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Abstract: This study demonstrates the moment resistance performance of various splice connections
of cross-laminated timber (CLT) subjected to flatwise bending. A total of 33 samples in two groups
(half-lapped and single-splined) were tested under four-point bending. The influence of fastener
types on the half-lapped connections was investigated. Additionally, different lap lengths were
considered to understand the influence of lap length on different fastener types. Steel plates with two
different thicknesses and plywoods were attached with bolts onto the bottom face only to make the
single spline connections. Additionally, plywoods were attached to the CLT members in two ways:
(i) with the bolt only and (ii) glue plus bolts. The effect of bolt diameters on the spline connections was
also examined, and the connections were tested along both the major and minor axes. To determine
the characteristic values of the resistance properties, a statistical analysis was carried out following
EN 14358:2016. The results indicate the bolted lap connections experience plastic deformations,
whereas the screwed lap connections exhibit relatively linear behaviour until failure. The bolted and
screwed lap connection with a lap length of 100 mm showed 39% and 33% higher moment capacity,
respectively, than that with a 75 mm lap length. Additionally, the rotational rigidity and ductility of
the lap connections increase with the increase in lap length. Irrespective of lap lengths, the bolted
lap connections show higher moment capacity, support rotation and ductility, but lower rotational
rigidity than screwed lap connections. An increase in bolt diameter increases moment capacity
but decreases rotational rigidity. Compared to the plywood spline connections, the steel spline
connections showed approximately 24%, 5% and 73% higher moment capacity, rotational rigidity
and ductility, respectively. Additionally, the plywood spline connections without glue performed
better than glued connections. Overall, compared to the half-lapped connections, the single-spline
connections showed better performance.

Keywords: cross-laminated timber; lap connection; spline connection; bending moment; support
rotation; rotational rigidity

1. Introduction

Cross-laminated timber (CLT) is made from orthogonally oriented layers (three to
seven) of solid-sawn boards that are glued together on the wide faces. CLT is considered an
innovative engineered wood panel, which was first patented in the mid-1990s [1,2]. Global
use of CLT as a prefabricated structural member is remarkably increasing in the building
industry [3,4]. Usually, the physical properties of solid timber products are considered
effective when the load is carried along the grain. However, CLT offers better resistance in
both directions due to its orthogonal layups and structural rigidity [4–6].
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In recent years, CLT has been used in low-to-high-rise building structures and bridges
in North America, Europe, the UK, Canada, Japan and Oceania [2,7]. Its use is also gaining
momentum in the building construction sector in other parts of the world [1,8]. Due to its
better structural rigidity along in- and out-of-the plane and higher strength-to-weight ratio,
CLT has been chosen as a building material for floor elements, shear walls, load-bearing
panels and roof assemblies [2,5,9–11]. Furthermore, to ensure structural safety, CLT panels
can be used to restore existing architectural heritage buildings made of timbers [4,6]. Due
to the in-plane stiffness and high strength-to-weight ratio of CLT structures, they exhibit
satisfactory performance even under environmental excitations (wind and earthquake) [12].
As reported, CLT possesses better mechanical properties, stiffness, acoustic properties and
thermal resistance compared to solid timber [5]. Due to the ease of prefabrication of CLT
members, on-site work and labour costs are reduced significantly. Likewise, CLT offers
excellent energy efficiency when buildings’ physical aspects are properly considered [1,13].

A considerable amount of research is available on various aspects of CLT, particularly
on rolling shear and bending characteristics [14–17], but there is a significant lack of re-
search on splice connections subjected to bending. Sadeghi et al. [18] conducted a study
on the bending properties of CLT members and the authors concluded that both half-lap
and single-spline connections are flexible and weak against bending moments. Another
previous study on the connections of CLT reported that lapped connections are incapable
of resisting a bending load [19]. In contrast, an experimental study on the performance
of glulam beam-to-beam connections with round dovetail and half-lap joints reinforced
with long self-tapping screws (STSs) highlighted that STSs can act as reinforcement in
beam-to-beam glulam connections [20]. Therefore, this study aims to examine the factors
affecting the performance of lap and spline connections of CLT members under bend-
ing moments by using various fasteners with different diameters and spline plates with
various thicknesses.

As CLT plates have size limitations, they often require connections to produce the
desired span to perform as structural members [21]. The connection parts of a structural
timber element are usually known as the weakest segment of the entire member. However,
connections are subjected to a considerable bending moment when CLTs with splice con-
nections are used as floor elements, roof assemblies or any other element subjected to loads
that cause out-of-plane bending. The performance of high-rise timber structures under
seismic conditions has been focused on in several research projects [12]. To avoid the failure
of CLT connections under bending loads or to provide a sufficient safety margin before
failure due to seismic loads, it is necessary to extensively study the flexural performance
and ductility of different connections in CLT.

In recent decades, an extensive amount of research on fasteners of CLT specimens
was carried out, mostly in Europe and Canada [22–24]. However, to assess the connection
capacity and to prepare a prediction model for CLT connections, the moment–rotation
behaviour of the CLT connection, subjected to bending, with various fasteners and spline
types is still inadequate in the literature.

A robust design of splice connection in CLT members greatly depends on material
behaviour, structural conception, and structural redundancy [25,26]. Moment–rotation
behaviour, rigidity and ductility when subjected to bending are some of the desirable
properties in a splice connection system that require further study. As stated, the efficiency
of CLTs relies on the performance of the connections when they are used as structural
members [27]. Accordingly, the current study deals with the moment capacity, support
rotation, rotational rigidity and ductility performance of lap and spline connections of CLT
members subjected to bending loads. Overall, the influence of lap lengths, fastener types,
spline types and thickness, techniques to attach splines and moment carrying direction of a
CLT panel (major vs. minor) on the connections are also explored in detail in this paper.
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2. Details of the Experimental Program

To investigate the moment resistance of CLT splice connections, flexural bending tests
were conducted on CLT specimens’ half-lapped and single spline connections.

2.1. Configuration of the Connection Systems

Three-ply CLT specimens, manufactured using Norway spruce (Picea abies) and
supplied by Stora Enso, were used in this study. The lamella thickness of each ply was
20 mm, which resulted in a total thickness of 60 mm. Figure 1 shows a diagram of the
four-point bending test set-up for the half-lap CLT connection. To examine the influence
of fasteners on the lap connection, two separate sets of fasteners, such as self-tapping
screws (STS) of Ø14 mm, and bolts of Ø8 mm with washers were used to prepare the
connections. STS were inserted up to a depth of 50 mm into the CLT member, resulting in a
20 mm penetration into the lower lap, as shown in Figure 1a. STS was installed using a
handheld drilling machine and the minimum edge distance was maintained following the
AS 1720.1 [28].
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Figure 1. Bending test on the half-lap CLT connection: (a) STS-connected and (b) bolt-connected.
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To facilitate bolt installation, all CLT panels were pre-drilled at a diameter of 1 mm
in excess of the major bolt diameter to be used. The bolts in conjunction with washers
were installed up to the total thickness of the CLT specimens. Moreover, to investigate
the influence of lap length on the connection properties, two different lap lengths, namely
75 and 100 mm, were used for both STS and bolt connections.

Figure 2 demonstrates a spline connection system used in the study. Splines were
bolt-connected to the bottom face of the CLT specimens only. To make the single spline
connections, three different types of splines, e.g., steel plates with a thickness of 3 and
8 mm, and plywood plates with a thickness of 17 mm, were selected. A total of 4 bolts were
installed on each plate. The plywood plates were connected to CLT members in two ways:
(i) with bolts only and (ii) glue plus bolts. Two separate bolt diameters (6 and 8 mm) were
used to investigate the effect of bolt diameter on the performance of connections. Bolts
were installed in the spline connection in the same manner as were for the lap connection.
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Figure 2. Bending test on single-splined CLT connection: (a) along the major axis and (b) along the 
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Table 1 presents the details of the test matrix considered in the current study. A total
of 11 variations of CLT connections comprising lap and spline were tested, where 4 were
related to lap connection and 7 were part of spline connection. For each variation of the
connection, at least three samples were tested. Moreover, flexural capacities of spline
connections along both the major and minor axis of the CLT specimen were tested, as
shown in Figure 2a,b.

Table 1. Detail of the test matrix used in this study.

Connection
Type Variation in Lap/Spline Number of

Samples Fastener Type Sample Dimensions
(L-W-D) Axis Orientation

Lap

100 mm 3
14-10 STS

1150-200-60 Major
75 mm 3

100 mm 3
Bolt Ø8 mm

75 mm 3

Spline

3 mm steel spline 3 Bolt Ø8 mm

1000-200-60 Major
3 mm steel spline 3 Bolt Ø6 mm

8 mm steel spline 3 Bolt Ø8 mm

8 mm steel spline 3 Bolt Ø6 mm

17 mm plywood spline
glued 3

Bolt Ø8 mm 1000-200-60 Minor
17 mm plywood spline 3

8 mm steel spline 3

2.2. Material Properties of the Elements
2.2.1. CLT Panel

According to the European Standard EN338 [29], the grade of each lamella of the CLT
panels used in this study was C24. The original dimensions of the CLT panels were 60 mm
× 1450 mm × 1500 mm. Formaldehyde-free adhesives were used for finger jointing and
surface bonding, but the narrow faces of the lamella were not bonded. The characteristic
density of the specimen was 470 kg/m3. Before starting the experiment, the moisture
content of the samples was measured using a handheld Crommelin moisture meter. Most
of the samples’ moisture content remained within the range of 5–7%. The lower moisture
content can be attributed to the low humidity during the dry season when samples were
prepared for testing. Table 2 lists the mechanical properties of the lamellas obtained from
the manufacturer’s datasheet.

Table 2. Mechanical properties of the lamellas as supplied by the manufacturer.

Properties of the Individual Lamella Values (MPa)

Modulus of elasticity parallel to the grain 11,000
Modulus of elasticity perpendicular to the grain 370
Rolling shear modulus 72
Bending strength 24
Tensile strength parallel to the grain 14
Tensile strength perpendicular to the grain 0.4
Compressive strength parallel to the grain 21
Compressive strength perpendicular to the grain 5.3
Rolling shear strength 2.5

2.2.2. Plywood

The plywood used in this study was manufactured by Specrite Formply using hard-
wood (Eucalyptus) veneers, which are typically more than 900 kg/m3 in density. The
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veneers were glued using phenol-formaldehyde. According to the Australian Standards
AS1720 [28], the strength grade of the veneers is F17. The mechanical properties of the F17
grade are presented in Table 3.

Table 3. The mechanical properties of the plywood used as a spline.

Properties of the Plywood Values (MPa)

Modulus of elasticity parallel to the grain 14,000
Modulus of rigidity 930
Bending strength 2.42
Tensile strength parallel to the grain 25
Tensile strength perpendicular to the grain 0.6
Compressive strength parallel to the grain 34
Shear strength in the beam 3.6

2.2.3. Steel Plate, Bolts, and STS

Heavy-duty 14-10 self-tapping screws (STS), made from hardened carbon steel, were
used to prepare the lap connection. The characteristic yield and tensile strength of the
STS were 350 and 550 MPa, respectively. The yield and the ultimate strength of the steel
plates used in the spline connections were 250 and 410 MPa, respectively. According to
AS4100 [30], high-strength bolts (grade 8.8) were used for both lap and spline connections.
The yield and the tensile strength of grade 8.8 high strength bolts were 600 and 830 MPa,
respectively.

2.2.4. Testing Details

Four-point bending tests on CLT connections were conducted following the AS/NZS
4063.1 [31]. The connections, whether lap or spline, were positioned in the central uniform
moment zone to ensure the fasteners and the connection arrangement were subjected to
pure flexural stress, as shown in Figure 3. A universal testing machine with a capacity of
500 kN was used to apply the load and deflection values under the loading points were
recorded. The load was applied at a rate of 2 mm/min in a displacement control mode.
Metal bearing plates were placed between the supports and test samples and at the point
of load to prevent bearing failure.
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Figure 3. Four-point bending test setup used in the current study following AS/NZS 4063.1.

3. Results and Discussion

The bending resistance of connections in terms of moment capacity, support rotation,
rotational rigidity, and rotational ductility was investigated for each test and is detailed in
the subsequent sections.
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3.1. Ultimate Moment and Angle of Support Rotation

The ultimate bending moment was calculated using Equation (1), where P is the
applied load on each point and D is the total thickness of the specimen.

Mu = 6PD (1)

To calculate the angle of rotation at the support of the CLT specimens, displacements
at the loading points were recorded. Using these displacement values and span length,
support rotation was calculated based on simple trigonometric principles, as shown in
Equation (2). A similar approach to obtaining rotational capacity was adopted in previous
research conducted on lap connections and dovetail connections of glulam beams [20].
Since the angle of rotation at the support is assumed to be very small, the small-angle
approximations theory was used to determine the support rotation values. Hence, the
support rotation angle was taken as the ratio of deflection and shear span length.

θsupport = tan−1
(

δLoad point

6D

)
≈ δLoad point/(6D) (2)

where θsupport is the support rotation in radian, δLoad point is the displacement of specimen
at loading point in millimeters and 6D represents the shear span length in millimeters, as
shown in Figure 3.

Table 4 shows the mean and characteristic values of the ultimate moment capacity
of the connections and the corresponding angle of rotations at the supports of the CLT
members. Following the guidelines of the EN 14358-16 [32], the characteristic values of the
resistance properties of the connections were determined based on the fifth percentile in
the normal distribution corresponding to the sample size = 3 at a confidence level of 75 %.

Table 4. The mean and characteristic values of the ultimate bending moments and support rotations
of the CLT specimens.

Connection
Type Variations Fastener

Type
Ultimate Bending Moment

Mu (kN-m)
The Angle of Rotation at the Support

θu (Degree)

Mean COV
(%)

Characteristic
Values Mean COV

(%)
Characteristic

Values

Lap

100 mm lap length 14-10 STS 0.66 5.8 0.54 1.26 14.8 1.17

75 mm lap length 14-10 STS 0.59 14.1 0.33 1.30 15.3 1.21

100 mm lap length Bolt Ø8
mm 1.43 5.5 1.18 7.34 32.6 6.21

75 mm lap length Bolt Ø8
mm 1.07 8.4 0.79 7.99 46.1 6.26

Spline

Major
axis

3 mm steel spline Bolt Ø8
mm 2.45 5.2 2.05 15.45 3.2 15.22

3 mm steel spline Bolt Ø6
mm 2.00 24.8 0.44 13.15 19.4 11.95

8 mm steel spline Bolt Ø8
mm 2.38 5.0 2.01 14.51 12.3 13.67

8 mm steel spline Bolt Ø6
mm 2.16 7.2 1.67 15.68 3.5 15.42

Minor
axis

17 mm plywood spline glued
Bolt Ø8

mm

1.30 9.0 0.93 10.48 25.4 9.23

17 mm plywood spline 1.53 2.10 1.43 14.09 1.5 13.99

8 mm steel spline 2.01 8.4 1.48 13.25 12.1 12.49

Regardless of the fastener types, the connection with a 100 mm lap length performed
better than that with a 75 mm lap length. Additionally, irrespective of lap length, bolted
lap connections showed higher moment capacities than the screwed lap connections. For
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the single-spline connection, the CLT panel with a 3 mm-thick steel spline and Ø8 mm bolt
had a higher moment capacity than the other spline connections when tested along the
major axis. Bolt diameter played an important role in the moment capacity of the splined
connection. Compared to the Ø6 mm bolted-spline connection, the Ø8 mm bolted-spline
connection performed better. The effect of lap length and change in bolt diameter on the
moment capacity is significant, but the effect of steel plate thickness on the moment capacity
was found to be minimal. A thinner steel plate was found to be more beneficial, since it
can bend as the moment increases. The thicker steel plate was too rigid, resulting in local
bearing failure, clearly highlighting the significance of compatibility among connecting
elements to act in unison when resisting external stresses.

While comparing the effect of the spline plate, it is evident that the unglued plywood
plate was more flexible, leading to higher ultimate moment capacity. The steel plate
increased the ultimate moment capacity but reduced the flexibility (support rotation) to
some extent. Overall, compared to the lap connection, the spline connection exhibited
higher moment capacity and experienced greater support rotation.

3.2. Rotational Rigidity and Ductility

Rotational rigidity, denoted as Rj, is determined from the slope of the moment–rotation
curves. To determine Rj, simplified moment–rotation curves were used. Trilinear curves
were drawn on the moment–rotation curves, as shown in Figure 4. Points P0 to P1 are
linked by the first linear curve, points P1 to P2 are connected by the second, and points P2
to P3 are joined by the third linear curve. The rotational rigidity of the connection of the
CLT specimen is here defined by the slope of the line between points P0 and P2 [33]. The
rotational ductility of the CLT connection was determined using Equation (3), as outlined
in Eurocode 5.

µχ =
χu

χe
(3)

where µχ = rotational ductility, χu = ultimate rotation and χe = elastic rotation.
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Figure 4. The simplified tri-linear moment rotation curves of connections.

Table 5 presents the mean and characteristic values of rotational rigidity and ductility
of the splice connections of the considered CLT specimens. It was observed that the
rotational rigidity and ductility of the lap connection increase with lap length. The screwed
lap connections exhibited higher rigidity but less ductility compared to those of bolted lap
connections. The Ø6 mm bolted-spline connections with a 3 mm-thick steel plate showed
the highest rigidity compared to other spline connections when tested along the major
axis. Bolt diameters influenced the rigidity and ductility of connections. The Ø6 mm bolts
performed better than the Ø8 mm bolts in terms of rotational rigidity and ductility. The
axis of loading also has a significant effect. As expected, the spline connections tested along
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the minor axis showed less rigidity and ductility compared to those tested along the major
axis. Overall, the spline connections showed better performance in terms of rotational
rigidity and ductility compared to the lap connection investigated. It is also evident that
the use of a steel plate in the spline connection instead of plywood did not significantly
affect the connection’s rigidity, although the ductility of the connection increased by a
considerable margin.

Table 5. The mean and characteristic values of the rotational rigidity and ductility of all of the connections.

Connection
Type Variations Fastener

Type
Rotational Rigidity

Rj (kN-m/deg)
Ductility

µχ (deg/deg)

Mean COV
(%)

Characteristic
Values Mean COV

(%)
Characteristic

Values

Lap

100 mm lap length 14-10 STS 0.68 18.7 0.62 2.16 14.2 2.02

75 mm lap length 14-10 STS 0.49 31.0 0.42 2.07 37.1 1.71

100 mm lap length Bolt Ø8
mm 0.34 20.7 0.31 5.27 18.1 4.82

75 mm lap length Bolt Ø8
mm 0.26 41.1 0.21 4.51 14.9 4.19

Spline

Major
axis

3 mm steel spline Bolt Ø8
mm 0.35 4.8 0.34 7.81 7.4 7.54

3 mm steel spline Bolt Ø6
mm 0.45 35.9 0.37 8.42 44.2 6.67

8 mm steel spline Bolt Ø8
mm 0.37 16.9 0.34 5.32 14.2 4.96

8 mm steel spline Bolt Ø6
mm 0.37 12.3 0.35 8.95 23.2 7.97

Minor
axis

17 mm plywood spline glued
Bolt Ø8

mm

0.18 4.2 0.18 5.42 32.8 4.58

17 mm plywood spline 0.22 8.9 0.21 3.95 1.4 3.92

8 mm steel spline 0.23 17.8 0.21 6.83 47.7 5.30

3.3. Effect of Lap Lengths on the Half-Lapped Connections

The failure modes for both bolted and screwed lap connections are presented in
Figure 5a,b, respectively. The failure occurred due to the fracture of the CLT specimen for
both bolted and screwed lap connections.
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Figure 5. Failure modes associated with (a) bolted and (b) screwed lap connections.

Figures 6 and 7 present the moment vs. support rotation behaviors of bolted and
screwed lap connections with different lap lengths, respectively. Based on the characteristic
values of the moment capacity, the bolted and screwed lap connections with a 100 mm lap
length showed 39% and 33% higher moment capacity than that with a 75 mm lap length,
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respectively. This implies that the half-lap connections with longer lap lengths, whether STS-
or bolt-connected, may offer higher ultimate moment capacity than the connections with
smaller lap lengths. Additionally, the improvement in the bolted connection for increased
lap length was significantly higher than the same in the STS-based connection. Therefore,
lap length is an important parameter that should be considered for bolt connection.
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Figure 6. Moment capacity vs. support rotation curves of the Ø8mm bolted lap connections with
different lap lengths.
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Figure 7. Moment capacity vs. support rotation curves of the screwed lap connections with different
lap lengths.

Plastic or non-linear deformations before peak capacity were observed for the bolted
lap connections, whereas the screwed lap connections exhibited relatively linear behaviour
until they reached the ultimate moment capacity. The screwed lap connections seemed to
retain their moment capacity after post-peak, showing a gradual decrease in resistance,
as shown in Figure 7, but bolted connections showed a sudden drop after reaching peak
moment as shown in Figure 6. In brief, CLT panels can be significantly degraded when
connections are prepared using STS; consequently, CLT could lose strength substantially
and the energy dissipation capacity of CLT connection may also be affected.

Figure 8a presents the characteristic ultimate moment and the corresponding charac-
teristic support rotation values, and Figure 8b shows the characteristic rotational rigidity
and ductility for various lap connections. The ultimate moment capacities of bolted lap
connections with 100 and 75 mm lap lengths were about 2.18 and 2.40 times higher com-
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pared to their STS counterparts with 100 and 75 mm lap lengths, respectively. In the case
of support rotation, this difference was even more significant. For bolted connections
with 100 and 75 mm lap length, support rotations were approximately 5.35 and 5.13 times
higher than those for STS connections, respectively. In contrast, the rotational rigidity of
the STS connection was twice that of the bolted lap connections. Lower rotational rigidity
and higher support rotation at the ultimate moment in bolted lap connections could be
attributed to the use of washers. Using a washer increases the contact surface between the
bolt head and the CLT panel, resulting in a reduction in bearing stress concentration. This
eventually led to an increase in the ductility of the bolted lap connections, as the ductility
of the bolted lap connection is found to be approximately 2.4 times higher than that of
screwed lap connections.
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Figure 8. Comparison among the lap connections based on the characteristic values of (a) moment
capacities and support rotations and (b) rotational rigidity and ductility.

3.4. Effect of Steel Plates on the Behaviour of Bolted Spline Connections

The failure modes of the splined connections with 3 and 8 mm thick steel plates are
shown in Figure 9a,b, respectively. The 3 mm steel spline bent due to the applied load, but
the CLT panels remained unaffected. An opposite scenario was observed for the 8 mm
steel spline plate, in which the steel spline was intact, but CLT panels failed at the contact
surface, as discussed in Section 3.1.
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Figure 10 depicts the moment–rotation performance of the half-spline connection with
different thicknesses of steel plates and bolt diameters. In general, all moment–rotation
curves demonstrated a sharp increase in the moment capacity in the elastic zone, followed
by a smooth plastic curve until it reached the ultimate moment capacity. Beyond that, a
sudden drop in the curve was observed, indicating the failure of the connection. The Ø8
mm bolted connections showed higher ultimate moment capacity than the Ø6 mm bolted
connections for both the 3 and 8 mm steel spline, which can be seen in Figure 10. Support
rotations at the ultimate moment for most of the considered spline connections were
consistently close to 150, except for SP3-6 mm-a (Figure 10a) and SP8-8 mm-a (Figure 10d),
which showed support rotations of 9.55◦ and 12.03◦ at the ultimate moment, respectively.

Buildings 2022, 12, x FOR PEER REVIEW 13 of 20 
 

3.4. Effect of Steel Plates on the Behaviour of Bolted Spline Connections 

The failure modes of the splined connections with 3 and 8 mm thick steel plates are 

shown in Figure 9a,b, respectively. The 3 mm steel spline bent due to the applied load, 

but the CLT panels remained unaffected. An opposite scenario was observed for the 8 mm 

steel spline plate, in which the steel spline was intact, but CLT panels failed at the contact 

surface, as discussed in Section 3.1. 

  

Figure 9. Failure modes associated with (a) 3 mm- and (b) 8 mm-thick steel spline connections. 

Figure 10 depicts the moment–rotation performance of the half-spline connection 

with different thicknesses of steel plates and bolt diameters. In general, all moment–rota-

tion curves demonstrated a sharp increase in the moment capacity in the elastic zone, fol-

lowed by a smooth plastic curve until it reached the ultimate moment capacity. Beyond 

that, a sudden drop in the curve was observed, indicating the failure of the connection. 

The Ø 8 mm bolted connections showed higher ultimate moment capacity than the Ø 6 mm 

bolted connections for both the 3 and 8 mm steel spline, which can be seen in Figure 10. 

Support rotations at the ultimate moment for most of the considered spline connections 

were consistently close to 150, except for SP3-6 mm-a (Figure 10a) and SP8-8 mm-a (Figure 

10d), which showed support rotations of 9.55° and 12.03° at the ultimate moment, respec-

tively.  

  

(a)

3 mm steel spline

(b)

8 mm steel spline

Buildings 2022, 12, x FOR PEER REVIEW 14 of 20 
 

  

Figure 10. Moment–rotation curves of various bolted steel spline connections: (a) 3 mm-thick steel 

plate with Ø 6mm bolt, (b) 3 mm-thick steel plate with Ø 8 mm bolt, (c) 8 mm-thick steel plate with 

Ø 6 mm bolt and (d) 8 mm-thick steel plate with Ø 8 mm bolt. 

In the case of Ø 6 mm bolts, it is observed that the increase in steel plate thickness 

from 3 to 8 mm resulted in approximately 3.80, 1.30 and 1.20 times higher ultimate mo-

ment, support rotation and rotational ductility, respectively. In contrast, the rotational ri-

gidity was observed to be decreased by 5.40% due to this effect. The opposite scenario was 

observed for Ø 8 mm bolts; as steel plate thickness was changed from 3 to 8 mm, the ulti-

mate moment, support rotation and rotational ductility were reduced by 2, 10 and 34%, 

respectively. However, the rotational rigidity was found to be the same. It could be sum-

marised that the thickness of steel spline may have a negligible effect on the capacity of 

bolted connection when subjected to bending loads, but an increase in bolt diameter could 

substantially enhance the capacity of the CLT connection.  

Figure 11a, b presents the characteristic values of the key performance indicators of 

the bolted steel spline connections. For the splined connections with 3 mm steel plates, the 

Ø 8 mm bolted connections showed 4.6 and 1.27 times higher ultimate moment and sup-

port rotation than those of Ø 6 mm bolted connections. For the splined connections with 8 

mm-thick steel plates, the Ø 8 mm bolted connections showed 1.20 times higher ultimate 

moment capacity but 11.3% lower support rotation than those of Ø 6 mm bolted connec-

tions. The rotational rigidity of the Ø 8 mm bolted splined connections is 8.10% lower com-

pared to that of the Ø 6 mm bolted splined connections with 3 mm-thick steel plates. How-

ever, for the splined connections with 8 mm-thick steel plates, the rotational rigidity of 

both Ø 6 mm and Ø 8 mm bolted connections were found to be the same. In summary, 

although the Ø 6 mm bolted spline connections performed better than the Ø 8 mm bolted 

spline connections in terms of rotational ductility, an increase in bolt diameter seemed to 

increase moment capacity. 

 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.0

0.5

1.0

1.5

2.0

2.5

3mm splice
- Ø6 mm

bolt

3mm splice
- Ø8 mm

bolt

8mm splice
- Ø6 mm

bolt

8mm splice
- Ø8 mm

bolt

S
u

p
p

o
rt

 r
o
ta

ti
o

n
 (

d
e

g
)

M
o

m
e

n
t 
(k

N
-m

)

Mu θu

(a)

Figure 10. Moment–rotation curves of various bolted steel spline connections: (a) 3 mm-thick steel
plate with Ø6mm bolt, (b) 3 mm-thick steel plate with Ø8 mm bolt, (c) 8 mm-thick steel plate with
Ø6 mm bolt and (d) 8 mm-thick steel plate with Ø8 mm bolt.

In the case of Ø6 mm bolts, it is observed that the increase in steel plate thickness from
3 to 8 mm resulted in approximately 3.80, 1.30 and 1.20 times higher ultimate moment,



Buildings 2022, 12, 1124 13 of 18

support rotation and rotational ductility, respectively. In contrast, the rotational rigidity
was observed to be decreased by 5.40% due to this effect. The opposite scenario was
observed for Ø8 mm bolts; as steel plate thickness was changed from 3 to 8 mm, the
ultimate moment, support rotation and rotational ductility were reduced by 2, 10 and
34%, respectively. However, the rotational rigidity was found to be the same. It could be
summarised that the thickness of steel spline may have a negligible effect on the capacity of
bolted connection when subjected to bending loads, but an increase in bolt diameter could
substantially enhance the capacity of the CLT connection.

Figure 11a, b presents the characteristic values of the key performance indicators of
the bolted steel spline connections. For the splined connections with 3 mm steel plates,
the Ø8 mm bolted connections showed 4.6 and 1.27 times higher ultimate moment and
support rotation than those of Ø6 mm bolted connections. For the splined connections
with 8 mm-thick steel plates, the Ø8 mm bolted connections showed 1.20 times higher
ultimate moment capacity but 11.3% lower support rotation than those of Ø6 mm bolted
connections. The rotational rigidity of the Ø8 mm bolted splined connections is 8.10%
lower compared to that of the Ø6 mm bolted splined connections with 3 mm-thick steel
plates. However, for the splined connections with 8 mm-thick steel plates, the rotational
rigidity of both Ø6 mm and Ø8 mm bolted connections were found to be the same. In
summary, although the Ø6 mm bolted spline connections performed better than the Ø8
mm bolted spline connections in terms of rotational ductility, an increase in bolt diameter
seemed to increase moment capacity.
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Figure 11. Comparison among (a) bending moment and support rotation, (b) rotational rigidity and
rotational ductility of steel spline connections with variation in steel plate thickness and bolt diameter.
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3.5. Effect of Axis Orientation on Spline Connections

Figure 12 presents the moment–rotation curves of the bolted spline connections used
for CLT specimens tested along the major and the minor axis. The specimens being oriented
about the major axis means that the outermost CLT layers are running parallel to the length
of the specimen, whereas being centered around the minor axis indicates that the outer
layers are perpendicular to the length of the connection. The connections of CLT specimens
tested along the major axis demonstrated higher capacity compared to those oriented about
the minor axis. This is obvious, as CLT has a higher load-carrying capacity along the
major axis. Nonetheless, the performance of the connection system around the minor axis
is not insignificant, as the difference in the ultimate moment capacity and rotation was
only 7% and 8%, respectively, as shown in Figure 13a. The noticeable difference in the
moment–rotation behaviour of the spline connection along the major vs. minor axes was
due to the short elastic zone in the case of the minor axis specimens.
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Figure 12. Moment vs. rotation curves for Ø8 mm bolted spline connections with a 8mm-thick steel
plate when tested along the major and minor axes.
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Figure 13. Performance indicators including (a) moment and rotation relationship and (b) rotational
rigidity and ductility behaviour of the bolted steel spline connections tested along the major and
minor axes.

Figure 13b presents the rotational rigidity and ductility of the bolted spline connections
tested along with the major and the minor axis. Numerically, the rotational rigidity for
a major axis-oriented specimen is about 37% higher compared to a minor axis specimen.
However, the opposite scenario was observed for rotational ductility; major axis-oriented
specimens showed about 28% less ductility than minor axis-focused connections.
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3.6. Influence of Spline Plate Types on Connections

The plywood spline connections tested in the current study were oriented about the
minor axis only and hence, similar connections with different spline plates were compared
with each other in this section. The failure modes of the various spline connections are
shown in Figure 14. In the case of plywood spline connections, whether glued or not, the
plywood layers were severely ruptured and failed. For steel spline connections, CLT failed
due to bearing, but the steel splines remained unaffected under the loads.
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Figure 14. Failure modes of (a) glued and bolted plywood, (b) unglued and bolted plywood and
(c) 8mm-thick steel spline connection.

The highest resistance against the bending moment was observed for the connection
with a steel plate as a spline. When compared with the plywood spline specimen without
glue, the steel spline specimen attained 24%, 4.54% and 72.90% higher moment capacity,
rotational rigidity and ductility, respectively, as shown in Figure 15. However, the mean
ultimate support rotation for the steel spline connection was 6% less than that of the
plywood spline connection. Interestingly, the plywood connections without any glue
performed better than their glued counterparts, as can be seen in Figure 16. The glued
and bolted plywood spline connection exhibited 14% and 25% less ultimate moment and
support rotation, respectively, than those for the bolted plywood spline connection without
glue. Although gluing did not show any effect on the moment, rigidity, and rotational
performance of the spline connection of CLTs, it enhanced the ductility of the connections
by 26%, as depicted in Figure 15b. The reason for the higher ductility could be attributed
to the stronger bond between CLT and plywood spline created by employing adhesion,
which increased the overall ductility of the connection.
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Figure 15. Comparison of (a) moment–rotation and (b) rigidity and ductility of the spline connections
with different spline plates tested along the minor axis.
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Figure 16. Moment–rotation curves of spline connections with different types of spline plates.

4. Summary and Conclusions

This experimental study demonstrates the performance of lap and spline connections
of CLT members subjected to a bending moment. The influence of lap length and fastener
types on lap connections was examined. Additionally, the effect of spline plate type and
thickness and bolt diameter on the spline connections were investigated. The following
specific conclusions are drawn from this study:

• Compared to 75 mm lap length, a 100 mm lap length demonstrates 39% and 33%
higher moment capacities for the bolted and screwed lap connections, respectively.
Rotational rigidity and ductility of the lap connections also increase with the increase
in the lap length. However, further investigation is recommended to determine an
optimum lap length for the connections.

• Plastic deformations were observed in bolted lap connections, whereas screwed lap
connections exhibited relatively linear behaviour until they reached the ultimate
moment capacity. Irrespective of lap lengths, the bolted lap connections showed
better performance in terms of moment capacity, support rotation and ductility
when compared to their counterpart (screwed lap) connections. In contrast, the rota-
tional rigidity of screwed connections was observed to be higher than that of bolted
lap connections.

• The spline plate types showed a significant influence on the capacity of spline connec-
tions. The steel spline connection attained approximately 24%, 5% and 73% higher
moment capacity, rotational rigidity and ductility, respectively, when compared to
those for the plywood spline connection. However, the support rotation for the
steel spline connection was found to be 6% less compared to that of the plywood
spline connections.

• An increase in bolt diameter increases moment capacity but decreases rotational
rigidity when plate thickness is constant. The effect of an increase in the thickness of
the steel spline on the capacities of the bolted steel spline connections subjected to
bending moment is found to be insignificant.

• The effect of glue on the bending moment, support rotation and rigidity of plywood
spline connections was found to be negligible, as plywood spline connections without
glue performed better. However, the application of glue along with bolts enhanced
the ductility of the plywood spline connections by 26%.

• The axis of loading (major axis vs. minor axis) is vital; connections tested along the
minor axis showed less resistance to bending loads than the connections tested along
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the major axis. Nevertheless, the performance of the bolted spline connection system
about the minor axis is not insignificant.

• Overall, spline connections showed better performance in terms of moment capacity,
support rotation, rotational rigidity and ductility compared to lap connections. The Ø8
mm bolt and 3 mm-thick steel spline were recognised as an optimum combination for
the spline connections, as they showed the highest resistance to the bending moment.
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