using Equations (26)
and (27), the relative and average prediction errors obtained from the new model for the
test specimens are calculated and listed in Table 3. The calculation result shows that the
average prediction error obtained from the new fracture model for the investigated Q460
steel test specimens is 17.3%. This result satisfies the engineering application accuracy,
which verifies the new fracture model.
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In addition, the Tresca fracture model (Equation (20)) is also calibrated using the
test data in Table 3. Since the fracture strain ε f 0 and the hardening exponent n of the
material were determined previously, the fracture strain envelope predicted from the Tresca
model can be obtained directly via Equation (20), which is shown in Figure 4b. Further,
the relative and average prediction errors obtained from the Tresca model are calculated
through Equations (26) and (27), which are listed in Table 3. As can be seen in Figure 4b
and Table 3, the prediction results obtained from the Tresca fracture model deviated from
the test data significantly with the average prediction error of the model being 56.8%. This
error is larger than that obtained from the new fracture model, which also verifies the good
prediction accuracy of the new fracture model.

5. Application of New Fracture Model in Failure Analysis of Steel Connections
5.1. Fracture Prediction Analysis of a Welded Beam-To-Column Connection

Chen et al. [37] conducted monotonic tensile tests on a series of welded beam-to-
column connections and investigate the mechanical behaviors and failure modes of these
specimens. Liao et al. [26] revisit the above experiments and conducted a failure analysis
for these test specimens. In this section, the test result of one typical specimen (labeled
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as RP-1 specimen) in Refs. [26,37] is used as an example to verify the fracture prediction
performance of the new fracture model. Figure 5 shows the geometry and configuration of
the RP-1 specimen, which is fabricated by connecting a cold-formed hollow section column
(height × width × thickness of the cross-section is equal to 250 mm × 250 mm × 8 mm)
with a beam flange plate (width × thickness of the plate is equal to 200 mm × 10 mm)
through a penetrated groove weld. Table 4 shows the material used for the RP-1 specimen,
where the materials used for the column and flange plate are Q345 steel and that for groove
weld is E50 electrode. The detailed material properties for each region on the RP-1 specimen
are given in Table 4. It should be noted the column of the RP-1 specimen is formed by a
cold bending method. Accordingly, the mechanical properties of the material at the corner
region of the column are different from those in other areas (see Table 4). In the experiment,
a monotonic tensile loading was applied at one end of the beam flange plate. The loading
test stopped until a complete fracture occurred on the connection specimen.
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Table 4. Material property at each region RP-1 specimen [26,37].

Specimen Region Young’s Modulus E
(MPa)

Yield Strength σy0
(MPa)

Ultimate Strength
σu

(MPa)

Hardening
Exponent

n

Fracture Strain
under Tension

εf0

Straight part of the column 2.06 × 105 440.8 533.3 0.085 1.07
Conner region of the column 2.06 × 105 511.0 570.6 0.073 1.03

Beam flange plate 2.06 × 105 380.5 544.1 0.22 1.02
Groove weld 2.06 × 105 380.1 491.3 0.28 1.33

Figure 6 shows the load–displacement curve of the RP-1 specimen obtained from the
loading test. It is reported that the fracture was initiated at the exterior junction point
between the column flange and groove weld when the displacement at the end of the beam
flange reached 6.9 mm (with corresponding tensile force reaching 231 kN simultaneously).
Then, the crack propagated along the groove weld and formed a tearing and punching
mode fracture surface on the flange of the column.
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Figure 6. Load–displacement of the RP-1 specimen obtained from the test and finite element analysis.

In order to check the fracture prediction performance of the proposed new fracture
model, a parallel numerical simulation is conducted for the RP-1 specimen using the finite
element software ABAQUS/Explicit. A general static procedure in the ABAQUS/Explicit is
used to conduct the analysis. Figure 7 shows the finite element model of the RP-1 specimen,
where the column, beam flange plate and grooved weld are established according to the
configurations in Figure 5. In the numerical analysis, a fixed boundary condition is applied
at one end of the flange plate. Then, a reference point is created to be coupled with
another end of the flange plate to apply the tensile loading to the specimen. In addition,
solid reduced integration elements C3D6R are used to mesh the whole model [38]. A
corresponding mesh convergence analysis shows that a refined mesh with an element size
of 2 mm × 2 mm × 2 mm can be used for the weld region of the specimen to obtain an
accurate numerical result. Whereas a relatively coarse mesh is adopted for other regions of
the specimen to ensure computation efficiency.
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Furthermore, to ensure a correct response of the connection specimen being obtained
from the FE analysis, the von Mises yield criterion combined with an isotropic hardening
law is used to describe the mechanical behavior of the materials in each region of the
specimen. Figure 8 shows the true stress–plastic strain curve of each material obtained from
the corresponding coupon test in the original experiment [26]. Then, the Swift hardening
function (Equation (7)) is used to fit and extend these experimental stress–strain curves
into a large strain region to simulate the plastic behaviors of the material under large strain
conditions (see Figure 8). In the meantime, the values of the corresponding hardening
exponent n for each material can also be obtained from the fitting analysis, which is listed
in Table 4.
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In addition, to apply the new fracture model in the numerical analysis of the RP-1
specimen, a built-in “ductile damage” material model provided by the ABAQUS software
is used. This material model provides an interface for the user to manually define the
values of fracture strain under different stress triaxiality and Lode angle parameters. Then,
the fracture is assumed to occur on a material point when the following defined ductile
damage index reaches the unity:

D =
∫ dεp

ε f (η, θ)
= 1 (28)

In Equation (28), D denotes the ductile damage degree of the material, εp and ε f are
the equivalent plastic strain and fracture strain of the material. As it can be seen from
Equation (28), when the accumulated equivalent plastic strain reaches the fracture strain
limit, the damage index reaches unity with a fracture being initiated.

Since the hardening exponent n and uniaxial tensile fracture strain ε f 0 for the materials
at each region of the specimen have been given in Table 4, the parameters of the new
fracture model for each material used for the RP-1 specimen can be directly calibrated.
Then, the fracture strain values under different stress triaxiality and Lode angle parameter
for each material used for the RP-1 specimen can be determined via Equation (22), which is
further input in the “ductile damage” model of each material to predict the initiation of
the fracture.

Figure 6 shows the load–displacement curve obtained from the numerical simulation
analysis. This load–displacement curve is consistent with the test result, which proves
the validation of the numerical simulation analysis. It should be noted there is a minor
discrepancy between the numerical and test curves at the elastic loading stage. This
discrepancy might be due to the slight difference in the position of displacement extraction
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points in the test and numerical simulation analysis. Furthermore, Figure 6 shows the
fracture initiation time predicted from the new fracture model, where the corresponding
displacement and force at the predicted fracture initiation time are equal to 5.75 mm and
223 kN, respectively. This predicted result is close to the test result (i.e., 6.9 mm and 231 kN)
with a prediction error for the displacement and load at fracture being 16.7% and 3.5%,
respectively. This result satisfies the accuracy of the engineering application.

Further, Figure 9 shows the crack propagation process and fracture surface of the
RP-1 specimen predicted from the new fracture model. The DUCTCRT index in the
figure corresponds to the damage index defined in Equation (28). This index is used to
characterize the damage degree of the material, where a fracture is assumed to occur when
DUCTCRT = 1. As it can be seen from the figure that the fracture was initiated at the
exterior junction point between the column flange and groove weld on the specimen. Then,
the crack extended along the length direction of the weld and form an obvious tearing
and punching fracture surface. This simulated fracture profile is completely consistent
with the fracture mode in the original research conducted by Chen et al. [37] (see original
Figure 8b in Ref. [37]), which verifies the applicability of the new fracture model in the
failure analysis of a practical steel component.
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5.2. Fracture Prediction Analysis of a CHS Branch to SHS Chord X-Joint

Wang et al. [39] conducted axial tensile loading tests on a group of X-joints, which are
made of tubular CHS branches and square SHS chords, and investigate the mechanical
behavior of these specimens. Ma et al. [40] revisit the above experiments and conducted
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a failure analysis for these test specimens using a ductile damage model. In this section,
the test result of the X90-2 joint specimen investigated in the above research is used
as an example to verify the fracture prediction performance of the proposed fracture
model. Figure 10 shows the geometry and configuration of the X90-2 specimen, where
a tubular branch (diameter × thickness of the branch is equal to 180 mm × 10 mm) is
connected with a square chord (height × width × thickness of the cross-section is equal to
250 mm × 250 mm × 14 mm) through circumferential fillet welds. The detailed measured
leg size of the fillet weld at both upper and lower branches of the specimen is shown in
Figure 10. Further, according to Refs. [39,40], the material used for fabricating both chord
and branches is Q345B steel, whereas the material used for the fillet weld is E50 electrode.
The detailed material properties of the specimen are given in Table 5. In the experiment, an
axial tensile loading was applied on the top end plate of the upper branch of the joint. The
loading test stops until a complete fracture occurred on the connection specimen.
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Table 5. Material property at each region of the X90-2 specimen [39,40].

Specimen
Region

Young’s
Modulus E

(MPa)

Yield
Strength σy0

(MPa)

Ultimate
Strength σu

(MPa)

Hardening
Exponent

n

Fracture Strain
under Tension

εf0

Branch 2.06 × 105 375 563 0.16 1.00
Chord 2.06 × 105 325 401 0.187 1.03
Weld 2.06 × 105 416 500 0.156 1.39

Figure 11 shows the load–displacement curve obtained from the top end plate of
the X90-2 joint specimen, where the displacement and force at fracture of the specimen
correspond to 3.3 mm and 884.8 kN, respectively. During the loading process, the fracture
was observed to initiate at the junction point between the chord and fillet weld on the
upper branch. Then, the crack propagated rapidly along the weld toe and resulted in a
punching shear fracture surface at the wall of the chord [39,40].

Associated numerical simulation analysis of X90-2 joint specimen is carried out using
the finite element software ABAQUS/Explicit. Figure 12 shows the finite element model of
the X90-2 joint specimen, where the chord, branches, weld and end plate are established
according to the geometry and configuration in Figure 10. In the numerical analysis,
a fixed boundary condition is applied at the bottom end of the lower branch member.
Then, a monotonic tensile displacement is applied at the reference point coupled with
the upper end of the branch to simulate the tensile loading of the specimen. In addition,
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C3D8R reduced integration solid elements are used to mesh the model. Similar to the
methods used in Section 5.1, a refined mesh (with a minimum element size being equal
to 1 mm × 1 mm × 3 mm) is adopted at the weld region of the specimen to ensure the
fracture initiation and crack propagation are simulated accurately. Meanwhile, a coarse
mesh is used for the remaining areas of the specimen to guarantee computation efficiency.
It should be noted since the branch and chord are connected by using a circumferential
fillet weld, the contact surface between the branch and chord is uncoupled. To correctly
reflect this phenomenon, a circumferential seam (gap) is defined at the interface between
the branches and chord (see Figure 12). Then, a normal “hard” and tangential frictionless
contact property is introduced at these interfaces. Further, the von Mises yield criterion
combined with an isotropic hardening law is used to describe the mechanical behavior of
the materials at each region of the specimen. Similar to the method used in the previous
section, the Swift hardening function is adopted to fit the experimental stress–strain curve
of each material on the joint. Then, the fitted stress–strain curves were input into the FE
analysis to simulate the plastic behaviors of each material under large strain conditions.
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Finally, since the hardening exponent n and uniaxial tensile fracture strain ε f 0 of the
materials at each region of the specimen were given in Table 5, the parameters of the new
fracture model for each material used for the X90-2 specimen can be directly calibrated.
Then, the fracture strain values under different stress triaxiality and Lode angle parameters
for each material for the X90-2 specimen can be determined via Equation (22), which is
further input in the “ductile damage” model of each material to predict the initiation of
the fracture.

Figure 11 shows the comparison result on the load–displacement curve of the X90-2
specimen obtained from the test and numerical simulation analysis, where one can find that
the load–displacement curve obtained from the numerical simulation analysis is in good
agreement with the test. Meanwhile, one can also find that the fracture model proposed in
this study can accurately predict the displacement and ultimate strength of the specimen
caused by fracture, where the predicted displacement and force at fracture are equal to
3.78 mm and 916.4 kN, respectively. Compared with the test results, this prediction result
leads to a prediction error of 15.2% and 3.5% for the displacement and force at fracture,
which is in a reasonable range.

Finally, Figure 13 shows the crack propagation process and fracture surface of the
X90-2 specimen predicted from the new fracture model. As it can be seen in the figure that
the crack initiated at the junction point between the upper fillet weld and the chord wall.
Then, the crack extended circumferentially along the root of the fillet weld, which formed
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an obvious punching fracture surface on the chord wall. This simulated fracture profile is
consistent with the fracture mode shown in the original research conducted in Ref. [40] (see
original Figure 13 in Ref. [40]), which verifies the applicability of the new fracture model in
the failure analysis of a practical steel component.

Buildings 2022, 12, x FOR PEER REVIEW 19 of 24 
 

 
Figure 12. Finite element model of the X90-2 joint specimen. 

Figure 11 shows the comparison result on the load–displacement curve of the X90-2 
specimen obtained from the test and numerical simulation analysis, where one can find 
that the load–displacement curve obtained from the numerical simulation analysis is in 
good agreement with the test. Meanwhile, one can also find that the fracture model 
proposed in this study can accurately predict the displacement and ultimate strength of 
the specimen caused by fracture, where the predicted displacement and force at fracture 
are equal to 3.78 mm and 916.4 kN, respectively. Compared with the test results, this 
prediction result leads to a prediction error of 15.2% and 3.5% for the displacement and 
force at fracture, which is in a reasonable range. 

Finally, Figure 13 shows the crack propagation process and fracture surface of the 
X90-2 specimen predicted from the new fracture model. As it can be seen in the figure that 
the crack initiated at the junction point between the upper fillet weld and the chord wall. 
Then, the crack extended circumferentially along the root of the fillet weld, which formed 
an obvious punching fracture surface on the chord wall. This simulated fracture profile is 
consistent with the fracture mode shown in the original research conducted in Ref. [40] 
(see original Figure 13 in Ref. [40]), which verifies the applicability of the new fracture 
model in the failure analysis of a practical steel component. 

Figure 12. Finite element model of the X90-2 joint specimen.

Buildings 2022, 12, x FOR PEER REVIEW 20 of 24 
 

 
Figure 13. Fracture initiation and crack propagation of the X90-2 specimen simulated from the new 
fracture model. 

6. Discussion 
The objective of this study is to propose a simple calibrated fracture model for 

predicting the fracture initiation of practical steel members. To obtain such a model, the 
following assumptions were adopted in the theoretical derivation of the new fracture 
model: (1) The effects of stress triaxiality and Lode angle on the material’s ductility are 
assumed to be independent of each other. Accordingly, the theoretical formula of the 
stress triaxiality and Lode angle dependence functions can be derived independently from 
a single specific theory; (2) The influence of the stress triaxiality on the material’s fracture 
strain is derived from the analysis of the dilatation rate of spherical voids in a ductile 
matrix under axisymmetric loading condition. This stress triaxiality dependence function, 
obtained under an axisymmetric tension state, is then assumed to be valid for other stress 
states; (3) The Lode angle dependence of the fracture strain is derived based on the 
classical Tresca failure criterion. The use of the above assumptions can ensure that an easy-
calibrated simplified fracture model can be obtained with the corresponding physical 
mechanism of materials being properly reflected. However, these assumptions would also 
bring some limitations, which are discussed below. 

6.1. The Correlation between Stress Triaxiality and Lode Angle Dependence 
Although the use of the assumption, i.e., the influence of the stress triaxiality and 

Lode angle parameter on the material’s ductility is independent of each other, can simplify 

Figure 13. Fracture initiation and crack propagation of the X90-2 specimen simulated from the new
fracture model.



Buildings 2022, 12, 1358 18 of 21

6. Discussion

The objective of this study is to propose a simple calibrated fracture model for predict-
ing the fracture initiation of practical steel members. To obtain such a model, the following
assumptions were adopted in the theoretical derivation of the new fracture model: (1) The
effects of stress triaxiality and Lode angle on the material’s ductility are assumed to be
independent of each other. Accordingly, the theoretical formula of the stress triaxiality
and Lode angle dependence functions can be derived independently from a single specific
theory; (2) The influence of the stress triaxiality on the material’s fracture strain is derived
from the analysis of the dilatation rate of spherical voids in a ductile matrix under ax-
isymmetric loading condition. This stress triaxiality dependence function, obtained under
an axisymmetric tension state, is then assumed to be valid for other stress states; (3) The
Lode angle dependence of the fracture strain is derived based on the classical Tresca failure
criterion. The use of the above assumptions can ensure that an easy-calibrated simplified
fracture model can be obtained with the corresponding physical mechanism of materials
being properly reflected. However, these assumptions would also bring some limitations,
which are discussed below.

6.1. The Correlation between Stress Triaxiality and Lode Angle Dependence

Although the use of the assumption, i.e., the influence of the stress triaxiality and Lode
angle parameter on the material’s ductility is independent of each other, can simplify the
establishment procedure of the theoretical formula of the fracture model, the validity of
such a postulation is still controversial. Some studies in the field used such an assumption
to establish the theoretical formula of the fracture model [30,31,35] and obtain a good
prediction performance in the failure analysis of the practical members [40]. However,
some other micro-mechanism analyses on the micro-void defects show that an obvious
correlation existed between the stress triaxiality and Lode angle dependences [8]. From
the author’s point of view, indeed, there is a certain degree of coupling between the stress
triaxiality and Lode angle dependence, but how to quantitatively determine this coupling
relationship via an analytical method remains a difficult issue. Most current research could
only use an indirect method, e.g., changing the classical stress-based failure criterion into a
strain-based formula [6,13] or using an empirical formula to fit the numerical result obtained
from the representative volume element analysis to obtain such a coupling relationship.
However, whether or not the results obtained from these methods are correct is still an open
question. In this context, the author believes that the independent assumption on the stress
triaxiality and Lode angle for material’s ductility is still a good choice for constructing
simple engineering used fracture model (rather than a model chasing for absolute accuracy)
as long as the prediction results from such a fracture model can fit most test results in a
phenomenological manner.

6.2. Validity of Stress Triaxiality Dependence Function for Other Stress States

The stress triaxiality dependence function derived from the Lee–Mear void growth
theory is strictly based on the assumption of an axisymmetric tension condition [11].
Correspondingly, whether or not such a triaxiality dependence function is suitable for a
more general loading case (i.e., other stress states) needs further verification. Theoretically,
the most rigorous method to verify the feasibility of the above axisymmetric model for other
loading cases is to conduct a micromechanical analysis on a representative volume element
with a spherical void subjected to an arbitrary loading condition. Then, if the evolution
function of the micro-void defect obtained from such a unit cell analysis is consistent with
that obtained from the axisymmetric model, the feasibility of the axisymmetric model
for a general loading case would be verified. However, deriving an elegant analytical
solution for the void evolution function under an arbitrary general loading is complicated
because most researchers can only use a time-consuming numerical method to establish
an empirical relationship for the void evolution. In this context, it would be reasonable to
directly extend the stress triaxiality dependence relationship from the axisymmetric model
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to other deviatoric stress states as long as the prediction results from the fracture model
can fit most experimental results in a phenomenological manner. Such an idea was also
used in some research to construct the formula of the fracture models, e.g., Refs. [23,30,35].

6.3. Methods to Improve the Prediction Accuracy of the Proposed Fracture Model

The prediction accuracy of the fracture model is generally related to the number of
free parameters in the model. Increasing the amount of the free parameters can enhance
the model’s flexibility to account for more influence factors on the fracture mechanism of
materials, but, on the other hand, would also increase the coupling degree of each influence
factor and the difficulty of model calibration. Therefore, how to balance the relationship
between the above two points becomes a key work for establishing a fracture model. Since
a series of simplified assumptions were used, the fracture model proposed in this study
processes only two free material parameters. This feature facilitates the model calibration
process but results in limited flexibility for the model to coincide with the test data, which
results in relatively low prediction accuracy for the investigated test data in Section 4. In
this context, a feasible method to enhance the prediction performance of the fracture model
in this study is to further introduce new phenomenological parameters in the theoretical
formula of the model, for example, introducing a new parameter before the stress triaxiality
term in the stress triaxiality dependence equation (22) to consider other influences (e.g.,
void shape or material’s anisotropy) on material’s ductility [31] or use a more advanced
failure criterion (e.g., Bai–Wierzbicki failure model [23], which has three free parameters to
adjust the failure stress) to derive the Lode angle dependence function. By using such a
method, the prediction performance of the proposed fracture model would be enhanced,
which is, however, beyond the scope of this study.

7. Conclusions

A new fracture model is proposed to predict the ductile fracture of structural steel
under multiaxial stress states. This model is established by combining a stress triaxiality
and Lode angle dependence function derived from the Lear–Mear void growth theory
and the combination of the Tresca failure criterion and Swift strain hardening law. In
order to verify the proposed fracture model, the test results of the Q460 high-strength steel
notched specimens and two types of steel connection specimens were used to check the
fracture prediction performance of the new model. The main conclusions are summarized
as follows:

(1) The proposed new fracture model in this study has a simple theoretical formula
with only two material parameters, i.e., the hardening exponent n and fracture strain under
uniaxial tension ε f 0. These two parameters can be easily determined via a uniaxial tensile
test on a simple smooth round bar specimen, which significantly reduces the difficulty of
model calibration work and facilitates its application in practical engineering.

(2) The proposed new fracture model provides a reasonable prediction on the ductility
limit of the Q460 structural steel under different stress states. The three-dimensional
fracture envelope determined from the new fracture model is in good agreement with
the experimental data of five investigated Q460 steel specimens, with the corresponding
prediction accuracy being within 17.3%.

(3) The new fracture model can reasonably predict the fracture initiation and crack
propagation of the investigated beam-to-column welded connection and X-joint specimen,
which provides a good tool for engineering failure analysis.

(4) The feasibility of the new fracture model needs to be verified by more test data.
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