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Abstract: In this paper, a new material consisting of plaster and wheat straw was studied with the
purpose of reducing energy consumption. The aim of this study is to test this new compound for
use as an insulation material in buildings, where the samples were prepared by mixing wheat straw
after grinding it in different proportions from 0% to 15%. On the other hand, the physico-chemical
properties and thermal conductivity of the samples were experimentally investigated, and the time
lag and energy savings for the samples were also studied. The results showed that the addition of
wheat straw leads to an increase in the time lag and also to a decrease in the thermal conductivity,
which leads to an improvement in the thermal resistance and energy savings. As well, fiber addition
has no effect on the chemical composition of the matrix, as shown by FTIR and XRD analyses.The
findings of the DSC and TGA analysis indicate that the inclusion of wheat straw fibers has an effect
on the thermal characteristics of the matrix. This new biocomposite can be used as an additive to
plaster to create environmentally friendly composite materials for thermal insulation in buildings.

Keywords: wheat straw/plaster composite; physico-chemical; thermal conductivity; energy saving

1. Introduction

Demographic growth and economic and technological progress in the world have led
to excessive energy consumption [1]. The construction sector is among the sectors that
consume energy at a global level, approximately 40% of global consumption [2]. On the
other hand, in Algeria, construction is a major consumer of energy, accounting for 42%
of primary energy [3]. The use of operational energy in cooling and heating increases
energy consumption and emissions, therefore researchers aim to decrease energy usage,
emissions, and waste [4]. Building insulation is often made using materials derived from
petrochemicals (mostly polystyrene) or from natural sources treated with substantial energy
consumption (glass and stone wool). These materials have a significant negative impact
on the environment, primarily due to the production stage, which includes the use of
non-renewable materials and the consumption of fossil fuels, and the disposal stage, which
includes difficulties in reusing or recycling the products at the end of their lives [5,6].
The researchers focus on developing the building so that it becomes environmentally
friendly, and therefore the materials manufactured for insulation become undesirable, so
they are turning to materials from natural sources. Plaster was one of the first construction
materials invented. plaster boards are widely used for interior walls and ceilings due
to their ease of manufacture, environmental friendliness, beauty, low cost, and high fire
resistant capabilities [7].

Natural fibers have lately gained popularity as an alternative component for com-
posite materials among researchers, engineers, and scientists. Because of their cheap cost,
relatively excellent mechanical qualities, high specific strength, non-abrasive, ecofriendly,
and bio-degradability, they are being used as an alternative to traditional fibers such as
glass, aramid, and carbon [8,9]. As stated in [5], who shows the thermal conductivity of
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different natural materials that can be used to increase the insulation in the building. In gen-
eral, the addition of natural fibers led to an increase in the thermal insulation properties,
as Ashour et al. [10], as well as Braiek et al. [11], studied the use of a group of different
natural fibers as additional materials for gypsum, where the results confirmed that adding
these fibers leads to an improvement in thermal insulation. These results were supported
by Lamrani et al. [12], who used peanut shells as an additive in gypsum. In addition,
according to the literature [13–16], who studied the addition of natural- source materials to
the gypsum or plaster. The incorporation of these materials results in an increase in the
thermal insulation of the construction.

In the building envelop, controlling heat transfer, ensuring thermal comfort, and sav-
ing energy are all critical factors. Insulation must perform well throughout the building’s
life cycle. Also, certain research [17,18] verified the utilization of natural fibers in gyp-
sum to create novel compounds that have satisfactory physical properties for use in the
construction sector.

When deciding which natural materials to incorporate, the physico-chemical character-
isation of compounds containing natural fibers is critical. Physical and chemical qualities,
as well as thermal parameters, should all be taken into account.

The present paper aims to improve the thermal performance of plaster material by
incorporating different mass fractions of wheat straw. The new composite construction
material makes it possible to meet the requirements of the building’s thermal comfort
while reducing energy consumption and ensuring a healthy environment by minimizing
greenhouse gas emissions. Experimental characterization of thermal properties of the
composite material was performed to identify apparent density, thermal conductivity, ther-
mal diffusivity, thermal effusivity, and volumetric thermal capacity. The physicochemical
characterization of this composite was also analyzed, in addition to the thermophysical
characterization. The specific objective of this work is to provide a comprehensive overview
of the main findings related to the use of wheat straw in plaster.

2. Materials and Experimental Methods
2.1. Materials
2.1.1. Wheat Straw

In this work, the wheat straw was collected from (Setif-Algeria) by removing the stalk
and cutting it into small pieces. It is dried by placing it in a 60 ◦C oven in the laboratory for
24 h and crushing it using an electric grinder (Broyeur à fléaux SK 100 comfort) into small
pieces. The length of wheat straw fibers is between 0.5 and 3 mm. The choice of this part of
the spike was made for its thermophysical properties [5].

2.1.2. Plaster

In this work, the plaster produced by Al-Taouab Company (Algiers-Algeria) was
selected, and it mainly consists of calcium sulfate (CaSO4. 1

2 H2O) and is used for indoor
wall coatings of buildings and roof ceilings. It is obtained by the thermal drying of gypsum
(calcium sulfate dihydrate) at a certain temperature, and this is summarized in the following
Equation (1):

CaSO4.2H2O + Heat→ CaSO4.
1
2

H2O +
3
2

H2O (1)

2.2. Samples Preparation

The composite samples were formed by mixing plaster with water and adding wheat
straw in the following proportions: 5%, 10%, and 15%. Before being mixed with the other
components of the composite, the wheat straw is ground in a milling machine (Broyeurs à
fléaux SK 100 comfort) from the company Retsch located in (Retsch-Allee 1-542781 Haan).
The samples are prepared by mixing plaster with wheat straw, where the wheat straw is
added in the proportions mentioned above, in order to conduct physico-chemical analyses.
As for the thermal conductivity analysis, wheat straw was combined with the plaster in
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quantities of 5%, 10%, and 15% and then mixed together. The mixture is constantly mixed
until well mixed. Mixing plaster with wheat straw in the aforementioned proportions
is necessary before adding water to obtain homogeneity in the mixture, Then water is
added to the mixture in which the plaster was mixed with wheat straw in the previously
mentioned proportions, as the ratio of water to plaster is 0.7. The mixture is constantly
mixed until a dough is obtained. It was put in molds for 72 h before being removed. They
are then taken from the molds and stored in a laboratory for 28 days at room temperature.
The thermal conductivity analysis, on the other hand, is carried out by creating samples
with dimensions of 16 cm × 8 cm × 5 cm. In Table 1, the nomenclature for each sample is
shown. Figure 1 shows composite samples constructed from plaster reinforced with wheat
straw fibers.

Table 1. The code and composite samples.

Refrences Sample Composite

CP Comerciale plaster

CP5 Comerciale plaster + 5% of Wheat straw

CP10 Comerciale plaster + 10% of Wheat straw

CP15 Comerciale plaster + 15% of Wheat straw

Figure 1. Picture of composite sample.

3. Characterization
3.1. Physico-Chemical Characterization of Materials
3.1.1. TGA

In this study, SETARAM Labsys Evo-gas was used to perform Thermogravimetric
analysis (TGA), with the option of Simultaneous TGA/DTA, for studying thermal degrada-
tion of the prepared materials. The samples are heated at a rate of 10 ◦C/min in a nitrogen
environment with a flow rate of 40 mL/min from 50 ◦C to 1200 ◦C.

3.1.2. DSC

Differential scanning calorimetry (DSC) analyses were performed to investigate the
thermal characteristics of samples generated using a DSC131 Evo device in a nitrogen
environment in a temperature range of 40 to 700 ◦C, with a flow rate of 40 mL/min and a
heating rate of 10 ◦C/min.

3.1.3. XRD

Analyses of X-ray diffraction (XRD) were carried out using a copper anode and
radiation K1 at wavelength 1.5406 Å, produced in the range 2θ = 5–100◦ with a step size of
0.025 at 40 Kv and 25 mA. using a BRUKER X-ray diffraction D8 ADVANCE A25. In order
to study the analysis of crystalline and mineral phases of gypsum plaster and the effect of
adding wheat straw to plaster.



Buildings 2022, 12, 1119 4 of 17

3.1.4. FTIR

FT-IR analysis was performed to investigate the impacts of wheat straw added to
plaster, using the JASCO FT/IR-6300 equipment in the 4000–400 cm−1 spectral region with
a resolution of 2 cm−1.

3.1.5. SEM

The morphology of wheat straw and plaster was studied with the use of a scanning
electron microscope (SEM) MEB Quanta 250 from the FEI (Field Electron and Ion Company),
Headquartered in Hillsboro, Oregon, USA. in order to study the effect of adding wheat
straw to plaster and also the microstructure of the samples and pore geometry, as well as
the homogeneity of the two materials.

3.2. Thermophysical Characteristics Measurements
Apparent Density

The construction sector is interested in lightweight materials, which gives an economic
incentive. As a result, determining apparent density becomes a crucial task for each study.
To calculate the apparent density, the sample’s weight and dimensions must be measured.
The following Equation (2) may be used to compute the bulk density:

ρ =
M
V

(2)

where: M and V are respectively the mass and the volume of the samples.

3.3. Thermal Conductivity

The thermal conductivity of the composite samples is measured using the CT-meter
equipment in accordance with NFISO 8894-1 2nd edition 15/05/2010. The measuring
methodology is based on the hot wire method and allows for the determination of a
material’s thermal conductivity based on the temperature fluctuation detected by a ther-
mocouple positioned near a resistive wire. The probe is made up of resistive wire and a
thermocouple in an insulating kapton support that is sandwiched between two samples
of the substance to be evaluated. The user determines the heating duration based on the
substance to be tested and the type of sensor utilized. The outcomes are presented on the
device’s screen. The accuracy of this setup is 5%, the temperature range of measurement
test is from 20 to 30 ◦C for thermal conductivity materials from 0.01 to 10 W.m−1.

Rth =
t
λ

(3)

where: t is the thickness of the sample and λ is the thermal conductivity of the sample.

3.4. Time Lag

The period of time required for a heat wave to spread from the outer surface to the
inner surface of a wall is known as the time lag. Time lag is a key factor in determining the
heat storage capacities of any material. And since the change in time lag is linked to the
thermal diffusivity of materials (a = λ

ρCp
) and both depend on the properties, λ, ρ, and Cp,

which are all of them are the thermal conductivity of material, the density of material,
and the specific heat of material, respectively [19]. And as it has been studied in the
literature [19,20], The outer surface temperature of a building wall can be represented by a
series of sinusoidal components. Furthermore, the wall might be seen as a semi-infinite
body. In this example, Equation (4) gives the time lag:

Tlag =
Tt
2π
×
√

πρCP
λT

(4)
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where: T is the periodic cycle of temperature variation (h), k thermal conductivity (Wm−1K−1),
density (kg m−3) and Cp specific heat (Whkg−1K−1), t is the material thickness (m). The
following is the equation when the temperature cycle change is 24 h:

Tlag = 1.38t×
√

ρCp

λ
(5)

3.5. Energy Saving

All studies conducted on these samples were for the purpose of minimizing heat loss
and obtaining better performance in terms of thermal insulation, so the energy gained
before and after adding wheat straw was calculated. These studies and experiments were
conducted to improve performance in terms of the insulation properties of this composite
material made of wheat straw and gypsum for use in the construction field, so a comparison
was made between two external walls of different compositions, one of which contained
the composite material and the other of which did not [21]. Hence, the heat flux for both
walls is:

φplaster =
λplastera∆T

t
(6)

λplaster = the thermal conductivity of plaster.
a = the area of the wall.
∆T = temperature variation.
t = the thickness of the wall.

φcomp =
λcompa∆T

t
(7)

The heat flux across the wall that holds the composite material is known as φcomp.
The heat flux across a pure gypsum wall is denoted by φplaster. The conductivity’s of
composite and pure gypsum materials are represented by λcomp and λplaster, respectively.
And for an area of 1 square meter (a = 1 m2) :

φplaster =
λplaster∆T

t
(8)

φcomp =
λcomp∆T

t
(9)

And also, for the same thickness:

φcomp

φplaster
=

λcomp

λplaster
(10)

Through the previous equations, the energy savings is calculated as follows:

Esaving = 100×
(

1−
φcomp

φplaster

)
(11)

4. Results
4.1. Thermal Property
4.1.1. TGA

Figure 2 shows the results obtained for pure plaster and after adding wheat straw in
different proportions. The weight loss of the analyzed samples follows a similar pattern,
which is shown in the curve Figure 2. The difference lies in the proportion of weight loss,
which varies based on the amount of wheat straw used in the plaster, such that the greater
the percentage of wheat straw added in the samples The weight loss was greater compared
to the plaster sample. Weight loss is divided into four sections on each curve, which can
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easily be recognised, as shown in Figure 3. In the first region, the weight loss in which the
temperature is less than 120 ◦C is due to the water adsorbed in relation to the plaster and
to the subtraction of moisture content for wheat straw [22].

While in the second region, the weight loss returns to the chemical bonding of water
from the aqueous salts of plaster and to the deterioration of the volatile matter in the wheat
straw, and it is generally in the temperature range of 120 to 360 ◦C [23,24]. The third region
has a temperature range of 360 to 650 ◦C, the weight loss in this region is connected to the
chemical interaction of water with hydraulic compounds in plaster and the breakdown of
carbon in wheat straw. In the last thermal range, which is at a temperature of more than
650 ◦C, the weight loss is due to the loss of carbon dioxide, which is produced during the
degradation of carbonates for plaster, and also to the production of ash for wheat straw [25].

From the results that show the difference in mass loss between the pure plaster sample
and the samples added to wheat straw, it is clear that the thermal characteristics of the
compounds are affected by the addition of wheat straw.

0 200 400 600 800 1000
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90

100

W
ei
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%
)

Temperature (°C)
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 CP5

 CP10

 CP15

Figure 2. TGA of all samples.

Figure 3. DTG of all samples.
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4.1.2. DSC

From Figure 4 that shows the DSC curve, there are three peaks for all the composite
samples, where the temperature of the peaks changes. When the proportion of wheat
straw is increased and added to the plaster, the temperature increases in the first peak,
which is an endothermic peak, where the temperature is between 70 and 75 °C. This peak
corresponds to the evaporation of water at the heating of the samples [26,27]. The second
peak, which has the most heat flux, is also an endothermic peak, where the temperature
is between 150 and 170 °C, which corresponds to a direct conversion of Sodium Sulfate
Dehydrate to Calcium Sulfate Anhydrite III [27,28]. Furthermore, an exothermic peak
between 350 and 370 °C was detected, which corresponds to the transition of soluble
calcium sulfate anhydrite III to insoluble calcium sulfate anhydrite II, in addition to the
thermal decomposition of wheat straw [26,29]. The difference in heat flow is due to an
increase in the amount of wheat straw in the plaster, which necessitates a high heat flux
in order for the wheat straw to thermally decompose. All curves in Figure 4 are nearly
identical. The slight difference in the curves compared to the plaster curve is due to the
thermal decomposition of wheat straw added to the plaster, indicating that no new products
or chemicals were detected.

Figure 4. DSC of all samples.

4.2. Microstructure
4.2.1. XRD

Figure 5 shows the results of the DRX analysis of the sample of plaster, where the
following peaks were obtained: CaSO4. 1

2 H2O represents calcium sulfate hemidrite, also
known as basanite, as well as dihydrate SO4.2H2O and anhydrite CaSO4, all of which
are metal phases as mentioned in the literature [30,31]. And through the other Figure 6,
which also show the analyzed DRX of the samples in which different percentages of wheat
straw were added, as in all the results shown in Figure 6, the gypsum minerals Crystalline
is the main product in all compounds. It is clear that there is no change in the mineral
composition of the materials and also the absence of new chemical elements, which means
that adding wheat straw does not affect the crystalline shape of the matrix [31].
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Figure 6. XRD of all samples.

4.2.2. FTIR

Figure 7 shows the FTIR analyses of the wheat straw and the plaster. Wheat straw
fibers were analyzed to determine the chemical constituents. Figure 7a shows the IR of the
bio-based wheat straw. The peaks in the 3330 cm−1 area are created by the O-H stretching
vibration, which is induced by the vibration of the hydrogen connected hydroxyl O-H
group [32,33]. As with banana fiber, the aliphatic saturated C-H stretching vibration in
cellulose and hemicellulose fibers causes the peaks at 2917 cm−1 [32–35]. The peak of
1731 cm−1 is formed by the ester linkage of acetyl hemicellulose and uronic ester groups or
the ester linkage of lignin’s carboxylic frulic groups and p-coumaric acids [32–36]. The reect
C-H asymmetric deformation is responsible for the peak of 1370 cm−1 [32,35,37]. The peaks
of 1509 cm−1 and 1425 cm−1 are produced by the aromatic C=C stretch of lignin aromatic
rings [35,36,38]. The C-O stretch and deformation bands in cellulose, lignin, and residual
hemicellulose range from 1200 to 1056 cm−1 [32,34,35,39]. The peak of 1033 cm−1 in
hemicelluloses is caused by C-O, C-C stretching, or C- OH bending [40,41]. the peak of
903 cm−1 owing to the β-glycosidic connections of the cellulose glucose ring [36,38,41].
Analysis of the FTIR results for plaster is shown in Figure 7b, The stretching vibration
bands of O-H characterize the two bands at 3605 and 3555 cm−1, respectively [42,43].
The 1618 cm−1 peak represents a strong water molecule water anion characterized by
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the bending vibration of O-H [42]. Peaks 1140,1111,1087 cm−1 indicate the asymmetric
stretching vibration of SO4 tetrahedra [44], whereas a minor peak at 1005 cm−1 represents
the symmetric stretching vibration of SO4 tetrahedra [44,45], the two peaks at 659 and
594 cm−1 also represent the asymmetric bending vibrations of the SO4 tetrahedron [41].
The Figure 8 shows Analysis results FTIR for plaster samples after adding wheat straw,
for each of the results of analyzing natural plaster before and after adding wheat straw
fibers, there is no difference or change in the peaks in the plaster, which means that there is
no chemical reaction between the plaster Wheat straw and this indicates that the properties
of plaster do not change after adding wheat straw, and therefore the two components can
be combined with each other in the binder without any risk of chemical decomposition.
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Figure 7. FTIR of: (a) Net Fiber; (b) plaster net.
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4.2.3. SEM

Figure 9a shows the image of wheat straw fibers, which are cylindrical in shape with
some threads, cells, and pores that allow them to adhere well to plaster. Figure 9b shows
the picture of wheat straw fibers adhered to the plaster, and this is evident when comparing
pure plaster and samples to which wheat straw has been added.

Figure 10 shows the discrepancy between the pure plaster sample and the other
samples, as the addition of wheat straw resulted in a greater number of pores that had been
formed when preparing the samples. The wheat straw fibers absorb a significant amount of
water during preparation, which leads to a loss of the amount of water absorbed after the
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samples are dried. In addition, increased pore size results in increased thermal insulation,
and this result corresponds to [20].

a b

Figure 9. (a) net fiber form; (b) plaster sticking to wheat straw fibers.

CP CP5

CP10 CP15

Figure 10. Scanning electron microscope images of the binder specimens.

4.3. Thermophysical Properties
4.3.1. The Apparent Density

From the results in Figure 11, it can be seen that the bulk density has an inverse
relationship with the percentages of wheat straw added to the samples, where the bulk
density decreased from 1103.13 kg.m−3 for pure plaster to 1043.75 kg.m−3 for the sample
containing 15% wheat straw. The lightness of the sample containing 15% wheat straw was
5.38% compared to the plaster. This is due to the pores created by adding wheat straw as
well as the low density of wheat straw [10]. Furthermore, given a specific weight ratio,
the volumes filled by the wheat straw were substantially higher than those occupied by
the plaster. In general, these findings show that increasing the amount of wheat straw
additions in the mixture reduces the density of the sample matrix [46].

4.3.2. Thermal Conductivity

Thermal conductivity is one of the most important characteristics of materials used in
building walls. The change in thermal conductivity as a function of fiber concentration is
seen in Figure 12. It shows a decrease in thermal conductivity as the wheat straw content
increases, where the thermal conductivity of the plaster sample is 0.408 W/m.K, and It
rapidly diminishes as the proportion of wheat straw increases in the samples until it reaches
0.324 W/m.K for the sample that contains 15% wheat straw, where the percentage decreases
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thermal conductivity by about 20.6%. Similar results were achieved in [10], which the
thermal conductivity of wheat straw as fibers added to gypsum was discussed.
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Figure 11. Density variation versus wheat straw of composites.
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Figure 12. Thermal conductivity and wheat straw percentage relation in the specimens.

These findings can be explained by a decrease in the density of the tested samples,
which is due to an increase in the percentage of wheat straw whose density is less than
that of plaster samples, and on the other hand, by a gradual increase in the amount of
wheat straw with low thermal conductivity when compared to plaster. Natural fibers,
in general, cause a reduction in density and the formation of porosity in samples. As a
result, the formation of pores results in the presence of air, whose thermal conductivity
is reported to be 0.026 W/m.K, which is low. Similar outcomes were obtained by [20].
On the other hand, as shown in Figure 13 and the findings in Table 2 thermal diffusivity
reduced from 3.4× 10−7 to 2.87× 10−7, representing a 15.6% decrease in heat transfer.
The volumetric heat capacity likewise decreased by 5.84 %. This is what was studied in [47].

4.3.3. Time Lag

The graphs indicate the time delay changes in terms of thermal energy and ther-
mal diffusion. where the thickness of the sample was adopted as 5 cm. Through the
Figures 14 and 15, As comparable results were revealed, there is an inverse connection
between the time lag and that of thermal energy and thermal diffusion, which means that
the greater the values of thermal energy and thermal diffusion, the lower the value of the
time lag [19,20].
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It was discovered in Table 2 that increasing the proportion of wheat straw in the plaster
samples resulted in an increase in thermal resistance as well as an increase in the time lag
of the plaster samples; whereby, with the incorporation of 15% of wheat straw, it led to an
improvement of 9.14% compared to the plaster.
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Table 2. Thermal properties of composites materials.

Samples
λ

W m−1K−1
Rth

(W−1 m2 K)
ρCp

(Jm−3 K−1)103
a

(m2 s−1)10−7
Time Lag

(h)

CP 0.408 0.123 1200.1 3.4 1.97

CP5 0.385 0.13 1160.3 3.32 2

CP10 0.377 0.133 1196.8 3.15 2.05

CP15 0.324 0.154 1130.0 2.87 2.15

As for Figure 16, in general, the time lag increases with increasing thermal resistance.
That is, there is a direct relationship between the time lag and the thermal resistance,
and these results show behavior similar to that presented in [48,49].

On the other hand, the thickness has an impact on the time lag. It is through Figure 17
that shows the impact of thickness on the time lag of the prepared compounds, and as
shown, this is not surprising because as the wall thickness gets thicker, its heat storage
capability increases, and this can be explained by the fact that the wall, which has a small
thickness, the heat wave spreads from the outside to the inside the wall without any delay.
Furthermore, if the wall is made of insulating materials with a low heat capacity and
thermal conductivity, the value of time lag increases, which is confirmed by [50], who
studied such cases, so that the time lag values are small when the thickness is less than
10 cm. After this thickness, the values of the time lags start to increase.
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Figure 16. Time lag variation versus thermal resistance of composites.

According to the findings, thermal resistance is not the only factor influencing time
lag; it is also affected by a complex interplay of material density, specific heat capacity,
thickness, and thermal conductivity, as well as the efficiency of insulation materials in
holding back heat. This finding is consistent with the findings of [19,49,51], who discovered
that the time lag of a wall with varied configurations is impacted by the thermophysical
parameters of the wall’s material, thickness, and orientation.
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Figure 17. variation of the time lag as function of the thickness.

4.3.4. Energy Saving

Through the Table 3 that provides results for some compounds in which natural
fibers are incorporated which are used in thermal insulation. According to the table, it
can be noted that in this study, Plaster containing 15% wheat straw has good thermal
performance, i.e., a small thermal conductivity and better performance in terms of energy
savings compared to plaster containing 25% wheat straw (dry basis) which was studied
by [10]. And by an other comparison with results of [10], the composite of plaster and
Wood shavings has a small thermal conductivity and energy savings (dry basis) of 19.5%
compared to pure plaster. On the other hand, the compound of plaster and 15% wheat straw
showed a greater thermal conductivity than that of plaster and Wood shavings, and this
is due to the proportion of incorporated natural fibers, while it showed an acceptable
percentage of energy savings with 20.6% compared to the plaster, which allows it to be
proposed as one of the materials for thermal insulation.

Table 3. Wheat straw/plaster composite compares to other construction materials in terms of thermal
conductivity and energy savings.

Energy Saving
Materials λ ( Wm−1 K−1) % References

Net plaster 0.408 0 This work

Wheat straw /Plaster
(15%) 0.324 20.6 This work

Wood shavings
gypsum (40%) 0.2 18.8 [46]

Wheat fiber/plaster
(25%) (dry basis) 0.33 4.3 [10]

Barley fiber/plaster
(25%) (dry basis) 0.29 18.8 [10]

Wood shavings /
plaster (25%) (dry

basis)
0.28 19.5 [10]
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5. Conclusions

In this study, the integration of biosourced wheat straw with plaster was researched,
where the physicochemical characteristics as well as the thermal properties of the new
compound were studied, and the main results were stated as follows:

1. The FTIR and DRX results revealed that after incorporating varying amounts of wheat
straw into the plaster, there was no influence on the level of chemical characteristics
and that it was chemically stable, as well as no changes at the level of the matrix’s
microstructure. On the other hand, TGA results showed strong thermal stability with
an acceptable drop in mass after wheat straw integration, whereas DSC plots show an
increase in peak temperature as well as enthalpy, which increases the thermal capacity
of the compounds in which wheat straw was integrated. Wheat straw fibers induced
an increase in pores and an acceptable distribution in the plaster matrix, resulting in
excellent adhesion between the two compounds, according to SEM pictures.

2. As for the thermophysical analytics, the samples were prepared, with different per-
centages of wheat straw, were prepared and tested to investigate their hygrothermal
behavior. The results achieved from the test measurements show that the addition of
wheat straw in the plaster matrix resulted in a linear reduction in the density and an
increase in porosity. This means a reduction in thermal conductivity and therefore a
more insulating behavior of the material. Furthermore, The time lag of a wall with
varied configurations is impacted by the thermophysical parameters of the wall’s
material, thickness, and orientation. So there is an inverse connection between the
time lag and that of thermal energy and thermal diffusion. This is because as the
wall thickness gets thicker, its heat storage capacity increases. Plaster containing 15%
wheat straw has good energy saving, i.e., a small thermal conductivity.

The findings revealed that the physical and thermal characteristics of plaster might be
enhanced. As a result, the newly created composite may function as an efficient replacement
for standard plaster materials that meet the building criteria.
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