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Abstract: Healthcare buildings often have high energy use intensity, which is potentially influenced
by a few factors, such as occupancy and climate. A suite of data analysis methods, including principal
component analysis and regressions, is applied to analyse monthly electricity data of a modern major
hospital in subtropical Australia. The analysis shows that occupancy is not highly correlated with
the hospital’s electricity use, nor is it important for building energy modelling. However, outdoor
environment temperature is highly correlated with the hospital’s electricity use. Then, the hospital’s
electricity uses in 2030 to 2090 scenarios are forecast with future climate files. The impacts are
analysed in terms of bill increases and renewable capacity needed to offset the increased electricity
use. This study has established a process to predict future hospital energy use using data-driven
energy modelling. This succinct article provides vital evidence to support the healthcare sector to
continuously improve energy efficiency for health buildings, which is a major asset to adapt to the
changing climate.

Keywords: energy modelling; global green and healthy hospitals; healthcare transition; neural
network; polynomial; principal component analysis

1. Introduction

As society develops, more hospitals and healthcare facilities are being built in regions
of population growth [1,2]. Hospitals are typically energy-intensive, which results in high
greenhouse gas emissions [3,4]. Globally, the healthcare sector contributes 4.4% of all CO2
emissions, with half of the emissions related to energy [5]. On a per capita level, the top
four healthcare emitting countries are the U.S., Canada, Australia, and Switzerland [5]. In
Australia, the healthcare sector is estimated to account for 7.2% of the country’s carbon
emission footprint and its healthcare spending was approximately 9.1% of its gross domestic
product in 2014 [6,7]. The public health sector is regularly the leading energy user and
emitter for Australian state governments, such as in the state of Victoria [8].

There is diverging evidence to suggest the role of occupancy on building energy
use. Occupancy is often a key aspect in building energy data analysis, modelling, and
forecasting [9]. Occupancy has been found to be relatively highly correlated with energy use
for a health centre in Singapore [10]. However, other evidence suggests a low correlation
between occupancy and building energy use in residential aged care facilities [11]. A further
study identified that occupancy may not be as significant as the occupants’ behaviour in
influencing energy use, such as changing air conditioner thermostat settings [12]. Hospitals
are a restorative environment with quite strict requirements for the buildings’ operation,
and there is a gap in understanding how occupancy is correlated with energy use for
large hospitals.

In addition to the occupancy, climate conditions, especially temperature data, are often
related to electricity use in buildings, suburbs, or at a grid level [13,14]. Climate is also
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a significant factor impacting energy use in healthcare facilities. For example, a national
study found that heating ventilation and air conditioning systems (HVAC) account for
around 52% of energy use for U.S. healthcare buildings [15]. Climate change is impactful
to people’s health and the healthcare sector [16,17]. Nematchoua explored the impact of
future climate scenarios on heating and cooling energy for hospitals on six Indian Ocean
islands [18]. Overall, there have been limited publications on the impact of future climate
on health facilities.

Therefore, this research aims to provide vital evidence to support continuous im-
provement for hospital building energy efficiency measures and major energy assets, such
as strategies to improve the thermal performance of the building envelope, increase the
efficiency of space cooling, and reduce the impact of the urban heat island effect. This paper
is the first, to the authors’ knowledge, to report on a modern major hospital’s electricity
use forecast in 2030 to 2090 scenarios under the changing climate.

The next section presents the methodology, including a number of data analysis
methods and major steps.

2. Inputs and Methods

The research methodology flow is illustrated in Figure 1. Overall, this research applies
a suite of data analysis methods to a major modern hospital in subtropical Brisbane,
Queensland, Australia [19].

Figure 1. Research flowchart.

2.1. Data Acquisition

At the data acquisition step, the site building types, operation mode, and major energy
users were identified. In this research, the defined period is each calendar month because,
in the Australian context, metering and billing are applied monthly for commercial and
industrial (C&I) customers.

Monthly electricity use data and occupancy data can be obtained from site facility
management. Occupancy data included occupied bed days and separations in each month.
Occupied bed days are “the total number of bed days of all admitted patients” in a defined
period [20]. Separations are the total number of patients who are recorded as having
“cessation of treatment and/or care and/or accommodation” in a defined period [20].

Climate data can be obtained from a local Australian Bureau of Meteorology weather
station (Table 1). Monthly climate data were used, and daily maximum and minimum tem-
peratures were obtained from an Australian Bureau of Meteorology station, No. 040842 [21].
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Table 1. Data types and description.

No. Description Units

1 Monthly electricity use Kilowatt-hours (kWh)
2 Daily maximum temperatures Degree Celsius (◦C)
3 Daily minimum temperatures Degree Celsius (◦C)
4 Monthly separations Separations (SPR)
5 Monthly occupied bed days Occupied bed days (OBD)

2.2. Data Analysis

After the site was understood and relevant data were obtained in the previous stage,
this stage analysed the relationship between monthly electricity use data and occupancy
data, and between monthly electricity use data and temperature data.

Three common analytical methods were applied: Pearson correlation coefficient (PCC),
principal component analysis (PCA), and regression [22]. PCC has low computational
requirements and can time-efficiently provide an overview of correlations between many
sets of variables. Equation (1) calculates PCC, which is a value between −1 and +1, as
an indicator for the relationship between changes in variable A and changes in variable
B [23,24]. PCC ρA,B is obtained using covariance between variable A and variable B
COV(A, B) divided by the standard deviation of A σA and the standard deviation of B σB.

ρA,B =
COV(A, B)

σAσB
(1)

Principal component analysis (PCA) uses the singular value decomposition method to
identify another set of numerical components which may have fewer dimensions than the
input datasets [10,25]. In this way, a reduced number of inputs may be identified with a
similar accuracy in energy modelling. Consequently, reduced model complexity and lower
computational overheads may be achieved.

In the regression part, polynomial fitting and artificial neural networks (ANN) are
applied to the datasets. The models’ accuracy comparisons are undertaken to select the most
accurate model. First-order polynomial fitting Equation (2) and second-order polynomial
fitting Equation (3) are used in this research. X are monthly input variables used as matrix
forms in (2) and (3). Also in (2) and (3), α, β, δ, η, θ are fitted coefficients for the two
polynomial equations.

1st order polynomial : E = αX + β (2)

2nd order polynomial : E = δX.2 + ηX + θ (3)

A single hidden-layer feedforward ANN with N number of hidden neurons and
activation function g is presented in Equation (4) [26]:

GN(Xt) =
N

∑
i=1

βig(WiXt + bi) with t = 1, . . . , T (4)

where Wi is the input weight vector; βi is the output weight vector; bi is the bias term; g is
the activation function; T is the number of samples. The activation function is a smooth
bounded monotonic function, often a sigmoid [27]. A backpropagation method has been
commonly used to train neural network models [28]. Cross-validation is useful in terms of
identifying the optimal ANN model for a given set of input variables [29].

For model Equations (2)–(4), inputs can include different combinations of monthly
variables, such as monthly temperature variables, monthly occupancy variables, and a
combination of both. Daily temperature inputs (row 2 and 3 of Table 1) are calculated into
monthly intervals as a type of input variable. The three different models and combinations
of inputs are evaluated with root mean squared errors (RMSE) and mean absolute errors
(MAE) [30]. The model with the highest accuracy is selected for the next stage.
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2.3. Forecasting

The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Aus-
tralia’s national science agency, has released future weather files for Australian climates in
2030, 2050, 2070, and 2090 scenarios [31], as described in Table 2. The temperature variables
from these files are then recalculated into various monthly inputs, which are inserted into
the best model identified out of Equations (2)–(4) to forecast the site’s future electricity use.

Table 2. Australian future climate scenarios.

Future Sce-
nario Names Description Pathways

2030 representing a typical year between 2020 and 2040 • Business as usual pathway, Representative
Concentration Pathway 8.5 (RCP8.5) [32]

• Emission middle pathway (RCP4.5)
• Negative emission pathway (RCP2.6). RCP2.6 is

the only pathway to maintain the average
temperature increase <1.5 ◦C [33].

2050 representing a typical year between 2040 and 2060
2070 representing a typical year between 2060 and 2080

2090 representing a typical year between 2080 and 2100

For this data-driven research, the following facts and assumptions are included:

• No significant expansion is considered for the site precinct. The case study is a modern
major urban vertical hospital and the physical site boundary is limited.

• Like-for-like replacements are considered for existing facility assets when they are out
of service lifetime. Potentially new assets would have higher efficiency for the same
output rating.

• Increased energy use due to new clinical equipment is largely offset by energy effi-
ciency improvements from other facility assets.

• Indoor thermal comfort is maintained through the 2030 to 2090 scenarios. For example,
HVAC systems fully meet the thermal conditioning and ventilation needs of the
site buildings.

The next section provides a site description first, followed by data analysis and forecast
results into 2030 to 2090 climate scenarios.

3. Case Study Results
3.1. Case Study Site

The site is Queensland Children’s Hospital (QCH, coordinates: 27.4839◦ S 153.0279◦ E),
a major modern hospital precinct commissioned in November 2014. The hospital precinct
has three buildings with a total floor area of 134,800 m2. The site is in Australian Cli-
mate Zone 2, with warm humid summers and mild winters, and its Köppen Climate
Classification is Cfa (Humid, Subtropical).

QCH is Queensland’s only quaternary hospital for children’s health and it accepts
patients for the whole state of Queensland and northern New South Wales. QCH is also a
COVID-19 hospital with negative pressure wards. Each year, QCH services an average of
100,000 occupied bed days and 40,000 separations (definitions in Section 2.1).

The QCH precinct uses a total of 26 to 27 GWh of electricity annually [19,34]. The
HVAC system accounts for the largest share of electricity use onsite. Natural gas is used
onsite to produce hot water (for domestic hot water and space heating) and steam, which
will be studied in a future project and is beyond the scope of this article.

Exploratory data analysis indicates that the site energy is related to ambient tem-
perature, as shown in Figure 2. Electricity use is regularly high in summer months from
December to March, between 75 MWh/day and 87 MWh/day. Winter months from
June to August tend to have lower electricity use, ranging between 65 MWh/day and 68
MWh/day. Mild months (April, May, September, October, November) are the ‘shoulder
seasons’, transitioning between summer and winter.
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Figure 2. Monthly mean daily electricity use (MWh/day).

3.2. Correlation Study

Table 3 presents PCC values for monthly mean daily electricity use vs. six temperature
variables, and monthly mean daily electricity use vs. four occupancy variables. Overall,
monthly mean daily minimum temperatures have the highest PCC values with monthly
mean daily electricity use. Regarding the temperature variables, monthly mean daily
minimum temperatures and monthly lowest temperatures have the highest PCC values
with monthly mean daily electricity use. No occupancy variable is highly correlated with
the site energy use, while occupied bed days (OBD, row 9) and separations in each calendar
month (row 7) have the highest PCC values among occupancy variables as inputs. All the
PCC values can be considered statistically significant as all the p-values are less than 0.05
(if 0.95 is considered as the cut-off).

Table 3. Pearson correlation coefficients.

No. Types Monthly Mean Daily Electricity Use vs. PCC p-Values

1

Temperature variables

Monthly mean daily maximum temperatures (MMAX) 0.932 5.320 × 10−38

2 Monthly mean daily minimum temperatures (MMIN) 0.956 1.626 × 10−45

3 Monthly highest temperatures (MHT) 0.775 5.397 × 10−18

4 Monthly lowest temperatures (MLT) 0.938 2.317 × 10−39

5 Monthly lowest daily maximum temperature (MLMT) 0.849 2.113 × 10−24

6 Monthly highest daily minimum temperature (MHLT) 0.922 1.423 × 10−35

7

Occupancy variables

Separations in each calendar month (SPR) −0.300 0.006
8 Separations per day in each calendar month (SPR/D) −0.224 0.041
9 Occupied bed days in each calendar month (OBD) −0.331 0.002
10 OBD per day in each calendar month (OBD/D) −0.279 0.010

Then, the variables with the highest PCCs (row 2 and row 9 of Table 3) are plotted
against the monthly mean daily electricity use values. Figure 3a presents the scatterplot
for monthly mean daily electricity vs. monthly mean daily minimum temperature. A
second-order fitting is also presented in the figure, with quite a good R2 value (goodness of
fitting). However, there is no visible relationship shown between OBDs and the electricity
use variable in Figure 3b.
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Figure 3. Scatterplots: (a) monthly mean daily minimum temperature vs. monthly electricity use per
day; (b) monthly occupied bed days vs. monthly electricity use per day.

Figure 4 shows cross-correlations calculated for the ten variables in Table 3. All the
temperature variables are quite highly correlated, with PCC between 0.7389 and 0.9721, in
the top left corner of Figure 4. Occupancy variables are mostly highly correlated with each
other, with PCC between 0.6482 and 0.9583, in the bottom right corner of Figure 4. This
indicates that for the site energy modelling, there is probably no need to have more than one
variable out of those temperature variables, nor to have more than one variable from those
occupancy variables. The next step, principal component analysis (PCA), helps to further
determine key input variables, rather than having redundant variables of a similar nature.

Figure 4. Cross-correlations of potential input variables.

3.3. Principal Component Analysis

PCA can help to mathematically identify the principal components that are impactful
for modelling and improve the multicollinearity issue. Two temperature variables and two
occupancy variables were used in the principal component analysis, namely monthly mean
daily minimum temperatures, monthly lowest temperatures, separations, and occupied
bed days in each calendar month. The four variables were selected due to their leading
PCC values in the previous analysis. PCA transforms input variables into another set of
orthogonal principal components (PC).
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Scree plots and analysis of PC can help to identify impactful PC and remove redundant
variables. Figure 5a shows the scree plot of three principal components. The first principal
component can explain 65.84% of variance; the first two PC together can explain 92.77% of
variance, and the three PC together can explain 99.33% of variance.

Figure 5. PCA plots: (a) scree plots to show principal components for percentages of variance
explained; (b) biplots to show impacts of input variables on principal components.

Figure 5b shows the impacts of input variables on the three principal components.
MDMIN and MLT are very close to each other and have similar impacts on the first PC.
This indicates a need of having one of the two variables, rather than having both. SPR and
OBD have similar impacts on the first PC and an opposite directional impact on the third
PC. All four variables have similar impacts on the second PC.

3.4. Regressions

After the previous PCC and PCA analysis, monthly mean daily minimum tempera-
tures (MMIN) were selected as the temperature input for the case study energy modelling.
The occupancy modelling inputs can be either occupied bed days or separations.

Next, 2015 to 2020 data were used as the training datasets for model fitting and the
latest 2021 data were used as the testing dataset to calculate the root mean squared error
(RMSE) and mean absolute error (MAE) for the fitted models, as shown in Table 4. For
the three types of fitting, both RMSE and MAE show that modelling with monthly mean
minimum temperature inputs (MMIN) led to the best outcome because of the lowest RMSE
and MAE values in each type of modelling, i.e., rows 1, 4, and 7. Modelling accuracy
dropped when either occupied bed days (OBD) or separations (SPR) were added. The
models with SPR tended to have higher accuracy than the models with OBDs.

Table 4. Model accuracy comparisons.

No. Description RMSE MAE

1 1st order polynomial with MMIN 2.6639 1.9587
2 1st order polynomial with MMIN and OBD 2.8670 1.9970
3 1st order polynomial with MMIN and SPR 2.7079 1.9611
4 2nd order polynomial with MMIN 2.3618 1.4807
5 2nd order polynomial with MMIN and OBD 2.6299 1.7080
6 2nd order polynomial with MMIN and SPR 2.3974 1.5322
7 ANN with MMIN (10 neurons) 1.8093 1.4593
8 ANN with MMIN and OBD (15 neurons) 2.3234 1.8113
9 ANN with MMIN and SPR (11 neurons) 2.0346 1.5951
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Overall, ANN with monthly mean minimum temperature inputs (MMIN) on row 7
has the lowest RMSE, which is 23% better than row 4’s, and row 7’s MAE is also slightly
better than row 4’s MAE. In the next section, ANN with MMIN inputs is used to forecast
electricity use for the case study’s 2030 to 2090 scenarios.

3.5. Forecast into 2030–2090 Scenarios

Figure 6 shows the case’s yearly electricity use forecast into 2030, 2050, 2070, and
2090 scenarios. In the business as usual (RCP8.5) scenario, more than 10% electricity use
increase is forecast to happen by the period 2080 and 2100. In the best negative emission
scenario (RCP2.6), the site’s yearly electricity use is predicted to have a mild increase of
1.4% by the end of the century. Data for the figure are provided in Table 5. These predictions
are for typical yearly electricity use in each 20-year period. The potential financial and
societal impacts are discussed in the next section.

Figure 6. Benchmarking of electricity forecast into 2030–2090 scenarios.

Table 5. Electricity use forecast into future climate scenarios.

Climate
Scenario Names Description

Emission Business
as Usual
(RCP8.5)

Emission
Middle Scenario

(RCP 4.5)

Emission
Negative Scenario

(RCP2.6)

2021 Yearly electricity use (GWh) 26.846 (base)

2030

Typical yearly use between
2020 and 2040 (GWh) 27.632 27.089 27.206

Increase compared to 2021 2.9% 0.9% 1.3%

2050

Typical yearly use between
2040 and 2060 (GWh) 28.094 27.572 27.397

Increase compared to 2021 4.7% 2.7% 2.1%

2070

Typical yearly use between
2060 and 2080 (GWh) 28.995 28.033 27.133

Increase compared to 2021 8.0% 4.4% 1.1%

2090

Typical yearly use between
2080 and 2100 (GWh) 29.579 28.093 27.230

Increase compared to 2021 10.2% 4.6% 1.4%
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4. Discussion

Across Australia, there are over 1300 public and private hospitals and 148 of these
are major hospitals with over 100 beds [1,35]. QCH is one of the major hospitals. As the
climate changes, there is a need to better understand the impact of the future climate on
energy use, to better future-proof energy sustainability and financial sustainability for our
healthcare sector. The following paragraphs discuss the implications of this research for
operational expenditure, renewable energy, policy, and future developments.

4.1. Implication for Operational Expenditure

Assuming an electricity price of AUD 0.15/kWh in 2021 with a 2.5% per year cost
increase [36–38], the site’s yearly electricity bill increases (above current baseline) for
the 2030 to 2090 climate scenarios are presented in Table 6. The site’s electricity costs, a
combination of increased energy use and increased cost per unit, places a very high financial
burden on the hospital in the business as usual scenario (exceeding 1 million dollars for
2070 and 2 million dollars for 2090). On the positive side, the negative emissions scenario
(RCP2.6 scenario) results in a much smaller cost increase. The public resource saving would
be in the order of AUD 214,000 in 2050 and AUD 1,937,000 in 2090, if the RCP2.6 scenario
occurs instead of RCP8.5. It is unclear whether any public health departments, already
under financial pressure, have planned for the likelihood of significantly higher energy
bills in the future.

Table 6. Yearly bill increase in future climate scenarios.

Climate
Scenarios

Business as Usual
(RCP8.5) a,b

Emission Middle
Scenario (RCP4.5) a,b

Negative Emission
Scenario (RCP2.6) a,b

Savings Comparing
RCP2.6 to RCP8.5

2030 $147,255 $45,602 $67,501 $79,754
2050 $383,318 $223,028 $169,246 $214,073
2070 $1,081,181 $597,236 $144,658 $936,523
2090 $2,253,117 $1,027,949 $316,407 $1,936,710

Notes: a Electricity is assumed to be AUD 0.15/kWh in 2021 excluding goods and services tax. b Electricity price
is considered to increase 2.5% annually, in line with Australia’s official long-term inflation target [36].

4.2. Implication for Renewable Energy

Renewable energy has been a significant part of the public sector’s procurement
strategy and it has been demonstrated to be effective in terms of carbon emission reduc-
tions [39]. Most Australian states and territories have set targets for achieving net zero
carbon emissions and for increasing the share of renewable energy in the electricity sector.
The outcome of this is demonstrated in the rising share of renewable energy as a share of
national electricity, and the rising (but still small) share of public hospital energy use being
met by renewables (Table 7, [39]).

Table 7. Renewable energy baselines and percentages.

Energy 2016/17 2017/18 2018/19

National baseline renewables 15.7% 17.0% 24.0%
Total hospital energy consumed 4,132,162 MWh 4,213,694 MWh 4,121,911 MWh

Hospital renewable energy produced 13,651 MWh 18,350 MWh 94,415 MWh
Hospital energy % renewable 0.33% 0.44% 2.29%

Solar photovoltaic (PV) is one of the more common renewable technologies [40]. For
this research, analysis was undertaken to determine the size of PV system (kWp) required
to meet the increased electricity demand into the future. Table 8 shows that for the RCP8.5
and RCP4.5 scenarios, continuously increasing new PV capacity is needed to offset the site’s
electricity use increase. Note that each future climate scenario is for a typical 20-year period,
which is shorter than the expected life of PV panels (currently guaranteed performance
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over 25 to 30 years [14,41]). An implication of this is that new investments need to be put
into place to construct new solar generation to meet the increased electricity use, as well
as coping with declining efficiency for solar panels. It is also worth pointing out that this
analysis only considers PVs to cover the increase in electricity demand, not the baseline use.

Table 8. New solar capacity to offset the increased electricity use compared to 2021 (kW peak).

Climate
Scenarios

Business as Usual
(RCP8.5) a

Emission Middle
Scenario (RCP4.5) a

Negative Emission
Scenario (RCP2.6) a

2030 513 159 235
2050 815 474 360
2070 1402 775 188
2090 1783 814 250

Note: a 1 kW peak solar photovoltaic systems in this region generate a yearly average of 4.2 kWh/day.

4.3. Implication for Policy and Future Developments

As the data analysis section shows, occupancy is not highly correlated with the site’s
monthly energy use. There are a few potential reasons for why occupancy does not matter
much for a major hospital in a warm climate:

• For the case study, cooling is the dominant HVAC operation mode; electricity is the
energy source for cooling. The major hospital is built with concrete and steel structures.
Cooling to remove occupants’ metabolic load would probably be much less than the
cooling needs for buildings’ thermal mass in the warm climate.

• The HVAC settings in hospitals are typically determined by standards and regulations
based on health, safety, and clinical reasons. The HVAC is typically centrally controlled,
with little potential for patients and clinicians to change the thermostat settings. This
particular hospital is air-conditioned 24-7 and uses 100% fresh air. This case study pro-
vides evidence from another angle to support [12]: occupancy may not be as significant
as occupants’ behaviour in influencing energy use.

The consistent high correlation between electricity uses and temperature indicates a
strong need to have a better building envelope for healthcare purposes, potentially through
continuous improvement of health building guidelines [42]. Another related aspect is
to have operational improvement for major space cooling-related equipment, such as
optimising chillers’ staging and control [43]. Renovations between 2025 and 2090 may be
great opportunities to improve the hospital building envelope and adopt energy efficiency
technologies wherever technically feasible and financially viable.

A limitation of this study is that it was based on typical meteorological future climate
files. The electricity use forecast results are for typical years within each 20-year period until
the end of this century, rather than for years of extreme events, such as some years with
extended periods of heatwaves. Higher levels of energy use increase would probably occur
in future years, with increased intensity, magnitude, and duration of heatwaves as a result
of climate change. This means that there is a need for the development of ‘extreme weather’
climate files that consider events such as extended periods of heatwaves. Such events
are known to have an impact on energy, through increased utilisation of air conditioning,
reduced efficiency of air conditioners and the electricity network, and increased risk of
power failure [44]. Extreme weather climate files would enable modelling and simulation
to understand the extent of the energy impacts and make decisions to avoid or limit the
negative impacts [45].

5. Conclusions

This research has applied a suite of data analysis tools to model and forecast the energy
use of a major modern hospital in subtropical Australia. Pearson correlation coefficients,
principal component analysis, polynomial models, and artificial neural network models
were used in the analysis and modelling process. With projected future weather files (2030,
2050, 2070, and 2090 scenarios), the hospital’s energy use was forecast to 2030 to 2090 with
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three RCP pathway scenarios, namely business as usual, a mid-emission scenario, and a
negative emission scenario.

The data analysis results show that there is a low correlation between the case hospi-
tal’s occupancy and electricity use, but a high correlation with outdoor temperature. This
highlights the need for a strong focus on improving the thermal efficiency of the building
envelope (to minimise the growth in cooling load) as a priority.

Without addressing hospital buildings and HVAC systems, the changing climate is
likely to significantly impact the hospital financially. For 2080–2100, the annual electricity
bill could increase by more than AUD 2 million compared to 2021 in the business as
usual scenario. This would impact the Queensland state budget, where public health
regularly accounts for over 30% of the state’s budget [46]. Savings through hospital energy
sustainability projects can offer an opportunity to alleviate some of the budgetary pressure.

This paper’s energy data analysis did not include energy for water heating, but water
heating is a key factor of hospital energy use. Current Australian hospitals mostly use
natural gas as the primary energy source to produce hot water or steam [47]. However,
there are no data available for hot water use in this case study. A potential research direction
is to analyse water heating energy use’s correlation with occupancy and explore scenarios
of major hospitals with heating fully electrified.

It is likely that major modern hospitals in all climate zones of Australia will have
cooling energy highly correlated with climate regardless of occupancy. Future work will
test this inference and extend this analysis to include all states and territories of Australia
(i.e., a range of climate zones). The outcomes of this data analysis approach to energy
forecasting may also be compared with the outcomes of a building simulation approach. It
is hoped to demonstrate that data analysis tools can be successfully used for this purpose
in the absence of a building model, or in conjunction with a building simulation approach.
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Acronyms Description
PCC Pearson Correlation Coefficient
PCA Principal Component Analysis
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NN Neural Network
LR Linear Regression
CSIRO The Commonwealth Scientific and Industrial Research Organisation
OBD Occupied Bed Days in a Calendar Month
OBD/D Occupied Bed Days per Day in a Calendar Month
SPR Separations in a Calendar Month
SPR/D Separations per Day in a Calendar Month
MMAX Monthly Mean Daily Maximum Temperature
MMIN Monthly Mean Daily Minimum Temperature
MHT Monthly Highest Temperature
MLT Monthly Lowest Temperature
MLMT Monthly Lowest Daily Maximum Temperature
MHLT Monthly Highest Daily Minimum Temperature
RCP Representative Concentration Pathway
SVD Singular Value Decomposition
RMSE Root Mean Squared Error
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