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Abstract: A seismic damage detection method for isolated buildings is proposed based on substruc-
ture identification with incomplete contaminated measurements. A concept of a pseudo substructure
with virtual conditions is constructed for the proof of the proposed substructure identification method.
This identification method is implemented in a two-stage procedure. The interface forces of the target
substructure are identified in the first stage and the parameter of the target substructure is updated
in the second stage, which can enable the parameter identification of substructures with unknown
input. Two computational methods are also proposed to improve the two-stage identification algo-
rithm. A sub-time zone identification method is utilized to reduce the computation effort and the
simultaneous identification of the unknown force and initial structural responses is presented in the
first-stage identification for a general case in practical engineering. Numerical studies of a shear
frame with nonlinear base isolation subject to earthquake ground motion are investigated to validate
the proposed seismic damage detection method. A fourteen-storey concrete shear wall building
with a two-storey steel frame on top connected by isolation is studied experimentally with shaking
table tests to further validate the proposed method. The shear wall structure is taken as the target
substructure for damage assessment. The interface force and parameter of the concrete shear wall
building are estimated with the proposed method. Results from both the numerical simulations and
laboratory tests indicate that the proposed method can estimate seismic isolated structures and detect
damage effectively based on only a few accelerometers. It is also demonstrated that the parameter
identification results based on the structure response measurement during the earthquake are more
accurate than the identification with post-earthquake structural response measurement.

Keywords: substructure; isolation structure; damage detection; force identification; shaking table test

1. Introduction

Structural seismic damage estimation is a major component of the function in a
structural health monitoring system, which contributes to the seismic resilience. A large-
scale structural system may have complex boundary conditions and uncertainties due
to the discreteness of components in structures and variability in the material properties.
Models on the boundary conditions and any innovative structural vibration control device
for seismic protection in a large-scale civil structure may not be accurate. The identification
accuracy of the superstructure, as the substructure of the whole structural system, may
depend on the simulation results of the boundary conditions.

In the past few decades, many methods have been developed for structural health
monitoring, structural parameter identification, and damage detection. There are review
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papers providing a detailed summary on the vibration-based damage identification meth-
ods [1–3]. These methods can be broadly classified into three categories: (1) time domain
methods, (2) frequency-domain, and (3) time-frequency domain methods [1–4]. The meth-
ods in the frequency domain [5] include the peak picking method, methods with the
transfer function, frequency response function, frequency domain decomposition, and
eigensystem realization algorithm (ERA), etc. with tools in the frequency domain such
as transfer function and modal parameters such as natural frequencies, mode shapes,
mode shape curvature, flexibility matrices, mode strain energy [6–8], etc. Methods in the
time domain include the Ibrahim time domain method, least-squares complex exponential
method, and ERA methods. With measurements of the structure in the time domain, the
location and severity of the local structural damage can be detected [9]. Mixed time and
frequency domain techniques [4], such as the short-time Fourier transform, empirical mode
decomposition, and wavelets, have also been applied to identify the linear time-variant
and time-invariant systems.

The structural model updating method with the structural response sensitivity has
been investigated and applied extensively to damage detection. The sensitivity matrix of
the response with respect to the structural parameters is derived to locate and quantify the
damage. It has been demonstrated that as few as a single sensor can accurately locate the
damage with the sensitivity of the response [10,11]. A new damage identification approach
has been proposed by Law [12] and local damage was identified through a substructure
method. However, the literature on the structural response sensitivity method did not
consider the influence of the coupling of the sensitivity matrices of the response and the
interface force with respect to the structural parameters [13]. Additionally, they did not
consider the nonlinear component in the structural system.

The performance of buildings with isolation subjected to strong earthquake excitations
has been increasingly investigated. Numerous studies have been conducted on the seismic
performance of base or inter-storey isolated structures. Most of the previous studies
focused on the response of the isolation system or the response of the summation of the
superstructure and the isolation system [14–17] while fewer studies have investigated the
seismic condition evaluation and damage detection of this kind of structure. Considering
the in situ calibration of the elastomeric bearings method with low cost, the nanoindentation
test has been proposed as a promising tool for the isolation layer for the seismic isolated
structure [18,19], which could also contribute to the superstructure’s identification.

The substructural synthesis method has been applied to investigate complicated
structures since the 1960s [20]. A large structural system can be divided into smaller
substructures for separate analysis with a reduced number of unknowns [21–25]. The
condensation method can also be applied to the structural dynamic analysis [26,27], but
information from the condensed finite element model may not always match information
from the original finite element model. However, the force identification in the first stage
is always time-consuming work. Furthermore, the initial state of the structural response
is commonly unknown and non-zero in practice. Target substructure identification with
sensitivity matrix may be adversely influenced by the model error of the other substruc-
tures. There may some identification errors due to the errors in the structural time histories
without considering the structural initial response. As the references mentioned above, a
suitable application of the time-domain substructure identification method and computa-
tional efficiency should be developed, which is also the objectives of this study. There are
also some modern computing methods that have been applied in classification, identifica-
tion, and, especially, seismic vulnerability and fragility/damage assessment [28–31]. These
series methods do not require the finite element model of structures and can be applied in
areas with a high density of earthquakes while it works differently from damage detection
by a structural health monitoring system, which can conduct comprehensive analysis with
the damage detection results from measurement data and vulnerability analysis.

The substructure identification method is suitable for the identification of superstruc-
tures in seismically isolated buildings. The substructure identification method is firstly
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theoretically proved with the time domain response sensitivity with respect to the pa-
rameter in this study and then applied to the damage detection of seismically isolated
buildings with an unknown initial structural response, including structural displacement,
velocity, and acceleration. A new concept of a pseudo substructure with virtual boundary
conditions is presented for the proof process, which was not found in previous study. The
main structural system in a seismically isolated building can be divided into two substruc-
tures. One substructure is above the isolation layer while another substructure is below the
isolation layer. The two substructures interact with each other via the isolation layer and
the interaction force is unknown. A two-stage identification procedure is proposed in this
process. With the substructure identification method, the interface forces can be identified
in the state space in the first stage and the local damage is detected in the second stage.
Two new computational methods are proposed to improve the first-stage identification.
A sub-time zone force identification method in the first stage is proposed to improve the
computation efficiency of the force identification. Additionally, a method of simultaneous
identification of the interface force and the initial response on all DOFs of the structural
system is illustrated to take into account the practical problem in engineering application.
An adaptive Tikhonov regularization method is applied iteratively [32] with an adaptive
limit to identify the damage extent [33], which improves the convergent property in practi-
cal application. The results of the numerical simulation of the shear frame with isolation
and shaking table test of an inter-storey isolation structure are shown to be accurate even
with measurement noise, an unknown initial structural response, and model errors.

2. Dynamic Responses for Substructures

The equation of motion of an N degrees-of-freedom (DOFs) damped structural system
subject to base excitation and general external force can be represented as:

M
..
x + f (x,

.
x) = −MG

..
xg + LF (1)

where M is the mass matrix and f (x,
.
x) denotes the summation of the damping force and

restoring force, which may be nonlinear function.
..
xg represents the ground acceleration, G

is the location matrix of the earthquake force, F denotes the vector of external excitation
forces on the structure, and L is the mapping matrix for the external force F.

..
x,

.
x, and x

are the vectors of acceleration, velocity, and displacement, respectively, of the structural
system. Figure 1 shows a structural system with inter-storey isolation, which may behave
nonlinearly during an earthquake or other extreme excitation. The main structural system,
as shown in Figure 1, can be divided into two substructures as a summation of the substruc-
ture above the isolation and the substructure below, which may include the support and
the soil mass surrounding the support. The equation of motion of each target substructure
needs to include the interaction with the remaining part of the structural system [13]. The
equation of motion for the substructure can be represented as:

Mss
..
xs + Css

.
xs + Kssxs = −(MG)s

..
xg + LsFs + Fin (2)

where Css and Kss are the damping and stiffness matrices of the target substructure, re-
spectively. The Rayleigh damping model is assumed in this paper as C = a1M + a2K. Fin
denotes the set of interface forces between the two substructures, the subscript s denotes
the substructure above the isolation, and the subscript r denotes the substructure that
is below the isolation. Subscripts sr and rs denote the interface DOFs of the substruc-
tures. Only in the linear structure, the interface forces can be accurately represented by
−(Msr

..
xr + Csr

.
xr + Ksrxr). In general cases, the interface force cannot be accurately rep-

resented. This is because finite element modeling of the interface is always difficult to
achieve, or the interface forces may be a nonlinear function of the responses.
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3. Illustration and Proof for the Substructure Identification Method

Previously proposed substructure methods in the time domain for structural condition
assessment always assume a set of well-known boundary conditions. In the application,
there are two cases of assumptions for the application. In the first case, the boundary is
assumed to be rigid. In this case, the term Fin in Equation (2) is ignored and the equation of
motion of the substructure becomes:

Mss
..
xs + Css

.
xs + Kssxs = −(MG)s

..
xg + LsFs (3)

In another case, the interaction force of Equation (2) is supposed to be measured. The
equation of motion is still as Equation (2) while the term Fin is taken as the constant time
history. Otherwise, Equation (3) cannot be used directly.

Assuming the damage extent of the ith element in the target substructure is represented
as a reduction factor, αi, the change in the global stiffness matrix of each substructure, can
be described as:

∆K =
Ne

∑
i

αiKi (4)

where Ne denotes the number of finite elements of the target substructure. The unknown
vector of the structural parameters to be identified is defined as α = [α1 α2, . . . αNe]t. Based
on the two assumptions above and performing differentiation on both sides of the equation
of motion for the two cases above with respect to the structural parameters αi, the equation
can be obtained as follows:

Mss
∂

..
xs

∂αi
+ Css

∂
.
xs

∂αi
+ Kss

∂xs

∂αi
= −∂Kss

∂αi
xs − a2

∂Kss

∂αi

.
xs (5)

The responses
..
x,

.
x, and x are obtained by the step-by-step time integration method

from Equation (2). They are then substituted into Equation (5). The matrices ∂
..
xs/∂αi,

∂
.
xs/∂αi, ∂xs/∂αi can then be solved similarly by the step-by-step time integration Newmark-

β method from Equation (5). The local damage of the structure can be detected with
different optimization tools.

However, in structures with isolation, the boundary conditions for the substructures
are not as ideal as the two cases mentioned above. In the structure with isolation, the change
in the structural parameter may have a large influence on the time history of the interface
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force of the substructure. When the interaction force changes with the parameters of the
target substructure, the methods for the special cases shown above are not applicable for the
condition evaluation as shown in this section below. In this general case, the interface force
Fin in Equation (2) is known to be a function of the structural parameters αi. Equation (6) is
obtained after applying differentiation with respect to the structural parameter αi to both
sides of Equation (2):

Mss
∂

..
xs

∂αi
+ Css

∂
.
xs

∂αi
+ Kss

∂xs

∂αi
= −∂Kss

∂αi
xs − a2

∂Kss

∂αi

.
xs +

∂Fin
∂αi

(6)

Equation (6) is different from Equation (5), with an extra term of ∂Fin/∂αi at the end
of the equation. The matrices ∂

..
xs/∂αi, ∂

.
xs/∂αi, ∂xs/∂αi, and ∂Fin/∂αi are coupled with

respect to αi and they are difficult to obtain.
A solution to Equation (6) is illustrated and proved in this section. With this solution,

the matrices of ∂
..
xs/∂αi, ∂

.
xs/∂αi, ∂xs/∂αi can also be calculated with Equation (5) but

with a different physical meaning. The proof is provided below. In this general case, the
information required is just the initial model of the target substructure, the insufficient
measured acceleration response on the target substructure, and the time history of the
earthquake excitation. It is noted that each substructure shown in Figure 1 can be taken as
the target substructure and the substructure above the isolation system shown in Figure 2
is just for illustration.
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Proof. The solution of ∂
..
xs/∂αi, ∂

.
xs/∂αi, ∂xs/∂αi is based on the construction of a pseudo

substructure system with virtual boundary conditions and iterative model updating of
the pseudo substructure. The pseudo substructure system illustrated in Figure 2 consists
of the target substructures in the initial state with the interface forces from the virtual
boundary conditions. It is assumed that in this system, the virtual boundary conditions act
as virtual actuators, which can supply the force the same as the interface force of the target
substructure in real conditions with local damage under the effect of earthquake excitation.
Therefore, the pseudo system is subject to external forces Freal, including the interface forces
from the virtual boundary condition and the external excitation forces, which are identical
to those of the real target substructure with local damages. The response of the pseudo
substructure in the kth updating iteration, zk, can be represented as:

zk = f (Freal ,αk) (k = 1, 2, 3, . . .)

α1 = 0
(7)

Since Freal is a set of external force time history from the damaged target substructure,
the external forces Freal will not change in the subsequent computational iterations of
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the pseudo substructure. The response of the pseudo substructure in the updating can,
therefore, be represented as:

zk = f (αk) (k = 1, 2, 3, . . .)

α1 = 0
(8)

The equation of motion of the pseudo structural system can, therefore, be represented
by Equation (9) as:

Mss
..
xs + Css

.
xs + Kssxs = −(MG)s

..
xg + LsFs + Freal (9)

where the subscript real denotes the interface forces corresponding to the damage state
of the target substructure, and it is not a function of the stiffness reduction factor αi in
the iteration process. Hence, differentiation is performed on both sides of Equation (9).
Equation (5) can be obtained for the pseudo substructure and Equation (5) is applicable for
identifying the response sensitivity matrices. It is noted that the solution to Equation (9)
is equal to the solution to Equation (2) only when the real substructure and the pseudo
substructure have the same damage, including the extent and location. Thus, the model
updating of the pseudo substructure is equivalent to the model updating of the real target
substructure. This method is proved.

In the following simulation study, the “measure” response,
..
xm, is obtained as the

solution of the equation of motion in Equation (2) from the finite element model with local
damages. Taking acceleration as the measured information, the Taylor series expansion
on the difference between the “measured” response and the calculated response can be
represented as:

..
xm −

..
x =

∂
..
x

∂α
·α+ o(α2) (10)

where
..
x is the calculated response from the equation of motion of the pseudo substructure

system. The stiffness reduction vector α can be calculated from Equation (10) with an
optimization method as shown in [32–34]. �

4. The Computation Algorithm

Nonlinear base isolations are often installed at the base or inter-storey of smart struc-
tures to reduce the effect of earthquakes. The interface forces for the target substructure,
which can be on or under the isolation system, may be difficult to measure or calculate.
The present study takes both the interface forces and the local damages of the structure as
unknowns in the identification process. In the seismic condition assessment process, two
new computational strategies are adopted for substructure condition assessment, which
are illustrated in this section.

4.1. Identification of the Interface Forces in the First Stage

The equation of motion of the substructure can be expressed in the state space as:

.
z = ACz + BC(−MG

..
xg + L · F) (11)

where z =

[
x
.
x

]
, AC =

[
0 I

−M−1K −M−1C

]
and BC =

[
0

M−1

]
.

Where F is the vector of the external excitation forces and the interface forces. The
superscript C denotes the matrices of the continuous structural system. Vector y(t) ∈ Rns×1

represents the observation vector of the output of the structural system and it can be
expressed as a combination of acceleration, velocity, and displacement measurements as:

y = Ra
..
x + Rv

.
x + Rdx (12)
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with Ra, Rv, and Rd ∈ Rm×Ndo f , which are the output influence matrices for the measured
acceleration, velocity, and displacement, respectively; m is the dimension of the measured
responses; and Ndof is the number of DOFs of the structure. It is shown in Equation (12)
that just incomplete measurements are required. Equation (12) can be rewritten as:

y = Rz + D · (−M
..
xg + L · F) (13)

where R = [Rd −RaM−1K Rv −RaM−1C] and D = RaM−1.
Equations (12) and (13) can be converted into the following discrete equations as:

z(j + 1) = ADz(j) + BD · (−MG
..
xg + L · F(j)) (14)

y(j) = Rz(j) + D · (−M
..
xg + L · F(j)) (j = 1, 2, · · · , N) (15)

where superscript D denotes that the matrices are for the discrete structural system. N is
the total number of sampling points and dt is the time step between the state variables

z(j) and z(j + 1) and AD = exp(AC · dt), BD = (AC)
−1

(AD − I)BC. The output y(j) can
be expressed in terms of the previous input F(k), (k = 0, 1, · · · , j) and

..
xg with zero initial

responses from Equations (15) and (16) as follows:

y(j) =
j

∑
k=0

Hk · (−MG
..
xg(j− k)+L · F(j− k)) (16)

where H0 = D and Hk = R(AD)
k−1

B.
The constants in matrix Hk in Equation (17) are the system Markov parameters and

they are commonly used for the identification of linear dynamic systems [5]. Equation (16)
can be rewritten as:

Y−HG
..
xg = HLF (17)

where HL =


H0 0 · · · 0
H1 H0 · · · 0

...
...

. . . 0
HN−1 HN−2 · · · H0

LS, LS =


L 0 · · · 0
0 L · · · 0
...

...
. . . 0

0 0 · · · L



HG =


H0 0 · · · 0
H1 H0 · · · 0

...
...

. . . 0
HN−1 HN−2 · · · H0

GS, GS =


−MG 0 · · · 0

0 −MG · · · 0
...

...
. . . 0

0 0 · · · −MG


Y =

{
y(0)T y(1)T · · · y(N − 1)T

}T
, F =

{
F(0)T F(1)T · · · F(N − 1)T

}T
.

Where matrix HL is constant for a system, and the response vector Y can be obtained
from the measured responses. The identification equation for the vector of forces can be
written in least-squares sense as:

F = (HL
THL)

−1
HL

T(Y−HG
..
xg) (18)

The regularization method provides an improved solution to the ill-posed problem in
Equation (18), and the damped least-squares method [33–35] is adopted to give bounds
to the problem. Equation (19) shows the application of the regularization method in force
identification as:

HL
T(Y−HG

..
xg) = (HL

THL + λI)F

F = (HL
THL + λI)−1HL

T(Y−HG
..
xg)

(19)
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where λ is the non-negative damping coefficient governing the participation of the least-
squares error in the solution. Solving Equation (19) is equivalent to minimizing the function:

J(F, λ) =
∥∥HLF− (Y−HG

..
xg)
∥∥2

+ λ
∥∥F
∥∥2 (20)

The L-curve method [32] is adopted to find the optimal regularization parameter λ.
The intact FEM of the structure is considered in the first iteration and the updated FEM
of the structure is used in the subsequent iterations for the force identification [35]. With
the identified forces, the response of the structure can be calculated from Equation (9). The
local damages can be identified with the adaptive regularization method in the second
stage of the general response sensitivity method.

4.2. New Strategies with the First-Stage Identification
4.2.1. Sub-Time Zone Force Identification

The size of matrix HL is proportional to the number of sampling points in the measured
data and unknowns in the time history of forces. Calculation with a large-sized HL is time
consuming and can cause delay in the computation with online structural health monitoring.
The size of matrix HL is proportional to the discrete points in the time history of the external
force. Therefore, a reduction in the unknown discrete points in the time history of the
external force can improve the computation time.

A sub-time zone force identification procedure is proposed in this section for a more
efficient calculation. The measured data are divided into several non-overlapping sub-
time zones and the time history of the unknown external forces is identified in each time
segment. The initial responses in each segment are calculated from the identified forces
of the previous segment at the last sampling point with Equation (2). Hence, the only
unknowns in each segment of the external force are the force time history. With the
proposed method, the interface forces in each sub-time zone are identified separately in
the first stage while in the second stage, the local damage is identified with the complete
measured response time history.

4.2.2. Non-Zero Initial Response in Identification

It is very common that the initial responses of the structure are unknown in practice,
and the non-zero initial values affect the results of the structural condition assessment
based on the structural response in the time domain. When the initial response of the
structure is not zero, the time history of the responses of a structure is a function of the
initial state, external forces, and structural parameters. The response vector can, therefore,
be represented as:

Y = f (Y0, F,α) (21)

where Y0 is the initial state of the structural system. When the structural system is linear, the
responses of the structure can be considered as the summation of free vibration due to the
non-zero initial responses and the forced vibration due to external excitations. Equation (21)
can be rewritten as:

Y=Yfr+Yfo=g(Y0,α) + h(F,α) (22)

where Yfr = g(Y0, α) and Yfo = h(F, α) are, respectively, the responses of free vibration and
forced vibration.

Considering the free vibration only, the initial response of the structure can be repre-
sented as the summation of all mode shapes of the structure as:

Y0=
[

Φ 0
0 Φ

]
β (23)

where Φ is the normalized mode shape matrix of the structure and β is a (2 × Ndof ) × 1
vector of contribution coefficients for the vibration modes to be identified. Matrix Y0 has
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the dimensions (2× Ndof )× (2× Ndof ). The total response due to free vibration and forced
vibration of the structure can be represented as:

Y = Yini

[
Φ 0
0 Φ

]
β+ HLF (24)

where Yini is the free vibration response vector of the structure with one set of mode shapes
as the initial state of the structural response at all DOFs of the system. Equation (24) can be
written as:

Y =

[
Yini

[
Φ 0
0 Φ

]
HL

][
β

F

]
(25)

It is noted that the last vector in Equation (25) consists of the unknown force coefficients
and the coefficient vector β on the initial response of the system and it can be obtained by a
regularization method similar to Equation (20).

4.3. Damage Detection with the Regularization Method

Iterative regularization methods are usually adopted in practical inverse problems,
such as load identification, model updating, and damage detection. The objective function
in the problem of damage detection in Equation (10), with the Tikhonov regularization
method is defined as:

J(∆αk+1, λ) =
∥∥Sk∆αk+1 − ∆

..
xk∥∥2

+ λ2∥∥∆αk+1∥∥2
(26)

where S is the sensitivity matrix calculated from Equation (5) and k denotes the kth iteration
of the identification and ∆αk is the change in the parameter in the kth iteration.

The inverse problem is always ill-posed and measurement noise may have an adverse
effect in the process of identification. The iterative identification methods should be able to
ensure the significance of the structural parameters and mitigate the unfavorable effect of
noise in the identification. An adaptive regularization method has been proposed with an
adaptive upper limit on the identified damage determined based on the results from the last
iteration step. The objective function of optimization in damage detection is expressed as:

J(∆αk+1, λ) =
∥∥Sk∆αk+1 − ∆

..
xk∥∥+ λ2

∥∥∥k+1

∑
i=1

∆αi −αk,∗
∥∥∥ (27)

where αk,∗ is a value used to coordinate the constraint of the solution in the ith iteration in
the damage detection process. Parameter αk,∗ can be defined as:

(αk,∗)j =


0 if (

k
∑

i=1
∆αk)j > 0

(
k
∑

i=1
∆αk)

j
if (

k
∑

i=1
∆αk)

j
< 0

(28)

where the subscript j denotes the jth element of the target structure. (
k
∑

i=1
∆αk)j is the

cumulative identified change in the stiffness. The local damage can then be detected
iteratively with the obtained optimal parameter λ as:

∆αk+1 = (( ∂
..
x

∂αk )
T

∂
..
x

∂αk + λ2Iα)
−1

( ∂
..
x

∂αk )
T
(

..
xk

m −
..
xk
)

αk+1 = αk + ∆αk
(29)

At the end of the condition assessment, the pseudo substructure should have been
updated such that the interface forces and the FEM are updated identically to those of the
real damage state of the structure. It should be noted that the force applied by the isolation
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device is taken as the external excitation; so, this method can be used for both linear or
nonlinear isolation layers applied in buildings.

5. The Computation Algorithm

Step 1: Obtain the mass, damping, and stiffness matrices of the target substructure only.
Step 2: Construct the pseudo substructure system.
Step 3: Conduct measurement on the target substructure.
Step 4: Identify the interface forces of the pseudo substructure with the intact model

of the pseudo substructure in the state space using Equation (19).
Step 5: Compute the responses of the pseudo substructure with the intact finite element

model from Equation (9) with the identified interface forces.
Step 6: Calculate the response sensitivities with respect to the stiffness reduction factor

αn of the substructure ∂
..
xi/∂αn, ∂

.
xi/∂αn and ∂xi/∂αn from Equation (5).

Step 7: Calculate the local changes in the parameters αn of the pseudo substructure
from Equation (29) with the sensitivity matrix calculated in Step 6.

Step 8: Update the FEM of the pseudo substructure system.
Step 9: Repeat Steps 4 to 7 if the following convergence criteria are not met. Otherwise,

stop the computation.
The convergence criteria are defined as:∥∥∥∆αk+1 − ∆αk

∆αk+1

∥∥∥ ≤ Tol (30)

where k denotes the number of iterations and Tol is a small prescribed value, which is 10−6

for all studies in this work.

6. Numerical Simulation Studies

A fifteen-storey planar shear frame structure with nonlinear base isolations as shown
in Figure 3 was investigated to illustrate the improved two-stage identification method.
The structure was subjected to the N-S El-Centro 1940 earthquake ground motion with
the peak ground acceleration scaled to 0.3g. The vertical stiffness of the base isolation was
assumed as infinitely large. For this case, the target substructure is the main structure
above the base isolation system. Therefore, in this case, the pseudo substructure consists
of the initial model of the main structure shown in Figure 3 and the interface force is the
same as the interface force time history of the target substructure in real conditions during
the earthquake excitation. It was assumed that the virtual boundary condition acts as
the actuator supply interface forces in real conditions. It is noted that the interface force
provided from the virtual boundary condition was taken as the unknown to be identified.

The base isolation between the structure and the foundation is represented with a
bilinear hysteresis model. The relationship between the force and horizontal displacement
of the base isolation is shown in Figure 4, where αb = 0.15 is the ratio of the post-yield
stiffness to the pre-yield elastic stiffness defined by KE, and dy is the yielding displacement.
The horizontal restoring force of the isolation is defined as:

Fb = αbKExb + (1− αb)KEzb (31)

where the subscript b denotes the base isolation, xb is the horizontal deformation of the
base isolation, and zb is the horizontal elastic storey drift between the ground storey and
the first storey, KE = 0.1 × 108 N/m and dy = 0.01 m. The mass of each storey is 4 × 105 kg
and the stiffness of each storey is 2 × 108 N/m.
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The sampling rate of measurement was 100 Hz. Six scenarios with a 10% reduction
of stiffness in the 8th storey and 13th storey were studied and are shown in Table 1. The
horizontal accelerations at the 1st, 5th, and 10th storeys were taken as the “measured”
responses for all six scenarios. Additionally, the horizontal displacement of the first storey
was also used in the first stage of force identification in the last two scenarios. This is
because the constant value in the time history of the external forces cannot be identified
only with acceleration response.

In the first four scenarios, 6 s of “measured” data were used for the condition assess-
ment. The “measured” data for the last two scenarios began at 1.5 s after the earthquake
excitation and only 2 s of data were utilized for the initial response identification, interface
force identification, and damage detection. The “measured” data was divided into four
segments for the sub-time zone force identification in scenarios 3 and 4 while the whole set
of data was used for the other scenarios. There was only one interface force at the nonlinear
base isolation to be identified in all scenarios.
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Table 1. Damage scenarios.

Damage Scenarios Initial Response Sub-Time Zone
Force Identification Noise Level (%)

1

zero
No

0
2 10

3
Yes

0
4 10

5
unknown No

0
6 10

Note that these responses were obtained from computation of the structure under
earthquake excitation and the base isolations were performed nonlinearly with the hys-
teretic curves shown in Figure 5, which demonstrates the bilinear property of the isolation
layer. When there was noise in the “measured” response, a polluted response was simulated
by adding a normal random component to the “measured” responses as:

..
xm =

..
x + EPNnoiseσ(

..
x) (32)

where EP is the percentage noise level, Nnoise is a standard normal distribution vector
with a zero mean and unit standard deviation, and σ(

..
x) is the standard deviation of the

“measured” acceleration response.
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The error in the identification of the interface forces and the local damages was
calculated as:

error 1 =
‖Fid − Ftrue‖
‖Ftrue‖

× 100% (33)

error 2 =
‖αid −αtrue‖
‖αtrue‖

× 100% (34)

where Fid and αid are the identified interface forces and local damages, respectively, and
Ftrue and αtrue are the real interface force and local damages of the substructure, respectively.

In the first two scenarios, the number of unknowns in the first stage was 600 and the
measured data was 3× 600, which was also the number of equations. The size of matrix HL
was 1800 × 600. The number of equations was much larger than the number of unknowns
in these two scenarios. In each sub-time zone of the third and fourth scenarios, there were
150 unknowns and 3 × 150 equations for the interface forces identification. The size of the
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matrix HL in each sub-time zone identification was 450 × 150, which is 1/16th of the size
of HL in the first two scenarios. In the last two scenarios, the number of unknowns in the
first stage was (200 + 2 × 15) = 230 and the number of equations was 4 × 200.

In the second stage of structural condition assessment, there were 15 unknowns in
all 6 scenarios. The number of equations was 1800 in the first four scenarios and 600 in
the last two scenarios. This shows that the identification problems in this study were all
over-determined.

The error of identification for both the interface forces and the local damages and
computation time required for each scenario are shown in Table 2 together with the required
number of iterations. The results of the damage detection and force identification are shown
in Figures 6–11. The stiffnesses shown are the storey stiffnesses of the multi-storey frame.

Table 2. Condition assessment of the six scenarios.

Damage
Scenarios

Errors (%)
Calculation

Time (s)
Number of
IterationsForce

Identification
Damage

Detection

1 5.55 × 10−3 8.37 × 10−2 1493 93
2 13.92 24.04 1511 106
3 9.4 × 10−3 0.042 94 92
4 14.36 32.97 97 104
5 2.7 × 10−3 0.03 111 53
6 9.47 62.25 113 58

Figures 6 and 7 show that the two-stage method without measurement noise identified
the damage very accurately but with a very long calculation time as shown in Table 2. The
calculation of the interface forces is time consuming with a large number of unknowns
and a large size matrix HL. A difference is noted in the peaks of the force time history
in Figure 6 when there is 10% measurement noise. However, the position and severity
of damage were still accurately identified as shown in Figure 7. The errors in the force
identification and damage detection calculated with Equations (33) and (34) are shown in
Table 2. It is shown in Table 2 that the measurement noise and accuracy in the identified
forces affected the damage detection result.
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Figure 11. Damage identification result (scenarios 5 and 6).

When the sub-time zone identification method was applied for scenarios 3 and 4,
the computation time was reduced significantly as shown in Table 2. The interface force
and damage were identified accurately, as shown in Figures 8 and 9, when there was no
measurement noise. The errors of identification shown in Table 2 for the identified force
are comparable to those from the case that did not use the sub-time zone force identifi-
cation method. The identified results for the damage are slightly poorer than those for
scenarios 1 and 2, but the damage location could still be identified. The cumulative errors
in the calculated initial responses in each sub-time zone contribute to the identification
error. Mitigation of the cumulative errors will be studied in the future.

The initial responses, the interface forces, and the damage were all identified together
in scenarios 5 and 6. The initial responses and the interface forces were identified in the
first stage and the local damage was identified in the second stage with the improved
two-stage method. Figures 10 and 11 show the identification results without and with
10% measurement noise, respectively. The norm of the damage detection error in Table 2
is large compared with that for scenarios 1 to 4. There is some large error in the damage
detection due to both the error of the identification in the initial responses and interface
force. However, local damage could still be localized with polluted measurement as shown
in Figure 11.
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7. Experimental Study

Experimental investigation with a scaled 14-storey concrete shear wall building with an
additional 2-storey steel frame on the top connected by isolation was conducted to validate
the proposed identification method. The scaled model was constructed on a shaking table
with a size of 5 m × 5 m at the Institute of Engineering Mechanics, China Earthquake
Administration, as shown in Figure 12. The geometric scale ratio of the structure was
1/6. Scaled N-S El Centro (1940, NS) earthquake excitation was firstly applied as the
base excitation in the y-direction as the main earthquake. The scale ratios of the time and
ground acceleration were 0.3 and 1.86, respectively. The details about the scale ratios are
shown in Table 3. After this excitation, some damage to the structure may have occurred.
A second excitation was applied in the same direction as the aftershock. The structural
response excited by the aftershock was measured for the structural model updating and
force identification with the proposed method.
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Table 3. Similarity ratio between the model and real structure.

Parameters Scale Ratio Parameters Scale Ratio

Geometric SL = 1:6 Mass SM = SL
2 SE/Sa = 1:108

Displacement SX = SL = 1:6 Time ST = SL
0.5/Sa

0.5 = 0.3:1

Stress SF = SE = 0.62:1 Damping ratio Sξ= 1

Strain Sε = 1:1 Acceleration Sa = 1.86:1

Young’s Modulus SE = 0.62:1 Density Sρ = SE
SL ·Sa

= 2:1

The concrete shear wall building was made from grade M7.5 mortar. The structure was
reinforced by a shear wall made from grade M15 mortar outside the original structural and
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steel wire with an average yielding strength of 852.22 Mpa. The steel wire for the shear wall
had the configuration ofϕ0.8@13 × 13 in the weak direction (x-direction) andϕ0.8@13 × 13
in the strong direction (y-direction). Double layers of steel wire mesh were constructed
withϕϕ0.8@13× 13 andϕ1.9@25× 25 for the storey plate in the x-direction and y-direction,
respectively. The two-storey steel frame structure was fabricated from rectangular steel
tubes of grade Q235 with dimensions of 40 mm × 60 mm × 2 mm, and was fixed to the
top of the 14-storey shear wall building with bolts through the base plates of the columns.
The two-storey steel frame structure was fabricated from 40 mm × 60 mm × 2 mm Q235
rectangular steel tube, and was fixed to the top of the 14-storey shear wall building with
rubber isolation. A photograph of the steel frame is shown in Figure 12. Each storey of the
steel frame was 483.3 mm high. The column of the frame was welded at the bottom to a
base plate, which had 4 Φ20 mm bolt holes to connect the concrete roof of the building and
the base isolations were the same as the ones used in [35].

The weight of the whole structural model was 7.62 t and 678 kg additional mass
was added on each storey level to simulate the inertia effect of the storey mass. The
mass of the structure is mainly found at each storey level, and the 14-storey shear wall
building and 2-storey steel frame was simplified into a lumped mass cantilever structure
connected with 14 and 2 beam elements, respectively. The two structures were connected
with isolation. In the linear condition, the modal properties of the simplified model and the
shear wall building structure are compared in Table 4. The accelerometer model 941B made
by the Institute of Engineering Mechanics, China Earthquake Administration and the Data
Acquisition System model 6000DAS were used in the shaking table test. The sampling rate
was 200 Hz and the horizontal accelerations at the 6th, 10th, and 13th storey levels were
collected for the storey stiffness identification.

Table 4. Comparison of the natural frequencies of the structure before the main earthquake (Hz).

Modal Order Experimental Model Numerical Cantilever Model

1 4.40 4.40

2 10.6 10.6

In this experiment case, the main structure, except the isolation system shown in
Figure 12, was divided into two substructures, which are the shear wall concrete structure
and steel frame. The two substructures were connected with isolation. The concrete shear
wall structure under the isolation system was taken as the target substructure. Hence, in
this case, the pseudo substructure consisted of the initial model of the shear wall structure
under the isolation and the interface force supplied by the virtual boundary condition. The
interface force from the virtual condition was the same as the force time history applied to
the concrete shear wall by the isolation system in real conditions during the earthquake
excitation. The proposed identification method was applied for the structural model
updating. The structural damage identification result is shown in Figure 13. It is shown
from the identification result that the structural damage on the lower storeys was larger
than the upper storeys after the main earthquake. The largest storey stiffness reduction
ratio of nearly 10% was found on the ground storey. The damage on the second storey
and third storey was also very large compared with the storeys above. There were some
negative stiffness reductions from the 6th to the 10th storey as shown in Figure 13. This is
assumed to be the identification errors rather than the real storey stiffness reinforcement.

The comparison of the natural frequencies of the structure after the main earthquake
excitation is shown in Table 5. The frequencies from the numerical model were calculated
from the updated finite element model with the proposed method in this study and the
ones from the experimental model were obtained with white noise excitation. The natural
frequencies obtained from the experiment measurement were nearly the same as the
calculated value from the updated model. It is demonstrated that the proposed method
in this study can identify the structural parameters accurately. It is also shown from the
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comparison that the frequencies obtained from this experiment are a little bit larger than
the numerical ones. This can be explained as some of the cracks may be closed during this
low level of white noise excitation. It can be concluded that parameter identification with
the structural response during earthquakes is more accurate.
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Figure 13. Identified damage ratio of the shear frame.

Table 5. Comparison of the natural frequencies of the structure after the main earthquake (Hz).

Modal Order Experimental Model Numerical Cantilever Model

1 4.31 4.27

2 10.52 10.31

8. Conclusions

A seismic damage assessment method for isolation structures based on substructure
identification was proposed in this paper. The substructure identification method was
proved with the new concept of the pseudo substructure with virtual boundary conditions.
The method was modified by considering the calculation efficiency in the first stage of
force identification. A sub-time zone method was proposed and implemented to improve
the computation efficiency in the force identification. This identification process was
also improved by the identification of the unknown initial response. This improvement
enables more general applications in engineering practice. The location of damage could
be identified fairly accurately with the regularization method and the identified force
information. A shaking table test of a 14-storey shear wall structure with a 2-storey steel
frame was experimentally investigated to validate the proposed method. It was shown
from the experimental study that the structural damage can be detected with acceptable
results even there is measurement noise and model error.

Author Contributions: Conceptualization, L.G. and Y.D.; methodology, Y.D.; software, Y.D.; valida-
tion, L.G.; formal analysis, L.G.; investigation, L.G.; resources, Y.D.; data curation, L.G.; writing—
original draft preparation, Y.D.; writing—review and editing, L.G. and Y.Z.; visualization, Y.Z.;
supervision, L.G.; project administration, Y.D.; funding acquisition, Y.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Scientific Research Fund of Institute of Engineering Mechanics,
China Earthquake Administration (Grant No. 2019D22 and No. 2019D24), Young Talents’ Project of



Buildings 2022, 12, 1185 19 of 20

Northeast Agricultural University (18QC31), Projects 2016YFC0701106 of the National Key Research
and Development Program of China, No. 51308160 of National Natural Science Foundation of China
and open subject of traffic Safety and Control lab in Hebei Province (NO. JTKY2022002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Doebling, S.W.; Farrar, C.R.; Prime, M.B. A Summary Review of Vibration-based Damage Identification Methods. Shock. Vib.

Diagn. 1998, 30, 91–105. [CrossRef]
2. Demarie, G.V.; Sabia, D. A machine learning approach for the automatic long-term structural health monitoring. Struct. Health

Monit. 2019, 18, 819–837. [CrossRef]
3. Zou, Y.; Tong, L.; Steven, G.P. Vibration-Based Model-dependent Damage (Delamination) Identification and Health Monitoring

for Composite Structure—A Review. J. Sound Vib. 1998, 230, 357–378. [CrossRef]
4. Nagarajaiah, S.; Basu, B. Output only identification and structural damage detection using time frequency and wavelet techniques.

Earthq. Eng. Eng. Vib. 2010, 8, 583–605. [CrossRef]
5. Juang, J.N. Applied System Identification; Prentice Hall: Englewood Cliffs, NJ, USA, 1994.
6. Kumar, V.; Dewangan, H.C.; Sharma, N.; Panda, S.K. Numerical prediction of static and vibration responses of damaged (crack

and delamination) laminated shell structure: An experimental verification. Mech. Syst. Signal Process. 2022, 170, 108883. [CrossRef]
7. Shi, Z.Y.; Law, S.S.; Zhang, L.M. Improved Damage Quantification from Elemental Modal Strain Energy Change. J. Eng. Mech.

2002, 128, 521–529. [CrossRef]
8. Brincker, R.; Zhang, L.; Andersen, P. Modal Identification of Output-only Systems Using Frequency Domain Decomposition.

Smart Mater. Struct. 2001, 10, 441–445. [CrossRef]
9. Agbabian, M.S.; Masri, S.F.; Caughey, T.K. System Identification Approach to Detection of Structural Changes. J. Eng. Mech. 1991,

117, 370–390. [CrossRef]
10. Zhu, X.Q.; Law, S.S. Damage Detection in Simply Supported Concrete Bridge Structures under Moving Vehicular Loads. J. Vib.

Acoust. 2007, 129, 58–65. [CrossRef]
11. Lu, Z.R.; Law, S.S. Features of Dynamic Response Sensitivity and Its Application in Damage Identification. J. Sound Vib. 2007,

303, 305–329. [CrossRef]
12. Law, S.S.; Ding, Y. Substructure Methods for Structural Condition Assessment. J. Sound Vib. 2011, 330, 3606–3619. [CrossRef]
13. Ding, Y. Structural Control and Condition Assessment with Substructure Method. Ph.D. Thesis, The Hong Kong Polytechnic

University, Hong Kong, China, 2012.
14. Jangid, R.; Kelly, J. Base Isolation for Near-fault Motions. Earthq. Eng. Struct. Dyn. 2001, 30, 691–707. [CrossRef]
15. Erduran, E.; Dao, N.D.; Ryan, K.L. Comparative Response Assessment of Minimally Compliant Low-rise Conventional and

Base-isolated Steel Frames. Earthq. Eng. Struct. Dyn. 2011, 40, 1123–1141. [CrossRef]
16. Pan, P.; Zamfirescu, D.; Nakashima, M.; Nakayasu, N.; Kashiwa, H. Base-isolation Design Practice in Japan: Introduction to the

Post-Kobe Approach. J. Earthq. Eng. 2005, 9, 147–171. [CrossRef]
17. Pant, D.R.; Constantinou, M.C.; Wijeyewickrema, A.C. Re-evaluation of Equivalent Lateral Force Procedure for Prediction of

Displacement Demand in Seismically Isolated Structures. Eng. Struct. 2013, 52, 455–465. [CrossRef]
18. Pharr, G.M. Recent advances in small-scale mechanical property measurement by nanoindentation. Curr. Opin. Solid State Mater.

Sci. 2015, 19, 315–316. [CrossRef]
19. Rossi, E.; Sebastiani, M.; Gigliotti, R.; D’Amato, M. An Innovative Procedure for the In-situ Characterization of Elastomeric

Bearings by Using Nanoindentation Test. Int. J. Archit. Herit. 2020, 15, 79–91. [CrossRef]
20. Hurty, W.C. Dynamic Analysis of Structural. Systems Using Component Modes. AIAA J. 1965, 3, 678–685. [CrossRef]
21. Yun, C.B.; Lee, H.J. Substructural Identification for Damage Estimation of Structures. Struct. Saf. 1997, 19, 121–140. [CrossRef]
22. Koh, C.G.; See, L.M.; Balendra, T. Estimation of Structural Parameters in Time Domain: A Substructure Approach. Earthq. Eng.

Struct. Dyn. 1991, 20, 787–801. [CrossRef]
23. Lei, Y.; He, M.Y.; Liu, C.; Lin, S.Z. Identification of Tall Shear Buildings under Unknown Seismic Excitation with Limited Output

Measurements. Adv. Struct. Eng. 2013, 77, 41–52. [CrossRef]
24. Koh, C.G.; Shankar, K. Substructural Identification Method without Interface Measurement. J. Eng. Mech. ASCE 2003, 129, 769–776.

[CrossRef]
25. Zhu, H.P.; Mao, L.; Weng, S. Calculation of Dynamic Response Sensitivity to Substructural Damage Identification under Moving

Load. Adv. Struct. Eng. 2013, 16, 1621–1632. [CrossRef]
26. Guyan, R.J. Reduction of Stiffness and Mass Matrices. AIAA J. 1965, 3, 380. [CrossRef]
27. Friswell, M.I. Model Reduction Using Dynamic and Iterated IRS. J. Sound Vib. 1995, 186, 311–323. [CrossRef]

http://doi.org/10.1177/058310249803000201
http://doi.org/10.1177/1475921718779193
http://doi.org/10.1006/jsvi.1999.2624
http://doi.org/10.1007/s11803-009-9120-6
http://doi.org/10.1016/j.ymssp.2022.108883
http://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(521)
http://doi.org/10.1088/0964-1726/10/3/303
http://doi.org/10.1061/(ASCE)0733-9399(1991)117:2(370)
http://doi.org/10.1115/1.2202150
http://doi.org/10.1016/j.jsv.2007.01.021
http://doi.org/10.1016/j.jsv.2011.03.003
http://doi.org/10.1002/eqe.31
http://doi.org/10.1002/eqe.1078
http://doi.org/10.1080/13632460509350537
http://doi.org/10.1016/j.engstruct.2013.03.013
http://doi.org/10.1016/j.cossms.2015.08.002
http://doi.org/10.1080/15583058.2020.1737986
http://doi.org/10.2514/3.2947
http://doi.org/10.1016/S0167-4730(96)00040-9
http://doi.org/10.1002/eqe.4290200806
http://doi.org/10.1260/1369-4332.16.11.1839
http://doi.org/10.1061/(ASCE)0733-9399(2003)129:7(769)
http://doi.org/10.1260/1369-4332.16.9.1621
http://doi.org/10.2514/3.2874
http://doi.org/10.1006/jsvi.1995.0451


Buildings 2022, 12, 1185 20 of 20

28. Harirchian, E.; Hosseini, S.; Jadhav, K.; Kumari, V.; Rasulzade, S.; Işık, E.; Wasif, M.; Lahmer, T. A Review on Application of Soft
Computing Techniques for the Rapid Visual Safety Evaluation and Damage Classification of Existing Buildings. J. Build. Eng.
2021, 43, 102536. [CrossRef]

29. Valentijn, T.; Margutti, J.; Homberg, M.V.D.; Laaksonen, J. Multi-Hazard and Spatial Transferability of a CNN for Automated
Building Damage Assessment. Remote Sens. 2020, 12, 2839. [CrossRef]

30. Harirchian, E.; Lahmer, T. Improved Rapid Assessment of Earthquake Hazard Safety of Structures via Artificial Neural Networks.
IOP Conf. Ser. Mater. Sci. Eng. 2020, 897, 012014. [CrossRef]

31. Satish, D.; Prakash, E.L.; Anand, K.B. Earthquake vulnerability of city regions based on building typology: Rapid assessment
survey. Asian J. Civ. Eng. 2021, 22, 677–687. [CrossRef]

32. Tikhonov, A.M. On the Solution of Ill-posed Problems and the Method of Regularization. Sov. Math. 1963, 4, 1035–1038.
33. Li, X.Y.; Law, S.S. Adaptive Tikhonov Regularization for Damage Detection based on Nonlinear Model Updating. Mech. Syst.

Signal Process. 2010, 24, 1646–1664. [CrossRef]
34. Hansen, P.C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 1992, 34, 561–580. [CrossRef]
35. Ding, Y.; Law, S.S.; Wu, B.; Xu, G.S.; Lin, Q.; Jiang, H.B.; Miao, Q.S. Average acceleration discrete algorithm for force identification

in state space. Eng. Struct. 2013, 56, 1880–1892. [CrossRef]

http://doi.org/10.1016/j.jobe.2021.102536
http://doi.org/10.3390/rs12172839
http://doi.org/10.1088/1757-899X/897/1/012014
http://doi.org/10.1007/s42107-020-00339-8
http://doi.org/10.1016/j.ymssp.2010.02.006
http://doi.org/10.1137/1034115
http://doi.org/10.1016/j.engstruct.2013.08.004

	Introduction 
	Dynamic Responses for Substructures 
	Illustration and Proof for the Substructure Identification Method 
	The Computation Algorithm 
	Identification of the Interface Forces in the First Stage 
	New Strategies with the First-Stage Identification 
	Sub-Time Zone Force Identification 
	Non-Zero Initial Response in Identification 

	Damage Detection with the Regularization Method 

	The Computation Algorithm 
	Numerical Simulation Studies 
	Experimental Study 
	Conclusions 
	References

