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Abstract: Real-time and online screening techniques for single load effect signal monitoring are one
of the key issues in smart structure monitoring. In this paper, an online signal sifting framework
called online recursive empirical mode decomposition (EMD) is proposed. The framework is based
on an improved EMD that optimizes the boundary effect by using extreme value recursion and
eigensystem realization algorithm (ERA) extension, and combines the intrinsic mode functions (IMFs)
correlation coefficient and adaptive filtering to select IMFs for signal reconstruction to achieve the
sifting purpose. When applied to simulated signals, the method satisfies the requirements of signal
sifting in an online environment with high adaptivity, low parameter sensitivity and good robustness.
The method was applied to the dynamic strain data collected by the health monitoring system of
Daishan Second Bridge to achieve real-time online sifting of strain signals caused by traffic loads,
which provided the basis for subsequent data analysis applications and confirmed the value of the
application in a real bridge health monitoring system.

Keywords: online signal sifting; online recursive EMD; intrinsic mode functions; ERA

1. Introduction

The structural health monitoring system (SHM) has the feature of real-time and
continuous acquisition of structural performance parameters compared with conventional
structural detection, which enables online data processing and engineering structural
health condition assessment. The condition assessment of engineering structures includes
working condition assessment and service performance assessment; the former is mostly
related to the working load effect, while the latter needs to extract the relevant indexes
from the structural effect under working load. The actual structural effect signals collected
by SHM are the result of mixing and superposition under multiple loads [1], from which
further single working load effects need to be obtained. In order to fit the advantages
of real-time signal processing of SHM, it is necessary to propose online real-time sifting
techniques for individual load effects in a streaming data environment to finally realize
real-time sensing of engineering structural health status.

In order to obtain the individual load effects, we need to first decompose the mixed
effect monitoring signals collected by the sensors, and then reorganize them to obtain the
subcomponents according to the time-frequency domain characteristics of the working
load effects. For a bridge structure, the working load is the traffic vehicle load, and the
induced monitoring signals have obvious differences in amplitude and frequency from
other loads, which can be sifted by filters in the streaming data environment. Early stream
monitoring data calculations mainly used linear filters, such as Wiener filtering [2], which
are easy to design and implement. However, linear filters are not ideal for multi-source
complex noise and sharp impulse signals [3]. Most engineering data have non-smooth
and non-linear characteristics, resulting in limited applicability of linear filters, so more
non-linear processing methods have been developed [4]. This approach includes wavelet
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thresholding, adaptive filtering, and online Kalman filtering [5,6]. The basic principle of
wavelet thresholding is that wavelet coefficients smaller than a predetermined threshold are
zero. It is proved that the online multiscale filtering method based on wavelet thresholding
is significantly better than the linear filter for signal sifting, but the effect will be limited
by the threshold parameter, especially for the dynamic online data with large changes or
lacking pre-validation [7]. Adaptive filtering is widely used for real-time processing of
various types of engineering data, such as noise reduction, peak picking, and extraction of
specified waveforms [8,9]. However, the effect of this method is limited by the expected
signal and the error criterion, resulting in poor applicability to dynamic online signals.

In summary, the online streaming processing method should have the following
characteristics: (1) high adaptivity—data sifting from the perspective of data characteristics
and excellent applicability to non-linear, non-smooth signals; (2) low dependence of preset
parameters—few preset parameters and low sensitivity to accommodate online dynamic
signals; (3) data articulation—streaming calculates uniformity and coherence between
different data frame signals [10]. To satisfy the above requirements, we propose an online
streaming signal processing framework based on an improved EMD method called online
recursive EMD (OREMD).

The framework uses EMD as the basis for signal processing, which is a completely data-
driven approach with no basis function requirements for online dynamic data that reflect
the physical characteristics of the original time series signal [11,12]. The EMD decomposes
the original signal into multiple IMFs with different frequency modes according to an
intrinsic time scale [13]. The core of EMD signal sifting is that the effective information
of the signal is concentrated in the low-frequency IMFs and decreases towards the high-
frequency eigenmode IMFs, which has been proven to be used for signal sifting [14] and
has been widely used in various fields in recent years [15–18]. This paper proposes a
combination of correlation coefficient and adaptive filtering to select the effective IMFs,
which further improves the applicability of the method.

The main problems with EMD are the boundary effects and modal mixing, which can
generate boundary effect errors and propagate within the data, affecting the accuracy [13,19].
For online data, the boundary effects at both ends of the signal should be discussed sepa-
rately due to the deterministic prior sequence data. Usually, the online signal for a certain
frame can be divided into the initial boundary effect and the termination boundary effect.
The issue of modal mixing will not affect the process in this paper and will not be discussed
for the time being.

For the initial boundary effect, the traditional approach is overlapping the signal
of the previous frame, which is not conducive to long-term online processing due to
repeated calculations and time delays. This paper uses the known nature of the pre-
order time-series data to optimize the initial boundary effect by transmitting the local
extrema of the IMFs. It has been verified that this method can effectively improve the
accuracy of the online calculation results. For the termination boundary effects, the common
solution is to extend the original signal at the endpoints in order to fit the envelope outside
the existing data range. Some methods apply data extension, including wave extension
methods [13], and autoregressive moving average [20]. In order to further improve the
efficiency, support vector machine prediction (SVR) [21], autoregressive (AR) based forecast
endpoint extensions [22], and prediction via radial basis function (RBF) neural networks
have been proposed [23]. The SVR uses the generalization ability of vector machines to
predict extreme value points and has been applied in several fields [24,25]. Although SVR
is an effective prediction method, non-stationary time series have a significant impact on
its prediction accuracy [26]. The mirror extension method is simple to use and has a wide
range of applications, but the number of levels of the extension data and the actual number
of levels of the method will have deviations that affect the results. The neural network
algorithm is tedious in the preliminary process. Considering the ease of use and stability of
the online calculation method, this paper adopts the ERA extension method. The purpose
of ERA is to provide more suitable data with the system parameters of the existing signal
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rather than identifying the system parameters. So, ERA extension as the main method and
mirror extension as the alternative method are adopted.

In summary, this paper proposes an online recursive EMD processing framework
(OREMD) based on EMD filtering with ERA extension and adopts a streaming computing
model to update the processing data in real-time by data frame windows. The sifting results
of this method are compared with the online median filter to demonstrate the effectiveness
of OREMD and the low sensitivity of parameters. Finally, the method is applied to the
screening of vehicle-caused loads in actual bridge projects, and the results show that it
could effectively improve the data quality and reliability of subsequent judgments.

2. Recursive Empirical Modal Decomposition
2.1. Empirical Mode Decomposition (EMD)

Empirical mode decomposition (EMD) is an adaptive time-domain data analysis
method applicable to non-linear and non-stationary signals [13]. The basic principle of
EMD is that any signal can be decomposed into several intrinsic mode functions (IMFs). The
IMFs obtained from the local time feature scales decomposition of the data have different
frequency characteristics and satisfy the following two characteristics: (1) the number of
extreme points and zero crossing points differ at most by one; (2) the average value of
the upper envelope and the lower envelope is zero at any moment. Original signal x(t) is
finally decomposed as x(t) = ∑n

i=1 im fi + rn after the sifting process. im fi represents the
ith IMF, and rn is the residue.

The above processing is performed in offline batch processing and is not suitable
for online monitoring real-time decomposition. In order to achieve continuous signal
decomposition in an online monitoring environment, a natural approach is to frame block
the streaming signal and then decompose it separately using classical EMD.

2.2. Online EMD Boundary Effect

Optimal EMD is batch processing of existing signals, but the online system signal
volume increases with time, so each time the calculation repeats the previous process,
resulting in increased processing costs with time and decreasing calculation efficiency. For
the theoretical “infinite length” format of online signals, stream processing is used to process
the online signals entering the system, which has high time-effect, low computing costs.

The accuracy of the stream processing is influenced by the boundary effects on both
sides of the EMD of the currently calculated frame. According to this, the online calculation
frame is divided into three parts: the initial boundary effects section, intermediate section,
and termination boundary effects section (shown in Figure 1).

Buildings 2022, 12, x FOR PEER REVIEW 3 of 24 
 

of the online calculation method, this paper adopts the ERA extension method. The pur-

pose of ERA is to provide more suitable data with the system parameters of the existing 

signal rather than identifying the system parameters. So, ERA extension as the main 

method and mirror extension as the alternative method are adopted. 

In summary, this paper proposes an online recursive EMD processing framework 

(OREMD) based on EMD filtering with ERA extension and adopts a streaming computing 

model to update the processing data in real-time by data frame windows. The sifting re-

sults of this method are compared with the online median filter to demonstrate the effec-

tiveness of OREMD and the low sensitivity of parameters. Finally, the method is applied 

to the screening of vehicle-caused loads in actual bridge projects, and the results show 

that it could effectively improve the data quality and reliability of subsequent judgments. 

2. Recursive Empirical Modal Decomposition 

2.1. Empirical Mode Decomposition (EMD) 

Empirical mode decomposition (EMD) is an adaptive time-domain data analysis 

method applicable to non-linear and non-stationary signals [13]. The basic principle of 

EMD is that any signal can be decomposed into several intrinsic mode functions (IMFs). 

The IMFs obtained from the local time feature scales decomposition of the data have dif-

ferent frequency characteristics and satisfy the following two characteristics: (1) the num-

ber of extreme points and zero crossing points differ at most by one; (2) the average value 

of the upper envelope and the lower envelope is zero at any moment. Original signal 

�(�) is finally decomposed as �(�) = ∑ ����
�
��� + �� after the sifting process. ���� repre-

sents the i�� IMF, and �� is the residue.  

The above processing is performed in offline batch processing and is not suitable for 

online monitoring real-time decomposition. In order to achieve continuous signal decom-

position in an online monitoring environment, a natural approach is to frame block the 

streaming signal and then decompose it separately using classical EMD. 

2.2. Online EMD Boundary Effect 

Optimal EMD is batch processing of existing signals, but the online system signal 

volume increases with time, so each time the calculation repeats the previous process, 

resulting in increased processing costs with time and decreasing calculation efficiency. 

For the theoretical “infinite length” format of online signals, stream processing is used to 

process the online signals entering the system, which has high time-effect, low computing 

costs. 

The accuracy of the stream processing is influenced by the boundary effects on both 

sides of the EMD of the currently calculated frame. According to this, the online calcula-

tion frame is divided into three parts: the initial boundary effects section, intermediate 

section, and termination boundary effects section (shown in Figure 1).  

 

Figure 1. Boundary effect on both sides. Figure 1. Boundary effect on both sides.



Buildings 2022, 12, 1312 4 of 24

The initial boundary effect is often handled by signal overlap, which has two draw-
backs. First, the overlap of signals implies the existence of a time delay effect. Second, the
overlapped signal part increases the computational effort. For the termination boundary
effect, the common method is extending the boundary, but the boundary effect still has not
been solved [19]. In this paper, a combination of recursive transmission extreme and data
extension methods are selected to meet the online EMD requirements.

2.3. Initial Boundary Effect: Online Recursive EMD Based on IMF Extreme Value Memory and
Transfer

The key to solving the initial boundary effect problem is to provide more reasonable
extension information. By passing the end extrema of the same-order IMF components
generated in the previous frame to the next frame for iteration instead of the whole part
of the signal, one can ensure that the envelope of the next frame iteration with the partial
extrema of the previous frame still satisfies the IMF characteristics. On the one hand, it is
beneficial to realize the seamless connection of the same-order IMF components of adjacent
frame signals, and on the other hand, it reduces the amount of iterative calculation, so that
the decomposition result is closer to the signal result of one batch processing.

{x(ti)} represents the data of ith frame;
{

uk
max(ti)

}
,
{

uk
min(ti)

}
represent the final maxi-

mum values and minimum values of the kth IMF of the ith frame; {zmax[x(ti)]}, {zmin[x(ti)]}
represent the maximum and minimum values of the current data. The flow chart is shown
in Figure 2, and the flow of the algorithm is shown in Algorithm 1.

Algorithm 1. Recursion EMD

Initialize i = 1: [
{

uk
max(t1)

}
,
{

uk
min(t1)

}
] = EMD[x(t1)]

for ti = 2 : m do (Online signal from frame 2 to frame m)
k = 1 (Starting from the im f1)
repeat

repeat{
uk

max(ti−1), zmax[x(ti)]
}

{
uk

min(ti−1), zmin[x(ti)]
}
〉
→ Hermite[U(ti−1, ti), L(ti−1, ti)]

M(ti−1, ti) =
[U(ti−1,ti)+L(ti−1,ti)]

2
y(ti) = x(ti)−M(ti)

until y(ti) Satisfy (IMF Require)
y(ti) = im fk, x(ti) = x(ti)− y(ti), k = k + 1

until x(ti) Satisfy (End Require)

save
{

uk
max(ti)

}
,
{

uk
min(ti)

}
In summary, recursion EMD can be expressed as follows:

(im fi(ti), uk
max(ti), uk

min(ti)) = EMD(x(ti), uk
max(ti−1), uk

min(ti−1)) (1)
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2.4. Termination Boundary Effect: Signal Extension Based on ERA Singular Value Truncation

Recursive EMD improves the real-time signal processing and reduces the online
computation, but the method only considers the initial boundary effect of the current data
frame and does not consider the termination boundary effect; the extreme values with
excessive deviation are transmitted to the next frame by recursion, which will affect the
subsequent processing and cause errors to accumulate with the increase in calculation steps,
affecting the accuracy of the overall decomposition.

The termination boundary effect references the treatment of the EMD boundary effect,
using data extension [19]. Extension preferably includes two parts: 1. existing signal noise
reduction and sifting; 2. signal extension [27].

To simplify the calculation process, the system in the current calculation frame is
considered as a linear system of discrete free vibrations, and the state space equation can
be obtained as follows:

x(k + 1) = Ax(k) = Ak+1x0, y(k) = Cx(k) (2)

where x is a n-dimensional state vector and y is a measurement response vector. A is
the system matrix representing the dynamic characteristics of the system, and C is the
observation matrix transferring the state variable x to the measured response y. The k
represents the kth instant. For the free vibrations, there is no control matrix or force vector.
Of note, for each frame data, A, C, x0 are constant.
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Here the eigensystem realization algorithm (ERA) is used to sift the system parame-
ters [19]. However, the purpose of data extension is not to obtain system parameters such
as the frequency and damping of the system, but to extend more “appropriate” data. The
ERA method is a time-domain modal parameter identification method, which is fast and
has strong identification capabilities for the varying frequency signals of each frequency
band. The data obtained by this method can retain the frequency, amplitude and other
signal characteristics of the original signal as far as possible, which is better compared with
the direct mirror extension effect (referred to as ERA extending).

The block Hankel matrix for a one-dimensional signal with a single input is shown:

H(k− 1) =


y(k) y(k + 1) · · · y(k + s− 1)

y(k + 1) y(k + 2) · · · y(k + s)
...

...
. . .

...
y(k + n− 1) y(k + n− 1) · · · y(k + n + s− 2)


n×s

(3)

The n should be greater than 20 f , s should be as large as possible. When k = 1,
obtain H(0):

H(0) = USVT (4)

Improving signal-to-noise ratio of signals by truncating singular values, where r means
the first r singular values. H(0) can be presented as:

H(0) = USVT ≈ UrSrVr
T (5)

Then, the system matrices can be rewritten as:

A = S−1/2
r UT

r H(1)VT
r S−1/2

r , C = ET
mUrS1/2

r , x0 = S1/2
r VT

r E1 (6)

where ET
m =

[
Im 0m · · · 0m

]
, ET

1 =
[
1 0 · · · 0

]
, and Im is unit matrix with the

dimension m.
Combined with the state space equation and system parameter A, C, x0, the extension

signal y(k + t) based on the signal characteristics of this computed frame can be obtained.
To prove the advantage of the ERA extension method, three Gaussian noises with

average of 0 and standard deviation of 0.5, 1 and 2 are added to the standard signal
x(t) = sin(2π2t) + cos(2π5t) to form the simulation signal. The signal is sampled at
100 Hz, and the sampling time is 1 to 5 s. The singular value truncation r of ERA is taken as
0.1n = 5, and the extension time is 1 s. (a), (c), (e) of Figure 3 show the extension results,
and (b), (d), (f) show the extension part details (last 2 s) (Figure 3a–e).

Mean square error (MSE) is used to measure the noise reduction effect; the results are
shown in Table 1. The method is effective for signals with different noise levels. When
the standard deviation of the noise increases, the delaying effect becomes worse because
the added noise is close to the amplitude and frequency of the original signal; hence, the
original signal is more easily confused with the noise.

Table 1. Error statistics for different signal conditions.

Signal MSE MSE (ERA) Noise Reduction Rate

Original 0.00 / /
0.5 standard deviation ≈0.25 ≈0.004 99%
1.0 standard deviation ≈1.00 ≈0.03 (±0.01) 97%
2.0 standard deviation ≈4.00 ≈0.10 (±0.10) 95%

It can be expected that as the variance of the noise increases, the noise signal becomes
the main component of the segment signal, and the original signal is annihilated in the
noise signal, which is less effective at this time, while the current computational frame can
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be processed by this method for effective information extension if there is valid information
and it occupies the main component.
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2.5. Combined Applicability of Recursive EMD and ERA Extension

The recursive EMD optimizes the initial boundary effect of the current frame, while
the ERA extension optimizes the termination boundary effect and transmits more accurate
extreme information for the recursive EMD of the next frame.

To further verify the effectiveness of the combination of the two methods, a comparison
was made with several common methods. The first IMF component of the global EMD and
the following types of methods were used for simulation comparison: (1) non-recursive
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EMD without extension; (2) non-recursive EMD with mirror extensions; and (3) recursive
EMD with ERA extensions. The sifting result is shown in Figure 4a, and the cumulative
error compared to the global EMD is shown in Figure 4b.
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The simulation signal x(t) = sin(2π2t) + cos(2π5t) is taken as an example to check
the procedure. The signal is sampled at 100 Hz, the sampling time is 1 to 10 s, and the ERA
singular value truncation r = 0.1n = 0.05 signal length. The above time is also divided
into four processing frames to simulate online stream processing; each frame is processed
individually and compared with the global EMD batch results.

The mean square errors of the three methods are 0.9123, 0.0287and 0.0001487, and the
absolute error accumulation shows that the recursive EMD with ERA extension used in this
paper reduces the errors generated by stream processing and has the best effect. Here, only
the 1stim f are considered, and the trend of the experimental data is the same for others.

3. Online Signal Processing Framework Based on Recursive EMD

The online recursive EMD signal processing framework (referred to as OREMD)
consists of the following seven steps (shown in Figure 5): ERA extending; recursive EMD;
selecting effective IMF based on correlation coefficients; adaptive filtering for medium-IMF
optimization; signal reconstruction; signal post-processing; and transmission to the next
calculation frame.

Step 1:
Extend the current frame signal with ERA to reduce the boundary effect; if the exten-

sion signal is extremely fluctuating (usually greater than three times the existing data), it is
replaced by mirror extension.

Step 2:
Using recursive EMD, decompose the extended signal, obtaining up to ten IMFs. Ten

IMFs are enough for the subsequent process.
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Step 3:
The basic idea of the EMD-based sifting method is that the noise signal is contained in

the high-frequency IMFs. Removing these IMFs can improve the signal-to-noise ratio and
reveal the true value of the signal. There are two categories to obtain the high-frequency
IMFs. One is manually specifying the first one or two as the high-frequency IMF(s), which
is subjective and only applies to specific signal cases. However, for online signals, each
frame of the signal characteristics is different. The other is the cross-correlation coefficient
method, which uses the correlation coefficient between the original signal and the IMFs to
select high-frequency IMFs [28]. The cross-correlation coefficient is defined as:

R(x, im fi) =

∣∣∣∣∣∣∣∣∣∣
N
∑

t=1
(x(t)− x)

(
im fi(t)− im fi

)
√

N
∑

t=1
(x(t)− x)2

√
N
∑

t=1

(
im fi(t)− im f i

)2

∣∣∣∣∣∣∣∣∣∣
(7)

where x(t) is the original signal, im fi is the ith IMF, N is the length of x(t), x = 1
N

N
∑

t=1
x(t)

is the average of x(t), and im fi =
1
N ∑N

i=1 im fi(t) is the average of im fi.
With the increase in the number of EMD iterations, the correlation between intrinsic

modal and noise will also decrease. Conversely, the correlation with the real signal will
increase, the correlation coefficient is the result of superposition of two types of correlation,
and negatively correlated sexual configuration of information is equally ignored. To further
improve the applicability of this method, this paper uses the correlation coefficient to
establish evaluation criteria, establishing the foundation for the next processing step, which
is as follows:

As the depth of EMD iterations increases, the correlation between the IMFs and the
noise decreases; conversely, the correlation with the real signal increases. It is worth noting
that the negative correlation is also important, so the absolute value is taken. To further im-
prove the applicability of the method, this paper uses this correlation coefficient to establish
the evaluation criteria for the next processing step. All correlation coefficients R(x, im fi)
are normalized to range [0, 1] to obtain R0(x, im fi) and classified. The classification results
are shown in the following Table 2.

Table 2. Correlation coefficient classification.

Name R0 Meaning Processing

im fi(low) 0.0–0.3 Low-related Abandon
im fi(mid) 0.3–0.8 Medium-related Handle
im fi(high) 0.8–1.0 Height-related Retain

The main significance of this step is to evaluate and determine the valid IMFs.
Step 4:
Medium-related IMFs im fi(mid) contain some valid information, so it is necessary to

optimize medium-related IMFs to keep the process and peak information.
From the perspective of the frequency domain, the larger the R(x, im fi) the closer the

component is to the effective signal, and the frequency domain information distribution
condition is closer to the effective signal. Based on this feature, this paper uses adaptive
low-pass filtering to optimize the medium-related IMFs im fi(mid); the specific steps are
as follows:

First, record the im fi with highest R0(x, im fk) as the optimal frequency im fk. When
i < k, compared to the im fk, the im fi(mid) belongs to the high frequency IMFs, which
contain too much high frequency information. So, a low-pass filter is used to optimize the
im fi(mid) and improve relevance. The cut-off frequency flimit is the key to the designed
low-pass filter, which is stetted by the correlation coefficient R0(x, im fi) in this paper
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(Algorithm 2). When i > k, compared to the im fk, the im fi(mid) belongs to the low
frequency IMFs, which contain too much low frequency information. So, a high-pass filter
can be used to optimize the im fi(mid). However, the energy decreases with iterative depth
increasing, resulting in the effect of optimization not being obvious, so it is reserved directly.

Algorithm 2. Adaptive low-pass filter

Initialize im fi, R0(x, im fi)max → k = i
if i < k do (low-pass filter)
Si( f ) = PSD(im fi) (One-sided power spectrum density)

Pi(k) =
k
∑
0

Si( f ), k ∈ [0 ∼ f ] (Cumulative summation)

Plimit = R0(x, im fi)× Pi( f )
find Pi(k) = Plimit → flimit = k
im f lowpass

i = lowpass(im fi, flimit)
if i > k do nothing

Low-pass filtering is used to optimize the IMF in terms of energy in the frequency
domain. Although the signal amplitude and phase information are not considered, the
method is better suited for optimization and has optimized results in most situations.

Step 5:
Obtain im f lowpass

i after the adaptive filtering of im fi(mid); the signal is sifted as follows:

xre(t) =
m

∑
i=1

im f lowpass
i +

n

∑
i=m

im fi(high) (8)

Step 6:
Sifted signals contain most of the effective information and partial noise, at which

time the status of the response signal is specific and the usage requirement, the signal to
noise ratio, is further improved by median filtering. This method utilizes the numerical
value in the middle value in the data window, which is excellent for the distribution of the
outbound point signal, and the specific expression is as follows:

The sifted signal xre(t) contains most of the valid information and some noise, so the
median filtering should be used to further improve the signal-to-noise ratio depending
on the specific situation of the signal and the usage requirements. This method uses the
median value in the data window, which performs well for outlier signal distributions. The
expressions are as follows:

X(i) = median(x(i−M/2), . . . , x(i + M/2)), i = M/2 + 1, M/2 + 2, . . . , N −M/2 (9)

where N is the length of the signal, and M is the length of the window.
Step 7:
Repeat the process of the next calculation frame.
The control parameters of online recursion EMD (OREMD) include the number of

singular value truncation r of ERA noise reduction and expansion and the median filter
width M of the sifted signal.

When ERA mainly plays the role of expansion, for signals with unknown signal-to-
noise ratio, the r of singular values can be taken above 0.8n to retain the original information
components of the signal as much as possible. For the median filter width M of the sifted
signal, a suitable width can be chosen depending on the quality of the sifted signal.

The original signal x(t) is processed by OREMD to obtain xre(t) = OREMD(x(t), r, M).
The framework inherits the high adaptiveness of EMD and requires only a few parameters
to meet the requirements for online data.
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4. Verification

In this section, standard nonlinear noise test signals are used to verify the applicability
of OREMD and to evaluate its effectiveness, which is evaluated by MSE. The following
changes were made to simulate the online signal processing:

1. Change the standard signal reproduction period to simulate the actual signal time
randomness and avoid the influence of periodicity.

2. Compress the standard signal amplitude to simulate the intensity change of the actual
signal and avoid the effect of repeatability.

3. Add standard signal noise components to verify the effectiveness of the sifted signal
of the framework.

4. Divide the standard signal length and simulate online streaming processing to verify
the effect of different time scales.

4.1. Verification of the Proposed Signal Sifting Method

The standard signal is a non-linear non-smooth Heavy sine (Hs) signal (shown in
Figure 6a) with a length of 128, a period of 500, 300, and 200 data points, and three types
of amplitude compression: 0.8, 0.6, and 0.4. The Gaussian noise with a mean of 0.5 and a
variance of 1 is added to form the test signal x(t) (shown in Figure 6b):

x(t) =
〈
{Gauss noise(0.5, 1)} (10a)
{{0500, 1Hs, 0500, 0.8Hs, 0300, 0.4Hs, 0300, 0.6Hs, 0200, 0.8Hs, 0500} (10b)

(10)

where 0i is a zero value signal with a length of i; α Hs indicates standard signal Heavy sine (Hs)
amplitude compression by a factor of α. Equation (10b) indicates that the signals shown are
sequentially articulated to form a new signal. The red line represents the valid Hs signal part.
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Figure 6. (a) Heavy sine signal. (b) Test signal x(t). Figure 6. (a) Heavy sine signal. (b) Test signal x(t).

The signal has a total length of 2940 data points and is divided into five segments
x(t)1 − 5 with 588 data points per segment. The parameters of OREMD n = 200,
r = 0.9n , M depends on the effect.

Take the second segment x(t)− 2 as an example (shown in Figure 7a), which has two
ends located in the standard signal change section.

The signal is first extended for 50 data points (shown in Figure 7b), and the extension
result extracts the features of the signal as much as possible and continues the wave-
form characteristics.
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In the next step, recursive EMD decomposition is performed, and the correlation
coefficients of IMFs are counted in Table 3.

Table 3. Correlation coefficient of IMFs (x(t)-2).

x(t)-2 R(x,imfi) Normalization Rnew(x,imfi) Results ∆

im f1 ∼ im f10

0.0110 0.0000 0.0110 × 0.0000
0.0266 0.0205 0.0266 × 0.0000
0.0272 0.0213 0.0272 × 0.0000
0.7422 0.9607 0.7422

√
0.0000

0.7721 1.0000 0.7721
√

0.0000
0.5107 0.6566 0.5107

√
0.0000

0.5523 0.7112 0.5523
√

0.0000
0.5585 0.7194 0.5585

√
0.0000

0.5685 0.7325 0.5685
√

0.0000
0.5156 0.6630 0.5156

√
0.0000

Results: × (Abandon),
√

(Retain).

The maximum correlation coefficient R(x, im fi) is im f5, so it is only necessary to opti-
miz im fi(i = 1, 2, 3, 4). R(x, im fi), (i = 1, 2, 3) are less than 0.3 after normalizing, judged as
low-related IMFs discarded. R(x, im fi), (i = 4) is more than 0.8 after normalizing, judged
as high-related IMFs retained like the other IMFs.

Since this segment has no filter requirement, another segment x(t)-3 is used as an
example, and the correlation coefficients of IMFs are counted in Table 4.

Table 4. Correlation coefficient of IMFs (x(t)-3).

x(t)-3) R(x,imfi) Normalization Rnew(x,imfi) Results ∆

im f1 ∼ im f10

0.0040 0.0000 0.0040 × 0.0000
0.1101 0.1606 0.1101 × 0.0000
0.0706 0.1009 0.0706 × 0.0000
0.3571 0.5345 0.4289 # 0.0718
0.6646 1.0000 0.6646

√
0.0000

0.5058 0.7596 0.5058
√

0.0000
0.3417 0.5113 0.3417

√
0.0000

0.2980 0.4451 0.2980
√

0.0000
0.2520 0.3754 0.2520

√
0.0000

/ / / / /
Results: × (Abandon),

√
(Retain), # (Handle).

The maximum correlation coefficient R(x, im fi) is im f5, so it is only necessary to opti-
miz im fi(i = 1, 2, 3, 4). R(x, im fi), (i = 1, 2, 3) are less than 0.3 after normalizing, judged as
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low-related IMFs discarded. R(x, im fi), (i = 4) is less than 0.8 after normalizing, judged as
medium-related IMFs handled. The Rnew(x, im fi) (i = 4) improved 0.0718 after filtering,
about 20%, which reflects the effectiveness of the adaptive low-pass filter.

For x(t) − 2 the method of OREMD yields xre(t) = ∑m
i=1 im f lowpass

i + ∑n
i=m im fi

= ∑10
i=5 im fi (shown in Figure 8a,b). To further compare the sifting effect, the results

after the median filter of M = 10 are shown in Figure 8c,d.
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Figure 8. Signal sifting results: (a,b) OREMD. (c,d) Median filtering. (e,f) Traditional EMD.

The MSE of OREMD is 0.2015. The median filter width is taken as M = 18, and the
optimal MSE is 0.3183. The MES of traditional EMD is 0.6599. The sieving error using the
conventional EMD method is relatively large, so median filtering is used as a comparison in
the subsequent content. Intercepting the original effective signal x(t)[450− 580] segment
(Figure 8b,d,f), OREMD sifting is smoother and has higher similarity.
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To further verify the sifting effect of different noise levels, Gaussian noise with mean
0.5 and variance 0.5, 1.5, and 2 were added to the original signal to form a new test signal
x0.5(t), x1.5(t), x2(t). The results are shown in Figure 9.
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deviation, (c,d) 1.0 standard deviation, (e,f) 2.0 standard deviation.

The MSE in the four cases was counted to evaluate the effectiveness of the method
and compared with the median filter in Table 5.
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Table 5. Sifting effect of different signal sources.

Test Signals MSE-OREMD MSE-MID MSE-Original

Original signal 0.00 0.00 0.00

Gaussian noise with variance 0.5
r = 0.9n = 90; M = 10 M = 14

0.4944
0.1776 0.2695

Gaussian noise with variance 1.0
r = 0.9n = 90; M = 10 M = 16

1.2327
0.1666 0.3361

Gaussian noise with variance 1.5
r = 0.9n = 90; M = 10 M = 20

2.5724
0.2426 0.3358

Gaussian noise with variance 2.0
r = 0.9n = 90; M = 10 M = 22

4.2093
0.3234 0.4438

Due to the random generation of Gaussian noise, the above data are the result of
non-extreme processing. The sifting effect by OREMD is significantly better than the direct
mean filter sifting. In addition, OREMD retains the local features of the effective signal
better; the median filtering has a significant peak-shaving effect. In summary, OREMD is
better for signal sifting

4.2. Parameter Sensitivity Analysis

The sensitivity of a parameter is defined as the degree of influence of the preset
parameter on the sifting effect. For online systems, the preset parameters are not modified
easily during signal processing. Due to the lack of a priori conditions for future information,
the pre-defined parameters must be determined at the beginning. When the errors and
trends of the data change over time, the variability of the sifting results is obvious if the
parameters are too sensitive. Therefore, for large-scale temporal data, parameter sensitivity
is one of the decisive factors in determining the quality of signal sifting [10].

The MSE is also used to evaluate the quality of the signal sifting, and the main
parameters of xre(t) = OREMD(x(t), r, M) include the truncation value r and the median
filter window M. The standard signal is divided into five segments as in the previous
section, and the M is taken to be in the range of 2–20 with an interval of 2, for a total of 10;
the truncation value r is taken to be in the range of 0.1n ∼ n(10~100) with an interval of
0.1n(10), for a total of 10. Considering the randomness of the generated noise error, each
case is simulated 10 times, totaling 10× 10× 10 = 1000 times, and the results are averaged.
The results are shown in Figure 10.

From the results, the larger r and M are, the better the sifting effect; there exists a case
of optimal parameters, and the MSE of the OREMD is as follows:

MSEmax = 0.2863, MSEmin = 0.1678, ∆ = 0.1185

Median filtered signal:

MSEmax = 0.3361, MSEmin = 0.5929,∆ = 0.2568

After comparison, it is shown that the OREMD method in this paper has lower
sensitivity with optimal MSE.

In addition to the above parameters, the time scale of the computational frame is
another important influence on the OREMD. If the time scale is too small, errors are
generated by frequent boundary effects, resulting in poor sifting effect, and if the time scale
is too large, the time lag affects the real-time processing efficiency.

This section evaluates the effect of signal sifting at different time scales. The standard
signal is the same as Formula 14 and divided into five categories of 2, 4, 5, 6 and 10 segments
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to explore the time scale robustness. MSE was used to evaluate the sifting effect, and the
results are shown in Table 6.
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Table 6. MSE statistics on different time scales.

Time Scale Data Number MSE-OREMD MSE-MID MSE-Original

1 segment 2940 0.1274 0.3614 1.2620
2 segments 1470 0.1357 0.3459 1.2355
4 segments 735 0.1508 0.3453 1.2442
5 segments 588 0.2223 0.3470 1.2405
6 segments 490 0.1987 0.3658 1.2666

10 segments 294 0.2443 0.3390 1.2510
Note: The OREMD (r = 0.9n, M = 10).

From the results, the original signal of global OREMD works best, and the MSE tends
to rise with more segments of the signal decomposition, but there exist individual time
scales that can be optimal between the interval and error balance.

According to the calculation principle, the MSE increases as the time scale decreases,
but here the MSE of six segments is smaller than the seven segments, which is mainly
caused by the error of the demarcation point after analysis, and the specific division effect
is shown in Figure 11.
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When the original signal is divided into five segments, the first, second, and fourth
demarcation points are in the segments of the standard signal, where the signal characteris-
tics are more volatile compared to the noisy signal and the amplitude changes significantly,
resulting in generating more error and affecting the quality of the sifted signal. When the
signal is divided into six segments, the demarcation point is in the smooth segment of the
signal, resulting in error being smaller. Through the above analysis, the recommended time
scale is about three to four times that of the effective signal, at which time the calculation
efficiency is in the high range, and the overall information sifting is better.

After the above theoretical data validation, the validity, parameter sensitivity, and
time-scale robustness of OREMD were evaluated. The results showed a significant effect
on both data and visual quality.

5. Application in Strain Monitoring Data Processing of Fabricated Girder Bridge
5.1. Project Background

Transverse collaborative working performance is one of the important indicators of
the service health of assembled girder bridges, and the transverse collaborative working
performance can be judged by using the load condition combined with the structural
characteristics of the bridge itself [29]. The actual traffic loads are obtained through the
bridge health monitoring system; however, some of the side span sensors are affected by
noise and other effects, resulting in poor data quality. Therefore, the above OREMD is
applied to the real-time data from the strain sensors of Wuhan Daishan Second Bridge to
screen out the effective traffic strain signals for subsequent evaluation.

In this section, the OREMD is applied to the real-time data from the strain sensors
of the Wuhan Daishan Second Bridge, which is an assembled reinforced steel three-span
continuous T-beam bridge with a 33.1 m side span and 40.13 m main span. The sensors
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are arranged at the bottom of each T-beam in the side span, which is about 50 cm from the
bottom of the beam to protect the cables (Figure 12). The sampling frequency is 20 Hz and
the data are from 19 November 2020.
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Figure 12. (a,b) Diagram of the sensor arrangement; (c) resistive surface strain gauge.

The strain sensor system for the bridge adopts resistive surface strain gauges, and
the sensors are installed at the bottom of the girder by surface-mounting. The concrete
surface is polished and de-dusted before installation to ensure the stability of the sensor.
During the operation of the sensor, the vehicle passes over the cross section of the sensor
arrangement on the bridge deck, and the sensor records the structural response to generate
an electrical signal, which is converted into a dynamic strain signal through the on-site
strain-gathering box around the clock and then transferred to the workstation computer
database for extraction and analysis in real time through the cable (Figure 13).
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Figure 13. (a) Elevation layout of structural stress monitoring measurement points. (b) Plan layout of
structural stress monitoring measurement points.

5.2. Traffic Induced Strain Component Sifting

The data come from half-bridge sensors DSS-01, DSS-02, and DSS-03. DSS-01 is located
at the far side, where a certain distance exists from the main lanes, and the signal-to-noise
ratio of these data are low because the traffic load signal amplitude is small and the system
itself is noisy.

To achieve clearer calculation results, DSS-01 was processed to intercept the data from
00:01:40 to 00:10:00 of the day, and the traffic signal characteristics existed within the signal
range of this segment. This signal was divided into 20 segments DSS-01-1~DSS-01-20 for
OREMD processing, with an average of 500 data points per segment and a duration of 25 s.
The raw data are shown in Figure 14a.
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Using DSS-01-1 as an example (this part is enlarged from the purple window in
Figure 14a to obtain Figure 14b), first take the last 200 data points of the current data for
ERA extension (shown in Figure 14b red window), the hankle(n× s) matrix n = 80, s = 120.
Take r = 0.5n = 40 and extend 50 data points backward. The extended data points are in
line with the characteristics of the noise signal fluctuating around amplitude 0 with certain
accuracy.

In the next step, recursive EMD decomposition is performed, and the correlation
coefficients of IMFs Rnew(x, im fi) are counted in Table 7.
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Table 7. The correlation coefficient of DSS-01-1.

DSS-01-1 R(x,imfi) Normalization Rnew(x,imfi) Results ∆

im f1 ∼ im f10

0.0293 0.0000 0.0293 × 0.0000
0.1311 0.1135 0.1311 × 0.0000
0.3393 0.3457 0.3732 # 0.0340
0.9259 1.0000 0.9259

√
0.0000

0.7888 0.8471 0.7888
√

0.0000
0.5518 0.5828 0.5518

√
0.0000

0.3444 0.3514 0.3444
√

0.0000
0.2078 0.1991 0.2078

√
0.0000

/ / / / /
/ / / / /

Results: × (Abandon),
√

(Retain), # (Handle).

The maximum correlation coefficient R(x, im fi) is im f4, so it is only necessary to
optimize im fi(i = 1, 2, 3). R(x, im fi), (i = 1, 2) are less than 0.3 after normalizing, judged
as low-related IMFs discarded. R(x, im fi), (i = 3) is less than 0.8 after normalizing, judged
as medium-related IMFs handled. The Rnew(x, im fi)(i = 3) improved 0.0340 after filtering,
about 10%, reflecting the effectiveness of the adaptive low-pass filter.

Sifting yields xre(t) = im f lowpass
3 + ∑8

i=4 im fi. The result is shown in Figure 15a.
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Figure 15. Signal sifting: (a) DSS01, (b) DSS01 (8000-9000).

The 8000-9000 fragment of DSS-01-1 is intercepted as Figure 15b. The traffic load
signal is smooth without obvious noise interference in this fragment, and without median
filtering processing, the peak feature information of the effective signal is better. The results
show that the OREMD sifting yields accurate traffic load information.

DSS-02 and DSS-03 are located near the main lane in the cross-bridge direction, so
traffic signal amplitude is greater compared to noise, which means the high signal-to-noise
ratio. The sifting results are shown as Figure 16.

Due to the high signal-to-noise ratio of the original signal, the sifted signal is accurate
and more reliable, and the peak weakening is smaller.
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5.3. Transverse Collaborative Working Performance

By analyzing the correlation between the strains at the bottom of each beam under
traffic load, a simple judgment can be made on the performance of transverse co-working,
and direct correlation analysis of DSS01, DSS02, and DSS03 above is obtained as follows:

DSS01DSS02DSS03

ρij =

 1.000 0.663 0.655
1 0.961

1

 OREMD→ ρij =

 1.000 0.928 0.909
1 0.977

1

 DSS01
DSS02
DSS03

(11)

The sifted results show that the traffic signals are more correlated. The correlation
between DSS01 and DSS02 is stronger than the correlations with DSS03, which is in line
with the actual situation.

In addition, the trend of each data correlation can be monitored in real-time through
long-term data monitoring, which can be used to evaluate the horizontal synergistic perfor-
mance of each piece of the main beam in the operation state.

6. Conclusions and Outlook

The method proposed in this paper is not only applicable to bridge health monitoring
systems, but also to other building types. During the service period of some building
structures, the strain effect waveforms caused by live loads are often significantly different
from those caused by other loads, so we can use these time domain waveform differences
to screen the strain components under different loads using the method proposed in this
paper. For example, for a row-frame industrial plant structure with crane beams, the
strain waveforms generated by the crane beams during the travel of the crane beams are
significantly different from those generated by other causes, and we can use the method
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in this paper to screen the strain components generated by the working load of the crane
beams online in real time. Another example comes from the fact that large-span arena
structures, especially stadium-type structures, are often exposed to strain effects caused by
crowd activity, especially when the crowd generates rhythmic movements, and the strain
effect waveforms have distinctive features that distinguish them from other loads. The
screening of this effect component is performed using the method suggested in this paper.

In this paper, we propose a real-time signal sifting framework OREMD for an online
monitoring environment, which retains the adaptive characteristics of EMD and is suitable
for signal sifting of single load effect components in an online monitoring environment.
The main findings are as follows:

1. The recursive EMD method and the ERA expansion method are used to effectively
solve the docking difficulties between the decomposition components in the online
monitoring environment and reduce the errors caused by boundary effects.

2. Improving the utilization of IMF by the adaptive filtering method of the IMF corre-
lation coefficient ensures the quality of signal reconstruction in online monitoring
environments and improves the automation of signal processing.

3. Numerical simulation cases show that the method is highly adaptable to signals with
different noise levels, different reproduction periods, and different intensities, and is
robust to signals of different lengths on time scales. For strain monitoring signals of
engineering structures, the OREMD method has few pre-set parameters and is highly
adaptive for engineering implementation. Finally, for other load effect signals, the
effectiveness of the proposed method in this paper needs further validation.
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