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Abstract: This study assessed the energy-use index and carbon-footprint performance of nine
medium-category Mexican hotels (two–four stars) located in tropical-climate regions. The con-
sumption of electrical and thermal energies of each hotel was collected during audits. Based on this,
various scenarios of the partial replacement of the most energy-consuming devices were evaluated
and synthesized in an expert model based on artificial neural networks. The artificial-intelligence
model was designed to simultaneously associate the energy-consumption indicators, environmental
impact, and economic savings of hotels based on their category, location, room number, number of
existing electrical or thermal devices, and their percentage of substitution with more energy-efficient
technologies. The model was used to compare the various partial-technology-substitution alterna-
tives in each hotel that could reduce energy consumption and CO2 emissions based on the current
values reported by the energy-use and environmental-impact indicators. The results of the proposed
approach showed that even without making total replacements of equipment such as interior and
exterior lighting or air conditioners, it was possible to identify configurations that could reduce the
hotels’ energy use per room-year by 9–12%. In the environmental case, using more efficient technolo-
gies could reduce environmental mitigation. The proposed methodology represents an attractive
option to facilitate the analyses and the decision making of administrators according to the needs of
the type of hotel to improve its performance, which also affects the reduction in operating costs.

Keywords: artificial neural networks; building sustainability; digital twins; energy efficiency;
intensity use of energy; CO2 reduction; hotel management

1. Introduction

Currently, the Mexican hotel industry is one of the most dynamic and fastest growing,
occupying the seventh place among the most frequented tourist destinations above tourist
powers such as the United Kingdom, Thailand, and Germany [1]. This industry significantly
impacts the national economy by representing more than 8.7% of the gross domestic product
(GDP) and generating 6% of employment [2]. However, the high tourist affluence in the
country combined with the various services offered by hotels drastically increased the
energy demand of this sector in recent years.

According to data from National Commission for the Efficient Use of Energy
(CONUEE) [3], the energy consumption of hotels in Mexico is excessive, representing
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about 20% of the annual operating costs. In the case of hotels located in tropical-climate
regions (representing 41%), this problem is aggravated, since their electrical consumption
is up to 52% higher than that of those in temperate climates. It is due to the intensive use of
artificial air conditioning to provide comfort for guests. This has repercussions not only in
terms of a greater demand for energy but also in terms of an increase in greenhouse-gas
emissions, since most of the tourist complexes in this climatic zone cover 80% of their
energy needs with fossil fuels [4]. Therefore, implementing energy-efficiency actions is
imperative to reduce the use of energy and CO2 emissions produced by hotel activity in
tropical-climate regions, being the hotels of lower categories the most benefited by not
having to resort to structural changes [5].

In this context, various studies showed that environmental and energy indicators
are suitable instruments for reducing the carbon footprint and improving the energy
use in hotels. These were used to analyze future scenarios of the energy consumed by
(kWh-year) and the pollution levels (Ton CO2-year) of the Italian hotel sector [6]. A similar
analysis based on the energy index (kWh/guest-year) and annual CO2 emissions per guest
(kg CO2/guest-year) was used to propose operational-improvement strategies for luxury
hotels in Iran [7]. Similarly, an approach based on energy consumption (kWh/m2-year)
and annual emissions per square meter (kg CO2/m2-year) was used for an efficiency-
performance analysis of United Kingdom conventional hotels [8]. These indicators were
also individually used to identify the performance in terms of electrical energy of hotels in
Fiji (kWh/m2-year) [9], South Africa (kWh/m2-year) [10], China (kWh/m2-year). year) [11],
and Spain (kWh/m2-year) [12], as well as the thermal energy consumption of hotels in
Cyprus (kWh/night) [13], to mention a few. However, despite the benefits that these
indicators show for the hotel industry in Europe, Asia, and Africa, to date, no formal
studies are to be found for Latin America [14].

Specifically for Mexico, in recent years, an attempt was made to use this approach
for hotels in tropical-climate regions; however, studies were limited exclusively to luxury
hotels and resorts [3]. Nevertheless, the energy problem is more severe in lower-category
hotels (one–four stars), which lack operation and maintenance programs, and updated
electrical devices and boilers and are characterized by the ignorance of managers and
administrators in terms of the economic impact that the inefficient use of energy entails.
In addition, due to costs, a considerable number of these hotels are hesitant to invest in
more energy-efficient technologies despite the fact that their implementation is regulated
by national regulations. Therefore, the development of alternatives that allow one to
analyze the benefits of energy-saving strategies is vital for this subcategory of the Mexican
hotel industry.

Thus, this paper analyzed the energy, environmental behavior, and economic charac-
teristics of intermediate-level hotels (two–four stars) under the tropical-climate conditions
of southeastern Mexico. The study focused on using these indicators to compare the cur-
rent levels of energy use and hotels’ carbon footprint to those achieved under specific
technology-substitution scenarios. For this purpose, the work took the energy consumption
measured during the audits of hotels in the Yucatan Peninsula as a point of reference.

Since the calculation of these indicators is influenced by various factors, such as ge-
ographical location, the number of guests, the category of the hotel, and the additional
services they offer, the study used an artificial intelligence (AI) model based on artificial
neural networks (ANNs) as the calculation engine. The choice of the approach was due
to its ability to solve the non-linear multivariable regression problems reported in pre-
vious studies of energy-use indicators in the hotel sector [10,15,16]. In addition, the use
of AI showed promising results for the analysis of non-residential buildings with high
energy consumption such as public schools [17], offices [18], and commercial buildings [19],
significantly reducing computation times and facilitating decision making in the energy,
environmental, or economic field. However, according to the literature review, there are
no studies that linked the use of AI to the analysis of energy or environmental indicators
in hotels.
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Based on those mentioned above, the novelty of this work lies in being one of the
first studies focused on improving the energy performance of Mexican hotels based on the
use of indicators. In the same way, it presents an ANN model based on easily measurable
characteristics of hotels, which allows one to perform the analysis of potential savings
by adopting reduction strategies while remaining competitive. This study is divided as
follows: Section 2 presents the general characteristics of the hotels evaluated and the results
of the energy audits. Section 3 shows the approach and evaluation of the energy indicators
used. The fourth part describes the use of an ANN as a modeling tool. Finally, the fifth part
shows the results of the substitution scenarios.

2. Mexican Hospitality Industry

According to data from Secretariat of Tourism [20], hospitality establishments in
Mexico have various classifications. Two of the most representative are the classification
by commercial-activity zone and the classification according to the quality and quantity
of the services offered. The first refers to the commercial zone of the region where the
building is located (independent of the geographical location) and is subdivided into tourist,
commercial, city, and beach, where the intensity of energy consumption is associated with
its activity. On the other hand, for the quality of accommodation services, the buildings are
grouped into five categories from one to five stars: (1) one star, establishments that only
have the essentials for the guest (room, bathroom, and shower); (2) two stars, infrastructure
and essential services such as reception and lighting; (3) three stars, well-equipped and
standardized buildings with full services including green areas, garden, cafeteria, parking,
and elevators; (4) four stars, luxury facilities and impeccable services including heating, bar,
restaurant, swimming pool, gym, and meeting rooms; (5) five stars, exceptional facilities
and services such as room service, concierge, entertainment staff, and all of the above.

From the energy point of view, the classification by service is significant, since it is
associated with the use of energy. Table 1 summarizes the statistical information up to
2020 of the various hotels in the country. Concerning the distribution of the hotel supply,
the concentration of three-star establishments stood out; however, the most significant
number of rooms was found in five-star hotels, because hotels in this category are generally
larger. On the other hand, the highest occupancy was found in hotels from two to four
stars, concentrating around 60% of annual occupancy. From the point of view of rooms per
hotel, there was a marked tendency for hotels in lower categories (below four stars) to have
fewer rooms. This implies a decentralized and dispersed energy consumption among the
buildings in these categories, which are of interest due to their high occupancy percentage.

Table 1. Hospitality structure and topology for Mexico (table developed with data from
SECTUR [20] (December 2020)).

Category Hotels Rooms Rooms per
Hotel Occupancy

5 Stars 1579 210,016 133 25.50%
4 Stars 2628 174,746 66 22.38%
3 Stars 4397 150,545 34 19.75%
2 Stars 3093 78,325 25 17.17%
1 Star 2885 57,480 20 15.20%
Others 9117 165,188 18 Undefined

Total 23,699 836,300 35 100.00%

Due to the vast extension of the Mexican territory, the climatic region plays a pre-
dominant role from the energy perspective in hotels. CONUEE [3] divides the Mexican
territory into three large climatic regions: dry, temperate, and tropical. Figure 1 illustrates
the territorial distribution by type of climate of the states that make up the national territory,
with the respective occupation percentage. The image indicates that hotels in a tropical
climate represented 35% of the hotel occupancy in the country, just below the dry climate.
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Therefore, two–four star hotels under these climatic conditions are of vital interest from the
perspective of energy efficiency due to their tendency to consume more energy.

Figure 1. Percentage of hotel occupancy by climatic distribution in the Mexican Republic (Figure
developed with data from SECTUR [2]).

Unfortunately, unlike in other nations, there are no official reports on the energy
consumption of the Mexican hotel sector. This leaves for granted the need for analysis and
audits in this sector to reduce the intensive use of energy due to its preponderance in the
energy consumption of the country’s commercial sector.

3. Methodology

Figure 2 illustrates the methodology applied in this study, consisting of four phases.
The first phase contemplated using audits to collect operational and typological information
that influenced the energy consumption of hotels located in the southeast. The information
collected was used in the second phase to estimate technological-substitution scenarios
based on a gradual-replacement approach of the devices with the highest energy consump-
tion in hotels. In this stage, the indicators used to determine the energy, environmental,
and economic impact were: the index of annual energy use per room (EUI), the index of
annual equivalent CO2 emissions per room (CEI), and the energy cost (S). From this stage,
a working database was obtained with topological and operational characteristics as well
as indicator values for the considered replacement scenarios. The third phase involved
the development of an ANN-based digital twin using the results of the energy scenarios.
This hybridization approach with AI allowed us to generate an expert model linked to
the three indicators, which, based on particular examples, could provide the full range
of possible combinations of technology substitution in extremely reduced computation
times. Finally, in the last phase, aided by the digital twin, the impact of all the possible
scenarios of the replacement of energy devices on the indicators was analyzed. During
this phase, those combinations of partial replacement of technology that improved hotels’
energy, environmental, or economic performance were identified. A detailed description of
these phases is provided in the following subsections.
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Figure 2. Simplified description of the methodology for the analysis of energy, environmental, and
economic indicators aided by artificial intelligence.

3.1. Hotel Energy Audits

The data used in the study came from energy audits consisting of surveys, measure-
ments, and reports of electrical and thermal energy consumptions. A total of 9 hotels
located in the hot-humid climate region were audited, distributed in the Mexican states
of Campeche (CA), Chiapas (CH), Yucatan (YU), and Quintana Roo (QR). The electrical
energy consumption considered internal and external lighting systems, air conditioning,
refrigeration, irrigation pumps, household appliances, and computer equipment. The
main information collected from such electrical equipment corresponded to the number of
devices and their respective electrical power, hours of use per day, number of days they
operated in the year, and the billed total energy consumption of the building or complex.
The thermal analysis considered the fuel used for the boiler operation destined for the
heating of sanitary water, laundry, and the showers of the guests. It was based on informa-
tion corresponding to the liters of LP gas consumed annually by the building, the boiler
efficiency, and the billed cost of the fuel. Table 2 summarizes the characteristics (category,
number of rooms, and energy equipment) and energy information of the audited hotels,
as well as the nomenclature assignment for data-privacy purposes. From the table, it can
be seen that the audited hotels were between the categories of 2 and 4 stars. However,
despite these characteristics, the number of rooms showed notable differences, even among
hotels in the same state. It is worth mentioning that in the audits carried out, obsolete and
inefficient technologies were detected, causing greater energy consumption.
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Table 2. Information collected during energy audits of hotels in the Mexican southeast.

Hotel Category
(Stars) Rooms

Total Energy
Consumption

(kWh/Year)

Energy
Cost

(MXN/Year)

Equivalent
CO2 Emissions
(kgCO2/Year)

Devices

Indoor
Lighting

Outdoor
Lighting

Air Condi-
tioning

CA1 4 95 994,847 1,791,256.48 470,682.23 815 52 103
CA2 2 82 800,070 1,341,219.072 352,426.71 498 10 82
CA3 4 87 1,033,178 1,942,375.354 510,695.62 1366 53 105
CA4 4 78 1,562,003 2,457,035.168 645,625.20 1132 27 146
CA5 3 40 401,482 741,535.168 194,850.20 317 13 45
CH1 4 40 788,257 1,229,670.4 323,115.52 245 21 77
CH2 4 46 645,868 691,579.808 181,723.63 409 90 53
YU1 3 48 395,837 1,053,893.408 276,927.31 97 12 45
QR1 3 95 767,730 723,968.5608 190,234.26 102 13 47

3.2. Scenarios for Replacing Energy-Intensive Devices

In order to analyze alternatives to reduce energy use and CO2 emissions, a gradual-
replacement approach for high-consumption devices was applied based on Mexican Stan-
dards [21–24]. Table 3 summarizes the information on the current devices used in the
hotels and the low-energy devices with which the replacement was foreseen. The approach
considered scenarios in which indoor and outdoor lighting, air conditioners, and boilers
were partially replaced in intervals from 10% to 90% with steps of 10%. In the first in-
stance, the replacement of electrical devices was carried out individually. Subsequently,
this was conducted in tuples, and finally, the cases of the three devices were considered in
a simulated way. For the case of the thermal device (boiler), only the total substitution was
considered since it could not be fractioned. The final result was a database of 7040 energy
scenarios per hotel (63,360 samples).

Table 3. Technical characteristics of current and replacement technologies.

Current Devices Replacement Devices

Lighting Lumens Power Price (MXN) Technology Power Price (MXN)
Fluorescent 3325 50 W 72.80 LED 20 W 153.00

Incandescent 1000 60 W 75.00 LED 20 W 113.75
Outdoor Fluorescent 800 20 W 36.00 LED 9 W 35.58

Halogen 9000 300 W 700.00 LED 100 W 250.00

Air conditioning Capacity Power Price (MXN) Technology Power Price (MXN)
Minisplit 12,000 BTU 1650 W 5599.00 Inverter 1250 13,599.00

Boiler Efficiency Capacity Price (MXN) Efficiency Capacity Price (MXN)

80% 300,000
BTU/HR 95% 400,000

BTU/HR 346,679.32

3.2.1. Use-of-Energy Index

The index considered in this study was determined based on the annual energy use
per room (EUI), which is given as [14]:

EUI = (ET + ED)/N (1)

where N represents the number of rooms per building, while ET and ED are the thermal
and electrical energy consumptions, respectively, billed per year. In the case of ET, it was
obtained as the product of the annual LP gas consumption (Ic, expressed in liters) and
the calorific value (CV) presented in Table 4. On the other hand, ED was given by the
consumption of each electrical device accounted for in the audit:

ED =

Tint

∑
i

Iint +
Text

∑
j

Iext +
Tac

∑
k

Iac +∑ Ie; I = τhd (2)
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where the energy consumption for each device is given by its electrical power (τ), oper-
ation hours per day (h), and the operating days per year (d), with Iint being the energy
consumption for each interior luminaire, Iext the energy consumption for each exterior
luminaire, Iac the consumption associated with each air conditioner, and Ie the consumption
corresponding to other equipment, such as computers, monitors, and appliances, among
others. For their part, terms Tint, Text, and Tac are allusive to the number of indoor-lighting,
outdoor-lighting, and air-conditioning devices per hotel, respectively.

Table 4. Costs, and energy and environmental properties of energy sources used in hotels.

Mexican State Energy
Source

Calorific
Value

(kWh/Liter)

Emission Factor
(kg CO2/kWh)

Fuel Price
(MXN/kWh) Ref.

Campeche

LP Gas 6.732 0.227

1.44
Yucatán 1.33 [25]

Quintana Roo 1.50
Chiapas 1.61

National Electricity 0.582 0.582 1.88 [26]

3.2.2. Environmental Emission Index

The equivalent-CO2-emission index (CEI) was used to determine the environmental
impact derived from the energy activity of each hotel. The CEI is defined as the annual
total equivalent emissions in kg of CO2 per room [6]:

CEI =
n

∑
x=1

(∑n
i=1 Ex/ηi)FEx

N
(3)

where subscript x represents the thermal or electrical energy consumption, while η is the
efficiency of the i-th thermal or electrical device evaluated. FE represents the emission
factor by energy source, whose values are described in Table 4.

3.2.3. Energy-Cost Index

In a complementary way, to define the technically feasible substitution alternatives,
the study included an indicator of the annual energy cost saved (S):

S = (SD + ST) (4)

where SD and ST are the annual electrical and thermal economic savings, respectively,
defined by:

Sx = Px(Ex,s − Ex,r) (5)

where Px represents the price of thermal or electrical energy (Table 4), Ex,r is the current
consumption per year for a given energy source, and Ex,s is the estimated annual energy
consumption using the technological substitution. In the case of thermal energy, the
variability of the cost of LP gas according to the federal entity was considered (Table 3).
The cost of the electricity consumed by the hotels was determined according to the tariff
scheme of Great Demand in Medium Voltage (GDMT) [27] and whose average value is
presented in Table 4.

3.2.4. Working-Database Formation

Figure 3 summarizes the procedure adopted for computing the performance of the
three indicators associated with the technological-substitution scenarios and creating the
working database. In the first instance, the hotel’s annual operation data obtained via
the energy audits (Table 3) were integrated, and subsequently, the characteristics of the
device-replacement scenarios to be evaluated were incorporated. Afterward, the annual
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energy consumption of the building was calculated. The thermal energy consumption was
determined from the yearly LP gas bills expressed in liters, the calorific value information
reported by Energy Regulatory Commission (Table 4), and the efficiency reported by the
boilers in Table 3. Regarding electrical energy, it was considered as the sum of each device’s
consumption (current or replaced, depending on the scenario), aided by the information
presented in Table 3, the hours of use, and the days of operation per year. To guarantee
these calculations’ reliability, each hotel’s original energy consumption was contrasted
with its respective bills. Once the simulation of energy consumption was completed, the
information was used as input data to obtain the EUI, CEI, and S. For the case of the EUI,
the data were used as described in Equation (1). In the case of the CEI, both the electrical
and thermal consumptions were previously multiplied by their respective emission factors
(contained in Table 4) and subsequently implemented in Equation (3). While for the case
of S, this involved a contrast between the current energy information (Table 2) and the
energy consumption of the scenario to be evaluated, where the savings based on the energy
prices presented in Table 4 were later computed. This process was repeated for each device-
replacement scenario (Section 2) in the 9 audited hotels. Finally, these were stored in a
spreadsheet, associating them with their respective replacement percentage and the number
of devices with which the calculation was made, as well as the topological characteristics
of the building (location (L), category (C), and area of commercial activity (Z)).

Figure 3. Flow chart of the process for assessing the hotels’ economic, energy, and environmental-
performance indicators based on the device-replacement scenarios.

It is important to emphasize that although the algorithm presented is adequate to
compute the result of the indicators in each device-substitution scenario, personnel with
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specific knowledge about energy efficiency are required to carry it out. Therefore, it is
necessary to develop computational alternatives that simplify and facilitate this process for
the use of hotel managers, one of the most feasible being the development of digital twins.

3.3. Artificial Neural Network Modeling

The information generated in the various energy-saving scenarios was synthesized in
an expert model based on an ANN. The choice of this multivariable technique was due to
its feasibility in the energy field for solving complex problems and its ability to produce
multi-output models using a supervised learning process. These characteristics make it a
suitable tool for developing digital twins (expert models based on other models), allowing
the behavior of concatenated mathematical expressions to be emulated and producing
simpler representations of the phenomenon in shorter computation times [28,29].

ANN modeling is executed through two main stages called training and testing. The
conventional structure of an ANN is given by an input layer (input parameters), one
or more hidden layers, and an output layer (values to be estimated by the ANN). The
network function that describes the behavior of the modeled process is determined by the
interconnection of the neurons in each layer through the connection weights (Figure 4). The
relationship between the input and output parameters is obtained through a supervised
learning process called backpropagation, in which the network continually modifies its
connection weights until the best approximation is found [30].

Figure 4. ANN architecture for the digital-twin development that simultaneously estimates the three
indicators based on the 11 parameters of interest in hotels.

In the present work, an ANN was applied as a digital twin to model the behavior of
the indicators and determine the efficiency potentials based on the 63,360 technological-
device-substitution scenarios. Table 5 summarizes the basic information of the variables
considered as the inputs of the digital model, which are made up of building aspects, such
as topological characteristics (location (L), category (C), and hotel zone (Z)), operational
elements (quantity of rooms (N), indoor lighting (Tint), outdoor lighting (Text), and air
conditioning (Tac)), and the partial-replacement scenarios given in substitution percentages
(indoor lighting (Pint), outdoor lighting (Pout), air conditioning (Pac), and boiler (Cs)). Based
on this, the ANN architecture comprised 11 input neurons (defined in Table 5), a single
hidden layer, and an output layer made up of 3 neurons to simultaneously predict the
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energy-use index (EUI), the equivalent-CO2-emission index (CEI), and the energy-cost
index (S).

Table 5. Nomenclature and values of input and output variables.

Variable Minimum Maximum Units

Inputs:
Location L 1 4 -
Category C 2 4 -

Hotel zone Z 1 2 -
Rooms N 40 95 Number of rooms

Indoor lighting Tint 97 1366 Number of devices
Outdoor lighting Text 2 553 Number of devices
Air conditioning Tac 45 146 Number of devices

Indoor-luminary substitution Pint 20 80 %
Outdoor-luminary substitution Pext 20 80 %
Air-conditioning substitution Pac 20 80 %

Boiler Cs 0 1 -

Outputs:
Use-of-energy index EUI 6748.43 19,988.24 (kWh/room-year)
CO2-emission index CEI 45.61 2279.63 (kgCO2/room-year)
Energy-cost index S 1097.92 336,615.86 (MXN/year)

For the modeling, the database was standardized using Equation (6), where X, σ, and
u represent the value, standard deviation, and mean of the given input or output variable,
whereas zn corresponds to the standardized equivalent value. The use of standardization
avoided the sensitivity to outliers and the indeterminacy of the data:

Zn =
X− u

σ
(6)

Subsequently, the normalized information was divided into two fractions, assigning
80% of the data to the training process and the remaining 20% to the validation (10%) and
testing (10%) stages. During training, the ANN used the backpropagation algorithm to
calculate the error between the current values (those provided for the network to learn)
and the estimated ones (those calculated by the ANN) and improve the value of ANN’s
weights and bias matrices, reducing the estimation error in each iteration. The goal was
to minimize the error between the estimations and the sample data until a model that
described as accurately as possible the phenomenon under study was achieved.

The activation functions implemented for the neurons in the hidden layer and the output
layer were the sigmoid tangent (Equation (7)) and the linear function (Equation (8)), respectively:

f(α) = 2/(1 + e−2α) (7)

f (α) = α (8)

where α corresponds to the weighted sum of the output values from the neurons of the
previous layer (u) in terms of the interconnection weights between layers (w) and the
adjustment factor or bias (b):

αj =
a

∑
i=1

wi,jui + bj (9)

The supervised learning algorithm used in the backpropagation process for the opti-
mization of weights and bias values was the Levenberge-Marguardt (LM) algorithm. The
numerical calculations of the ANN were performed using the ANN’s Toolbox package in
MATLAB [31]. Table 6 summarizes the information of the hyperparameters used to train
the artificial-intelligence models. The modeling process contemplated a total of 500 epoch of
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full-batch size. The model’s performance was computed using the mean square error (mse)
function, the initialization of weights and bias was conducted with the Nguyen-Widrow
function [32], while the default values contained in the toolbox were considered for the
other elements.

Table 6. Hyperparameters assigned to the ANN during the training phase for the development of
the predictive model.

Hyperparameter Description

Number of epochs 500
Batch size Full batch

Performance goal 1 × 10−20

Validation faulers 10
Performance gradient 1 × 10−7

Time out ∞
Initial µ 0.001

Maximum µ 1 × 1010

Cross-validation 10
Performance function Mse

Weights and bias initializer Nguyen-Widrow

The performance of the digital twin was calculated using three statistical parameters:
root-mean-square error (RMSE), mean absolute percentage error (MAPE), and the coeffi-
cient of determination (R2). These indicators were formulated in terms of predictions by the
ANN (ysim) and the values used for network training (yactual). The RMSE (Equation (10))
is used to calculate the differences between the experimental and simulated values, with
its main characteristics being to cushion minor errors and punish marked differences. The
MAPE (Equation (11)) is a statistical parameter ranging from 0 to 100; it is used to calculate
the percentage of the model error when estimating a variable (%). R2 (Equation (12))
illustrates the intensity of the variability relationship in a set of data, generally between 0
and 1. For both the RMSE and MAPE, the smaller their value are, the better the model’s
performance is. On the other hand, for R2, the best models are those in which R2 ≈ 1, and
the slope and order of the regression line are close to one and zero, respectively.

RMSE =

√
1
a∑a

i=1

(
ysim(i) − yactual(i)

)2
(10)

MAPE =
1
a∑a

i=1

∣∣∣∣∣ysim(i) − yactual(i)

yactual(i)

∣∣∣∣∣× 100 (11)

R2 = 1−
∑a

i=1

(
yactual(i) − ysim(i)

)2

∑a
i=1

(
yactual(i) − yactual

)2 (12)

4. Analysis of Results
4.1. Digital-Twin Model

The digital model was obtained by evaluating various ANN architectures. Supervised
learning was carried out contemplating 500 iterations for each architecture. The number of
neurons in the hidden layer gradually increased (from 1 to 10) to find the optimal number
of neurons that minimized the estimation error.

Figure 5 summarizes the analyzed ANN architectures’ statistical performance results
(RMSE, MAPE, and R2). As can be seen, the increase in the number of neurons in the hidden
layer favored the correlation between the data assigned for training and those estimated by
the ANN. Similarly, as the number of hidden neurons increased, the difference between
the values calculated by the network and the experimental measurements considerably
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decreased (Figure 5a,b). In this sense, the trend line present in this figure indicates that
after the inclusion of five neurons in the hidden layer, the increase did not significantly
contribute to improvements of the estimation capacity. Therefore, the analysis of the
statistical performance of the architectures suggested that the reliable results with minor
topological complexity were given using five neurons in the hidden layer. This model
contained the highest coefficient of determination (R2 = 0.9999), as well as some of the
lowest statistical parameters (RMSE = 0.0009 and MAPE = 0.252%) of all the topologies
evaluated. In addition, the results corresponding to the validation and testing phases
showed that the variation among the three data sets was minimal, which indicated a good
generalization capacity of the expert model.

Figure 5. Statistical analysis for the diverse ANN architectures evaluated: (a) RMSE performance,
(b) MAPE performance, (c) R2 performance.

4.2. Sensitivity Analysis

A sensitivity analysis was performed to validate the physical interpretation of the de-
veloped ANN model and guarantee its applicability to the case study. This analysis focused
on measuring the impact that each of the model inputs produced on the ANN outputs (EUI,
CEI, and S). The more significant the effect observed on the output was, the greater sensi-
tivity to the input it presented was. For this purpose, the Garson’s technique [33] was used,
which is based on determining said impact from the network interconnection weights:

Tj =
∑m=Nh

m=1 (
(∣∣∣Wih

jm

∣∣∣)/ ∑Ni
k=1

∣∣∣Wih
km

∣∣∣)x
∣∣∣Who

mn

∣∣∣)
∑k=Nh

k=1 {(
∣∣∣Wih

jm

∣∣∣/ ∑Ni
k=1

∣∣Wih
km

∣∣)x
∣∣Who

mn
∣∣} (13)
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where Tj is the relative importance of the j input variables over the ANN output; Ni and Nh
are the numbers of input and hidden neurons, respectively; W are the connection weights;
and superfixes ih and ho refer to the input, hidden, and output layers respectively. Finally,
suffixes k, m and n refer to the neurons located in the input, hidden, and output layers. The
results show the impact of each of the inputs on the output variable as a percentage, which
is complex to understand using other statistical modeling strategies. Garson’s method
was chosen because it is a fast and easy-to-implement technique that operates using the
information stored in the weights of the ANN. In addition, its results are presented in
percentage form, facilitating understanding and the application in the decision making of
hotel managers.

The sensitivity analysis was computed through a programming script implemented
in MATLAB (described in Appendix A). Figure 6 shows the results of the 11 variables
integrated in the digital-twin model: location (L), category (C), and hotel zone (Z); op-
erational elements (quantity of rooms (N), indoor lighting (Tint), outdoor lighting (Tout),
and air conditioning (Tac)); and the partial-replacement scenarios given in substitution
percentages (indoor lighting (Pint), outdoor lighting (Pout), air conditioning (Pac), and boiler
(Cs)). Analyzing the graphs, it can be seen that regardless of the indicator, the impact of the
operational elements was distributed semi-proportionally between the number of devices
and the percentage of technological substitution, showing that the general importance of
high-consumption devices was distributed between both variables. The foregoing implies
that the technological replacement impacted based on the number of devices present in the
tourist buildings, coinciding with what is reported in the literature. Based on this, the gray
boxes indicate the sum of the total influence of the high-energy-demand device, whose
grouping allows one to visualize its true impact on the indicators.

Figure 6a shows that except for the thermal energy produced by the boilers, the
variables considered had a representative role in the intensive use of energy. By analyzing
the graph, the sum of the effect of the electrical devices (internal and external lighting and
air conditioners) represented just under 50% of the impact on the EUI. This confirmed that
actions to reduce energy use were linked to the substitution capacity of these devices. In
addition, it is necessary to note that the category of the hotel and the rooms were also
representatives. It was consistent with what is indicated in Tables 1 and 2 and gave certainty
of the reliability of the digital twin.

In the case of Figure 6b, similarities could be seen concerning the EUI case. The forego-
ing was because the emissions they generated was in accordance with the consumption of
equipment with the highest power and the geographical location. According to this, interior
lighting was the device that most affected CO2-equivalent emissions above air conditioning
and exterior lighting. In addition, it was observed that in terms of emissions, it was the
hotel category and not the number of rooms that had the most significant repercussions.

Concerning the reduction in the operating costs (Figure 6c), it stood out that the
replacement of interior lighting obtained significant economic savings of more than 37%,
because it was the device with the largest number of elements installed per room. This
was followed by air conditioning with more than 28%, linked to it being among the most
powerful electronic equipment with greater use time throughout the day. As the last point,
exterior lighting represented 12%, implying that its replacement also favored annual energy
cost savings. It is important to emphasize that the location significantly impacted the three
indicators, even though they were in the same climatic region. It indicates the need for
studies and audits more focused on analyzing the energy performance of hotels in the
Mexican tropical climate in the various states involved in this classification. On the other
hand, the category and zone were not as significant as in previous cases (Figure 6a,b);
this was due to the index’s nature. Being a subtraction between the current cost and the
potential cost of applying the energy reduction actions, the effect of the activities between
the various classifications was reduced. This prioritized the weights of the ANN of the
monetary difference produced by the number of devices and the replacement percentages
(giving them greater importance, as shown in the figure).



Buildings 2022, 12, 1155 14 of 20

Finally, for all cases, it can be seen that the boiler did not have relevant impacts on
the three indicators, with the case of annual monetary savings being where it stood out
the most, with 0.51%. The previous was due to the high environmental temperatures in
this climatic region that limit heating and water-heating systems, making their energy
consumption insignificant.

Figure 6. Sensitivity analysis applied to the best ANN model architecture: (a) sensitivity results for
the EUI; (b) sensitivity results for the CEI; (c) sensitivity results for S.

4.3. Evaluation of Indicators

In this section, the analysis of the EUI, CEI, and S indicators was carried out based
on the percentage of technological substitution. A 3D-isolayer scheme aided the analysis
for each scenario, where the x-axis represents Pext, the y-axis is Pint, and the z-axis is
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Pac. Figure 7 shows an example of this analysis for the case of the CA5 hotel, where
the color scale reflects the variation from lower to higher for each of the indicators, with
the cold colors (blue) being associated with reduction cases and warm colors (red) with
increase cases. In the same way, the yellow lines delimit those configurations that reached
a significant percentage of the indicators. For all the hotels, the criterion for assigning the
significant percentages (yellow line) was based on the color scale linked to the indicators’
results, subdividing them into eight categories: ocean, blue, cyan, green, yellow, orange,
red, and brown. For the case of the EUI, whose purpose was to reduce the index value,
the transition point between cyan and blue was considered significant. In contrast, the
transition point between orange and red for the CEI and S was considered significant. It
is important to emphasize that assigning these delimitations using color scales can allow
better identification and interpretation to be performed by hotel personnel with little or
no knowledge in these areas, making it possible to obtain greater economic, energy, and
environmental benefits.

Figure 7. Effects of percentages of technological substitution of indoor lighting, outdoor lighting, and
air conditioning on the indicators of interest: (a) energy-use index; (b) equivalent CO2 emissions;
(c) energy-cost index.

Figure 7a exemplifies the analysis performed for the EUI. According to the delimitation
of the yellow line, there were various configurations of technological substitution that
allowed the intensity of energy use on similar scales to be reduced. In the case of this
hotel, the contour generated by the limit line indicates all the possible configurations that
allowed a reduction of 9.05% in the EUI to be achieved; similarly, increases are indicated as
the substitution percentage of the three electrical devices converging to 90% replacement
(19.46%). As can be seen, to achieve at least a 9.05% reduction in the EUI, there were various
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alternatives. Among them, one of the most interesting configurations from the economic-
energy points of view was 90% exterior and interior lighting and a 42% replacement of air
conditioners. The above was based on the replacement costs presented in Table 3, whereby
the replacement of almost all types of luminaires was found to be cheaper and to deliver
similar energy reductions compared to several cases of air-conditioner replacements of
90%. Thus, this represents a decision-making aid for managers of two–four star hotels, as it
would help to identify energy-reduction strategies by integrating current and more efficient
technologies without making a total investment immediately. In addition, it would allow
hotel managers to schedule an intercalated replacement of the devices.

Figure 7b shows the difference between the current CEI and the one obtained for the
technological-substitution scenarios, with the objective being to maximize CO2 mitigation
per room. According to the image, the configurations within the boundary lines improved
CO2 mitigation by 18.85% for this hotel. Similar to the previous case, it was possible to ob-
tain a deck of alternatives with identical results. For example, substituting interior lighting,
exterior lighting, and air conditioning in the proportion of 90–88–48% provided the same
indicator performance as a 90–10–56% proportion. These results are significant since they
give hotels alternatives for decision making and immediate compliance with environmental
regulations through partial substitutions and efficient technological replacement.

Finally, for the case of economic savings due to technology change, Figure 7c shows
the profile of alternatives for its maximization. As can be seen, the best cases occurred
when the technology change was total (savings of 12.3% per year), implying, at the same
time, a high investment cost. However, the analysis showed that without resorting to
total replacement, it was possible to achieve significant savings of up to 11.97%, as in the
case of replacing interior lighting, exterior lighting, and air conditioning by 90–10–64%.
The same results could be achieved with a 90–88–60% setting. It is interesting and useful
for administrators, because it offers them a range of possibilities to reduce costs in their
establishments, obtain satisfactory results in their economy, and be more competitive in the
tourism market.

A similar analysis was carried out using the digital twin for each hotel, and the results
are summarized in Table 7. The approach allowed us to obtain a reduction between 11.48
and 18.85% in the case of the CEI, 9.05–19.46% for the EUI, and 8.23–30.22% for monetary
savings (S). It is reflected that for the CH2 hotel, the best savings were obtained because it
was one of the hotels with the lowest energy consumption and one with the fewest number
of rooms; in addition, it presented greater services, and its consumption was comparable to
that of a two-star hotel. This implies that in this hotel they made more efficient use of energy.
However, for the hotels located in Campeche, the strategy of partial substitutions could
improve up to 16.09% of the use of energy, reaching a reduction of 7300 kWh/person-year.
Regarding the CEI, the partial substitution alternatives also showed savings of at least
16.53% for the case of Campeche; for Chiapas and Quintana Roo, they were on average 18%,
while for the case of Yucatan, a minimum of 11.48% was reported. These differences among
hotels may have been associated with the intensity of tourist activity in each location, and
the categories and location area also played essential roles.

Table 7. Analysis of the behavior of indicators according to the percentage of substitution.

Hotel
Energy-Use Index
(kWh/Room-Year)

Equivalent-CO2-Emission Index
(kgCO2/Room-Year)

Energy-Cost Index
(MXN/Year)

Actual Procurable (%) Actual Procurable (%) Actual Procurable (%)
CA1 10,472.07 9200 12.15 5055 4255 15.83 1,851,810.59 1,601,810.59 13.50
CA2 8700.17 7300 16.09 4537.77 3788 16.53 787,346.81 627,346.81 20.32
CA3 15,162.42 13,500 10.96 6645.60 5732 13.74 1,388,121.27 1,188,121.27 14.41
CA4 20,025.67 17,800 11.11 9019.56 7320 18.85 2,824,334.90 2,524,334.90 10.62
CA5 10,037.04 9000 10.33 4911.25 4311 12.22 751,684.65 661,684.65 11.97
CH1 19,706.42 17,800 9.67 8839.34 7239 18.10 1,445,695.70 1,305,695.70 9.68
CH2 12,664.08 10,200 19.46 5809.55 4810 17.21 1,191,204.50 831,204.50 30.22
YU1 82,46.59 7500 9.05 3918.2 3468 11.48 728,786.59 668,786.59 8.23
QR1 16,689.77 14,600 12.52 6023.77 4924 18.26 1,297,928.75 1,157,928.75 10.79
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For the S index, it could be seen that the CH2 hotel had the most significant capacity to
reduce costs (30.22%) with 360,000.00 MXN kWh/year. In monetary terms, the hotel with
the greatest benefits was CA4, with savings of 2,524,334.90 MXN/year. The hotel had the
highest energy consumption, the largest number of installed air conditioners, and lighting
devices exceeding 1000. It should be noted that these results represent a practical option in
order to capture the interest of administrators to opt for a means of reduction for the benefit
of their company, to encourage them to make these changes in a partial way to achieve
savings in regions with a tropical climate, and to establish economical and environmentally
friendly tourist-attraction hotels.

5. Conclusions

This work presented a new approach based on an artificial-intelligence model for
estimating energy-reduction scenarios and carbon-footprint mitigation in hotels in tropical-
climate regions. Based on an artificial neural network (ANN), we developed an expert
model to synthetize the energy-reduction scenarios based on data from audits and link them
with energy-use, equivalent-CO2-emissions, and economic-saving indicators. The model
obtained its best data fit from five hidden neurons, obtaining excellent statistical parameters
(R2 = 0.9999, RMSE = 0.0009, and MAPE = 0.252%). Subsequently, the model was used
to perform a sensitivity analysis where the impact of the variables on the indicators of
interest was measured, obtaining that the federal entity played an important role because
the cost of energy varied depending on the geographical location. Another critical factor
was the category of stars that hotels had, since they measured the activity and services they
required for their operation. In addition, the quantities of the energy-consuming devices
found also had a significant influence. On the other hand, despite the fact that the influence
of thermal systems was almost nil for the tropical region under study, their presence was
useful to demonstrate the implementation of the methodology, which can become relevant
when moving to other climatic regions. Finally, the energy indicators on the reduction
scenarios were evaluated. The replacement configurations of higher-energy-consumption
devices were implemented to capture the attention of administrators and incentivize them
to opt for reduction solutions according to the economic resource they have available. The
results showed that the monetary savings could reach 2,524,334.90 MXN/year and decrease
by 19.46% in terms of the rate of energy use. These savings could help direct hotels in the
Mexican southeast to be competitive with those in other climatic zones of the country.

The proposed approach is vitally helpful for intermediate-class hotels. It provides
a tool to reduce consumption costs and environmental impact based on the accessible
information collected. In addition, implementing a simple sensitivity analysis method
provides easy-to-understand results in percentage form, allowing quicker decision making
to be performed by hotel managers with little or no knowledge of energy and environmental
issues. It is essential to highlight that this is not intended to replace in-depth energy audits
but rather to be an alternative to aid the decision making of hotel administrators. It allows
partial- and gradual-technology-replacement plans to be managed and encourages energy
efficiency without high investment. Its application through a mathematical model allows
its transfer to digital platforms and smartphone applications to be conducted. In addition,
being based on a supervised learning process, it can be fed with information from new
energy audits, increasing the scope of the hotels and regions it could impact. Finally, the
methodological approach presented can be easily extrapolated to other categories of the
tourism sector and climate zones of Mexico and Latin America.
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Appendix A

Figure A1 details the implementation of Garson’s algorithm described in Section 4.2
(Equation (13)). This starts by converting to positive all the ANN’s weight matrix elements
using the absolute value function (IW, weights between hidden and input layers; LW,
weights between hidden and output layers). To facilitate the calculations, vector Siwm is
created where its elements represent the input neurons’ influence (the sum) on each hidden
neuron (m). The vector enters an iterative process to identify the importance ratio of each
element of the IW matrix to the total of the weights that affect a given hidden neuron and
use it to express the impact of the LW weights (creating the Avk,m matrix). Finally, the
total value of the columns of this new matrix (which contains the information of the input
variables) is divided by the sum of all its elements. This division calculates the impact
of the start–finish weights associated with a specific input with respect to all the weights
embedded in the ANN.

Figure A1. Numerical procedure for the implementation of Garson’s method as a sensitivity
analysis tool.
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