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Abstract: In recent decades, structural damage identification based on the wavelet analysis method
has been widely developed, but it is still confronted with many difficulties, such as large decomposi-
tion error and complex data. In order to overcome the shortcomings of analysis based on wavelet,
the wavelet packet analysis method is adopted to decompose the acceleration data into wavelet
packets, and the frequency band energy value after wavelet packet decomposition (WPE) is taken as
the different dimensions of the Mahalanobis distance squared (MDS) in this study, where the MDS
value of the same element between different samples is calculated, and the mean value of 30 groups
of MDS values for each element is processed. The change rate between the MDS value of the element
that exceeds the MDS value in the healthy state and the MDS mean value in the healthy state as the
objective function. The combination of weight coefficient and hyperbolic tangent function is used to
improve the simulated annealing particle swarm optimization (SAPSO) algorithm, and the improved
hyperbolic tangent function-simulated annealing particle swarm optimization (HTF-SAPSO) is used
to iteratively calculate the damage severity. The numerical simulation and vibration testing of a steel
beam are conducted to verify the identification performance of damage location and the analysis of
damage severity by this method, respectively. The numerical model of the experimental I-beam is
established based on the MATLAB modeling platform, and the different damage cases are utilized
to illustrate the correctness of this study. The different proportions of noise effects are adopted to
the numerical simulation analysis, where the correlations between noise effects and MDS value and
damage severity are analyzed. In the numerical simulation, although the MDS value increases to
different degrees with the increase of the noise ratio, the damage identification result of the damaged
element remains mostly constant, which indicates that the influence is negligible. In conclusion, it is
feasible to construct the damage index via the combination of WPE and MDS values, the damage
location can be judged from whether the MDS value of the element exceeds the threshold, and
the HTF-SAPSO algorithm is more efficient and accurate to be adopted in the quantification of the
damage severity.

Keywords: wavelet packet energy decomposition; Mahalanobis distance squared; simulated anneal-
ing particle swarm optimization (SAPSO); noise effects

1. Introduction

In the field of structural health monitoring, many environmental excitations are non-
stationary random processes, and the frequency components of the response signals vary
with time. For this type of non-stationary time-varying signal, we must provide the joint
distribution information of time domain and frequency domain in order to clearly describe
the local information of structural damage. At this stage, time-frequency analysis methods
are widely used because of their advantages of representing the variation of components
on different scales of time and frequency [1–3]; however, we also undertake the data
analysis problem behind a large amount of frequency and time domain information. How
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to accurately reflect the main information of structural damage and avoid the analysis
difficulties caused by the complex and large data is a relevant research topic at this stage.

In the latest research on the application of time-frequency analysis methods for struc-
tural damage identification, related scholars have made the following research: Razavi
et al. [4] constructed the energy difference between the intact state and the damaged state
based on the wavelet packet transform energy, and used a numerical example to verify the
applicability of the proposed method; Diao et al. [5] used the energy spectrum under the
improved Hilbert-Huang transform to construct the characteristics of structural damage,
and used support vector machines and regression algorithms for damage localization and
damage degree detection; under the monitoring of a limited number of sensors, a damage
localization method based on the multivariate empirical mode decomposition theory is
proposed by Sony et al. [6], and the damage localization feature is calculated by calculating
the percentage difference of the modal energy of the damaged and undamaged structures.
From the above literature, in the time-frequency analysis method, the use of energy as the
damage feature is one of the current relevant researches, and the research on the structural
damage identification using the frequency domain energy value as the eigenvector under
the wavelet packet transform is still developing. In Razavi’s research [4], the damage
characteristics are revealed by calculating the energy difference of each component between
the intact and damaged states, which not only involves the operation of a large matrix
at high latitudes, but also is difficult to reflect the structural damage information and
deduce more accurate and specific conclusions by synthesizing the differences of each
component, which are also reflected in the author’s research conclusions; Liu et al. [7] used
the feature fusion theory to fuse the energy of multiple sensors, and used the classifier
trained in the neural network to fuse the energy. It can realize damage diagnosis and
evaluation, but its method can only determine the damage degree value within a certain
range, and cannot solve the exact damage degree value; Chen et al. [8] used the change rate
of node energy distribution as the damage detection index, and only performed damage
location and analysis of different damage degrees for a single location, which must be
further verified the damage results at different locations; Law et al. [9] used the change of
wavelet packet energy distribution to classify the structure but failed to further explore the
specific damage degree. Overall, in the method of structural damage identification based
on wavelet packet energy characteristics, there are corresponding drawbacks. Additionally,
in the case of many node eigenvectors obtained by wavelet packet decomposition, it is
likely to appear that the accuracy of the recognition results is not high, and if the number of
decomposition scales is reduced, it will inevitably lead to omissions in damage information.
Therefore, it becomes extremely necessary to find a data processing method that can reduce
the dimension of node energy data and fuse the energy data between nodes.

To overcome the deficiencies brought about by the above wavelet packet energy
characteristics, many scholars have performed research on it, combining the wavelet
packet energy characteristics and data processing methods. Among them, the Mahalanobis
distance metric method, which represents similarity, is widely welcomed by scholars
because it can reduce the dimension of wavelet packet energy features. The Mahalanobis
distance method can reduce the dimensionality of enough features to identify damaged
samples by judging the similarity of the data and avoid the shortage of a large number of
data. The method also has the advantages of simple calculation, intuitive recognition effect,
and accurate prediction results.

In fact, relevant scholars have long studied the application of Mahalanobis distance
in damage identification. Among them, Yeager et al. [10] obtained multivariate damage-
sensitive eigenvectors by simulating the strain-time data under pseudo-random load, and
then successfully achieved damage localization and quantification using the conforming
laminates through the Mahalanobis distance index; Mosavi et al. [11] proposed a sensitive
damage feature to identify the damage location, and applied the Mahalanobis distance to
the coefficients of the vector autoregressive model; Deraemaeker et al. [12] used MDS to
perform stationary novelty detection in the presence of variability in multivariate eigenvec-
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tors; Nguyen et al. [13] selected the real vibration data of civil engineering structures as the
test object, where MDS was utilized to calculate the statistical sensitivity of the system and
the analysis results confirmed the reliability of the damage identification method based on
MDS. The above references have verified that the Mahalanobis distance method has not
only been theoretically realized in the field of damage identification, but also has a good
effect in practical applications.

There are also many studies on the combination of time-frequency analysis methods
and Mahalanobis distance. Tao et al. [14] calculated the Mahalanobis distance between the
health data and the damage data based on the wavelet packet decomposition of the signal
energy characteristics, and finally verified that the proposed method can be successfully
used in the performance evaluation and fault diagnosis of rotating machinery through
experiments. However, the author did not link this method with civil engineering; in
the application of the empirical mode decomposition method, Chen et al. [15] proposed a
structure identification method based on the Mahalanobis distance cumulant of the intrinsic
mode function, However, in the early stages of damage identification in this study, a series
of solving processes are required to obtain more damage information, and then the local
damage identification of the structure can be performed; Gres et al. [16] calculated the
Mahalanobis distance based on the Hankel matrix constructed by the acceleration response
of the structure, which was compared with the subspace damage identification method,
but this study did not introduce much about the robust performance of the method and
the initial data processing problem of constructing the Hank matrix; Mohammadi Ghazi
et al. [17] proposed a new structural damage detection algorithm based on energy capture
damage and Mahalanobis distance calculation methods for effective localization, but the
identification of damage degree was not discussed and analyzed. The above scholars
combined the corresponding decomposition method or statistical model with Mahalanobis
distance to construct damage identification vector for damage location but did not discuss
the damage degree identification in detail.

In the field of damage identification, the addition of optimization algorithms makes
the quantification process of damage severity efficient and the results more accurate. Huang
et al. [18–23] conducted further research on damage identification technology based on
modal parameters and related damage identification algorithms, and used different struc-
tural models and examples for verification, where the results indicated that this method can
be better applied to practical engineering. Ravanfa et al. [24] confirmed a two-step damage
identification method for beam structures based on wavelet multi-resolution analysis and
genetic algorithm. The first step is to determine the location of the crack through the dam-
age index relative to the wavelet packet entropy, the second step uses the genetic algorithm
to evaluate the damage severity of the identified location. Mohammadi et al. [17] proposed
a new structural damage detection algorithm based on energy capture damage, which used
Mahalanobis distance calculation method and data analysis method to effectively locate
and detect defects. Katunin et al. [25] used a heuristic algorithm to optimize the wavelet
transform parameters, and the optimized algorithm was used to transform and decompose
the modal displacement, which was successfully applied to the damage detection and
positioning of the composite version. Rosso et al. [26,27]. realized the combination of a
non-penalized PSO method and SVM, and improved the search performance. Finally, the
superiority of this method in structural optimization was proved by the structure of simply
supported beams and trusses of equal cross-section. In the follow-up research, the scholar
uses a multi-strategy method and proposes an infeasible local search operator to improve
the PSO algorithm. The above research indicates that whether the objective function formed
by the damage identification vector is iteratively optimized by the optimization algorithm,
or the research method is further improved, the damage identification research becomes
more intelligent.

In this paper, a two-stage structural damage identification research based on WPE-
MDS and HTF-SAPSO algorithm is proposed to identify structural damage. In the first
stage, the acceleration data is processed by wavelet packet energy decomposition and
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the structural damage element is identified by the MDS method. In the second stage, the
objective function is constructed according to the MDS value, and the improved HTF-
SAPSO algorithm is used to perform the iterative operation of the objective function to
quantify the severity of damage in the damaged elements. Compared with the latest
detection methods [14–17], this method fuses the energy information of each node under
the wavelet packet decomposition through the MDS method and reduces the dimension of
the data behind the damage information. The method uses MDS to construct the objective
function, so that the damage degree at the damage location can be expressed concretely,
and the improved algorithm makes the process of solving the damage degree intelligent
and efficient. In addition, the method has high sensitivity to damage and good robust
performance in the face of practical problems.

1.1. Wavelet Packet Transform
1.1.1. Wavelet Packet Decomposition

Wavelet packet decomposition is a signal analysis method that can improve the time
domain resolution of signals and is more refined than wavelet decomposition. Wavelet
packet decomposition is equivalent to a band-pass filter and a low-pass filter, at each time
the original signal is decomposed into two sub-signals. The frequency between (0, 2π)
is decomposed into (0, (2j − 1) π) and (2(j − 1) π, 2π), which are called approximation
signal and detail signal, respectively. The next decomposition is for the frequency between
(0, (2j − 1) π), and (2(j − 1) π, 2π), respectively. Wavelet packet decomposition is a
multi-scale decomposition from top to bottom, and the adjacent signals in each scale are
independent components. After the j-th layer wavelet packet decomposition, the signal x(t)
can be written as:

x(t) =
2j

∑
i=1

xi
j(t) (1)

where xi
j(t) represents the signal of the i-th frequency band decomposed by the j-th layer.

In the specific signal x(t), the frequency band energy Ex is as follows:

Ex =
∫ ∞

−∞
x2(t)dt =

2j

∑
i=1

2j

∑
i′=1

∫ ∞

−∞
xi

j(t)xi∗
j (t)dt (2)

According to the orthogonality of wavelet packets, Equation (2) can be transformed
into:

Ex =
2j

∑
i=1

Ei
j (3)

where Ei
j =

∫ ∞
−∞

[
xi

j(t)
]2

dt, Ei
j is a signal energy of the i-th frequency band, and the total

energy of the signal is equal to the sum of the signal energy of each frequency band.

1.1.2. Determining the Optimal Number of Decomposition Layers

In the wavelet packet decomposition process, the selection of the optimal decompo-
sition level has an important influence on the extraction of acceleration signal features.
The selection of the optimal number of decomposition layers should not only cover the
main damage information, but also not increase the amount of calculation. In this study,
the wavelet packet energy entropy is used as the criterion for the selection of the optimal
number of decomposition layers [28,29], which can represent the disorder degree of energy
information. When the energy entropy value of the wavelet packet increases, the disorder
of the information becomes higher, the contribution of useful energy information is smaller,
and the calculation amount increases [30]. Therefore, the wavelet packet energy entropy
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function Es is selected as the loss function of the optimal number of decomposition layers,
and its expression is as follows:

Es = −
i=2j

∑
i=1

pilgpi (4)

pi =
Ei

2j

∑
i=1

Ei

(5)

where Ei is the energy value of each frequency band, and pi represents the percentage of
the energy of each frequency band in the total frequency band. j represents the number of
decomposition layers, i represents the number of frequency bands, and the decomposition
of each layer has 2j frequency bands.

When determining the optimal number of decomposition layers, it is necessary to start
the search from the top layer of the wavelet packet tree. If the loss function of a parent
node is greater than the sum of the loss functions of its two child nodes, it means that the
decomposition of this layer can decompose the original signal into more regular sub-signals,
the energy is more concentrated, and the provided feature information contributes greatly.
Conversely, if the sum of the loss functions of the two sub-nodes is greater than that of the
parent node, it means that the signal is over-decomposed. Because the entropy value of
the signal becomes larger after the decomposition (that is, the disorder degree of the signal
becomes larger), the energy becomes scattered, which is not as great as the contribution
of the feature information provided before the decomposition. We traversed all the node
loss function values under the decomposition of each layer. When the sum of the loss
function values is the smallest, the decomposition of this layer is the optimal number of
decomposition layers.

1.2. MDS (Square of Mahalanobis Distance)

Mahalanobis distance was proposed by Indian statisticians in 1936, and it is a common
distance indicator in metric learning, which is used to evaluate the similarity between data.
The multi-dimensional band energy extracted by wavelet packet decomposition cannot
establish unified information, while the Mahalanobis distance can eliminate the interference
of the correlation between variables, maintain the scale invariance, and correlation, which
prove unaffected by the dimension. To construct an index that can reflect bridge dam-
age information, this paper uses Mahalanobis distance to fuse multi-dimensional feature
vectors.

Suppose Xp × q = [xij]p×q, i = 1, 2, . . . p, j = 1, 2, . . . q, Yp×q = [yij]p×q, i = 1, 2, . . .
p, j = 1, 2, . . . q, represents the multi-dimensional feature vector sets of healthy samples
and damaged samples under the same decomposition level, where xij represents the i-th
healthy sample value of the j-th feature; p is the number of samples, q is the the number
of eigenvectors, similar to the representation method under known damage samples. The
most important step in the Mahalanobis distance method is to eliminate the dimensional
relationship between the feature vectors and standardize X and Y. The specific process is as
follows:

zij = (xij − yij)/σj (6)

σj =

√√√√√ a
∑

i=1
(xij − yij)

2

a− 1
(7)

In the formula, a is the number of healthy sample data, Z is the data value of [X−Y]
after normalization, assuming C is the covariance matrix of [X−Y] after normalization, and
the covariance matrix C calculates the covariance between different dimensions instead
of the covariance between samples. When constructing the covariance matrix, it should
be noted that the number of samples is greater than the number of dimensions [31]. Then
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the square of the Mahalanobis distance of the feature vector set can be calculated by the
following formula:

MDS(i) = zijC−1zij
> (8)

1.3. Simulated Annealing Particle Swarm Optimization (SAPSO)
1.3.1. Improvement Process of SAPSO Algorithm

Particle swarm optimization is a process simulating birds in a flock by designing a
massless particle, and giving the particle velocity and position two attributes to search for
the optimal solution separately in the search space at the same time [32,33]. Because the
standard PSO is prone to premature convergence and it has been proven that the algorithm
is not globally convergent [34], the search performance of standard PSO can be improved
by combining the idea of simulated annealing, which can effectively prevent the search
from falling into local extreme values. The addition of the idea of simulated annealing can
control the performance whether the particles enter the next search area to search through
the temperature, thereby enhancing the local search ability of the particles.

SAPSO is based on the standard PSO operation process, introducing the simulated
annealing mechanism as a local search to further optimize and adjust the particles. First and
foremost, the initial group is generated randomly. Then, random search is beginning, where
new individuals are generated through the standard PSO. Finally, simulated annealing
is performed on the generated local optimal individuals to determine whether the result
can be used as the next generation group until the optimal optimization is achieved. The
particle update mechanism of SAPSO before improvement is as follows:

partVi′j′(t + 1) = partVi′j′(t) + c1 × rand()× (pbestxi′j′(t)− partxi′j′(t))
+c2 × rand()× (gbestxi′j′(t)− partxi′j′(t))

(9)

where partVi’ represents the current speed of the particle, pbestxi’ is the distance between the
current position of a particle and its best position, partxi’ is the current position of a particle,
gbestxi’ is the distance between the current position of a particle and the best position of the
group, i’ represents the i’th particle, j’ represents the dimension of the actual problem, t is
the number of iterations, and rand() is a random number uniformly distributed between 0
and 1.

There are three primary parts in the new speed of particle i’: (1) the speed of the
particle at the previous moment; (2) the distance between the current position of the particle
and its own best position; (3) the distance between the particle’s current position and the
best position of the swarm.

According to Equation (9), the speed of the algorithm before the improvement is
primarily updated by the speed of the particle at the previous moment and the current
position. However, when the first item “partVi’” in the equation is 0, the new method is only
related to the current position, and the algorithm is prone to falling into the local optimal
solution. To improve the global search ability of the algorithm, different improvements are
made in the study of particle swarm inertial weight, thus the inertial weight coefficient H is
introduced as the proportional coefficient related to the speed at the previous moment. The
setting of the inertia weight H has an important influence on the convergence speed and
results of the algorithm [35]. A larger H has a stronger global search ability. Conversely, a
smaller H is beneficial to local search. Therefore, the accurate adjustment of H can create the
local search method first used in the process of search optimization in the actual problem.
After a search fails to achieve the desired result, the full search is initiated to expand the
scope and make the results more precise.

The speed updating after adding the inertia weight H becomes:

partVi′j′(t + 1) = H × partVi′j′(t) + c1 × rand()× (pbestxi′j′(t)− partxi′j′(t))
+c2 × rand()× (gbestxi′j′(t)− partxi′j′(t))

(10)
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The inertia weight is:

H = Hmin + (Hmax − Hmin)× tanh(iter) (11)

where Hmax and Hmin are the maximum and minimum values of the inertia weight, respec-
tively, and the general value range is: 0.4~0.95, iter represents the number of runs. The
tanh(x) function’s features introduced is that when the area of the positive semi-axis of x,
the value range is [0, 1] [36].

While the inertia weight coefficient is changed from small to large, the problem of
local search and comprehensive search can be solved in the actual problem.

1.3.2. Improved Hyperbolic Tangent Function-Simulated Annealing Particle Swarm
Optimization (HTF-SAPSO)

In order to evaluate the actual optimization performance of HTF-SAPSO, four common
benchmark functions (Figure 1) are introduced for testing the performance of HTF-SAPSO,
portrayed as follows:

f1(x) =
30

∑
i=1

x2
i , xi ∈ [−100, 100]

f2(x) =
30

∑
i=1

[x2
i − 10cos(2πxi) + 10], xi ∈ [−5, 5]

f3(x) = 0.5 + ((sin(x2
1
+ x2

2)
0.5
)− 0.5)/(1 + 0.001(x2

1 + x2
2))

2
, xi ∈ [−5, 5]

f4(x) = −20× e
−0.2×

√
80
∑

i=1
x2

i /80
− e

80
∑

i=1
cos(2πxi)/80

+ 20 + e, xi ∈ [−10, 10]
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To test the global convergence speed of the improved algorithm and the ability to jump
out of local optimization, this characteristic tests function are specially used for testing, and
the image of the above test function is provided, which is to help readers understand the
optimization process of the algorithm. There is no correlation between the dimension of
and the number of design parameters.

The iterative processes based on the four benchmark functions are portrayaed as in
Figure 2.
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According to the calculation results and iterative graphs of the above multi-dimensional
complex benchmark functions, HTF-SAPSO has a certain improvement in calculation effi-
ciency and calculation accuracy compared with SAPSO. Its convergence speed is faster and
the global search ability is stronger, which can achieve a global optimization solution.

The identification process of damage severity based on HTF-SAPSO is as follows:

1. Set the population size N, particle dimension D, and initialize the speed and position
of the particle;

2. Calculate the fitness value of each particle Fitness(x) [37], store the individual optimal
value of each particle xG, and store the global optimal value of all particles xGbest;

3. Set the initial temperature T0;
4. Update the inertia weights according to Equations (10) and (11), and calculate the

fitness value Fitness(x) for the updated particles;
5. The Metropolis mechanism of the simulated annealing algorithm is used to judge

whether the particle can be used as a new optimal solution, and the global optimal
solution is generated in the same way;

6. Perform the cooling operation Titer = 0.9 × Titer;
7. Determine whether the termination condition is met, and if so, output xGbest; other-

wise, re-execute step 4.
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1.4. Damage Identification Method
1.4.1. Defining Damage Identification Vectors

The wavelet packet energy eigenvector of the structure’s dynamic response is not the
inherent dynamic characteristic parameter of the structure, it is directly related to the load
excitation of the structure. Although the load excitation is guaranteed to be regular, the
wavelet packet energy eigenvector under non-stationary environment excitation still has
certain volatility and randomness. Therefore, in this paper, the signal length is grouped,
and the mean value of the calculated data is taken as the result. It is assumed that the length
of the monitoring data sample is l which is divided into m groups equally, and the data
length of each group is n, l = m × n [15,38]. The MDS between the k-th healthy samples can
be calculated as follows:

MDSk = [X− X∗]TS−1[X− X∗] (12)

Similarly, the MDS between the healthy samples and the damaged samples can be
calculated according to Equation (13):

MDSk = (X−Y)TS−1(X−Y) (13)

The damage identification vector Rtv between healthy samples is the vector formed by
taking the average of the MDS values of each group, which is as follows:

Rtv =

m
∑

k=1
[X− X∗]TS−1[X− X∗]

m− 1
(14)

Similarly, the damage identification vector Rtu between the healthy sample and the
damaged sample is a vector formed by taking the average of the MDS values of each group:

Rtu =

m
∑

k=1
(X−Y)TS−1(X−Y)

m
(15)

Then the damage identification vector between healthy samples and damaged sam-
ples under the global element can be expressed as (Rt1, Rt2, . . . , Rtu)T, and the damage
identification vector between healthy samples [X] to [X*] under the global element can be
expressed as (Rt1, Rt2, . . . , Rtv)T, where [X] and [X*] represent the energy frequency bands
under the same decomposition level in the adjacent two groups of healthy samples.

1.4.2. Building the Objective Function

Based on wavelet packet energy and the Mahalanobis distance squared (WPE-MDS),
the objective function is constructed based on the change rate between the MDS value of
the element that exceeds the MDS value in the healthy state and the MDS mean value in
the healthy state:

F =

∣∣∣∣Rtu × λ−MDT
MDT

∣∣∣∣ = ∣∣∣∣Rtu × λ

MDT
− 1
∣∣∣∣ (16)

MDT =
w

∑
v=1

Rtv/w + 2
√

1.05− (1− β)× C (17)

where Rtu is the damage identification vector at the element u between the healthy sample
and the damaged sample. Rtv is the damage identification vector at the element v between

the healthy samples. w is the total number of nodes under the healthy sample.
w
∑

v=1
Rtv/w

is the mean of MDS values between healthy samples, and uses the probability threshold
method to determine the MDT as the threshold [39,40], the β approximation is the propor-
tion of the repeated data of Rtv in the healthy sample, and C is the standard deviation of
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the Rtv data in the healthy sample. λ = (λ1, . . . , λu) ∈ [0, 1], indicated as design variable,
whose value is the damage severity of u elements. The unknown λ is the damage severity
of the required structural element when the function F takes the minimum value.

1.4.3. Identification Steps

Using the improved HTF-SAPSO algorithm in this paper, Equation (14) is solved and
optimized, and the damage severity of the structure is calculated. The basic process of
the research method for damage identification based on WPE-MDS and HTF-SAPSO is
portrayed in Figure 3. The main steps are as follows:

1. Determination of the optimal number of decomposition layers: the time-history re-
sponse signal of the structure through Newmark is obtained, and 3–7 layers of wavelet
packet energy decomposition for the groups of healthy samples and damaged samples
with large changes in acceleration signals are performed. The energy entropy of the
wavelet packet is calculated with the obtained energy value under decomposition,
and then the optimal number of decomposition layers is determined.

2. Calculation of the MDS value between healthy samples: wavelet packet energy
decomposition is conducted to perform optimal decomposition layer decomposition
on the healthy sample grouped data in step (1). In turn, the MDS values are calculated
for the decomposed energy frequency bands [X] and [X*] of the adjacent two groups
in healthy samples, and the node MDS values are averaged to obtain the threshold.

3. Calculation of the MDS value between the healthy sample and the damaged sample:
the MDS value is calculated for each group of decomposed energy frequency band
[X] under the healthy sample and the energy frequency band [Y] under the damaged
sample in turn.

4. Damage location identification: The MDS values obtained by solving all the grouped
data are averaged, and the damage location judgment is based on whether the MDS
values under each node are higher than the threshold.

5. Damage severity identification: The damage severity is only identified for the dam-
aged elements identified in step 4, and the HTF-SAPSO algorithm is used to optimize
the objective function to identify the damage severity.
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2. Numerical Simulation
2.1. I-Beam Model

To preliminarily verify the feasibility of bridge damage location and damage severity
identification based on the WPE-MDS method, this section establishes the I-beam for
numerical simulation analysis and calculation, and establishes the finite element model
of the I-beam, which is portrayed in Figure 4 and based on MATLAB platform. The beam
has a total length of 5 m and is divided into 8 elements using 9 nodes, each of which is
0.625 m in length. The element used is a 2-Node 6-DOF element with an elastic modulus
of 206 GPa, a cross-sectional area of 0.0014 m2, and a cross-sectional moment of inertia of
2.45 × 10−6 m4. We defined the element stiffness matrix and the element mass matrix and
used them to assemble the global stiffness matrix and the global mass matrix. Finally, the
dynamic response of the structure is calculated by the Newmark method.
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2.2. Setting the Damage Case

In this excitation, the external load is simulated in the form of a concentrated load
which is applied at the node #5, and where the action time is 15 s, the sampling frequency
is 0.01 s, and the acceleration time history of each node in the whole process is recorded.
The stiffness reduction method is utilized to simulate the structural damage, where three
damage cases, single point damage, two-point damage, and multipoint damage are consid-
ered and set up. Considering that noise is a non-negligible influencing factor in practical
engineering, noises with different levels are added for the three damage cases, as indicated
in Table 1.

Table 1. Damage cases of I-beam.

Damage Case Damaged Element Severity of Damage Noise Level

1 #2 10% 0%, 10%, 20%
2 #2, #4 10%, 20% 0%, 10%, 20%
3 #2, #3, #6 5%, 10%, 20% 0%, 10%, 20%

The noise of the numerical vibration response signal is assumed to be white noise
conforming to the Gaussian distribution. White noise data is added to the acceleration
signal of each measuring point according to Equation (15) [41]:

az
u = au + aumax × randn× ns (18)

where au and az
u are the acceleration signals before and after adding noise at the u mea-

surement point respectively, randn represents Gaussian white noise with a mean of 0 and
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a standard deviation of 1, and ns represents the noise level of the acceleration signal,
which indicates that the standard deviation of the added noise is ns times the maximum
acceleration of the measuring point.

Among them, ns is obtained by the signal-to-noise ratio SNR, and the equation for
calculating the signal-to-noise ratio of the acceleration signal at the u measurement point is
as follows:

SNRj = 10× lg(

1
T

T
∑

t=1
a2

ut

1
T

T
∑

t=1
d2

ut

) (19)

where aut is the acceleration value of the measurement point u at time t, dut is the noise value
of measurement point u at time t, and T is the total number of times. The corresponding
relationship between ns and SNR is portrayed in Table 2.

Table 2. The relationship between ns and SNR.

SNR/dB 80 60 40 20 10 5 0

ns 2.81 × 10−5 2.77 × 10−4 2.81 × 10−3 2.77 × 10−2 0.0878 0.156 0.277

2.3. Determine the Optimal Number of Decomposition Layers

The acceleration data of each node was extracted by the Newmark method and
imported into MATLAB for analysis. The optimal wavelet packet decomposition layers
adopt the data of node 2 under Case 1 as an example, as indicated in Figure 5. Figure 6
is the excerpted signal of the wavelet packet tree at the node and the corresponding (3, 4)
node obtained after decomposing the wavelet packet.
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Because the wavelet packet decomposition level is too low, it is easy to cause the
wavelet packet energy characteristics of the structural response signal to be inconspicuous.
Convsersely, if the decomposition level is too high, the useful information will be eliminated.
In this study, the number of decomposition layers is set to be 3–7 layers. It can be observed
from Figure 5 that the acceleration response of 2-node at 3 layers of decomposition has the
lowest damage function entropy value when the number of decomposition layers is 3–7,
which indicates that the characteristic contribution of the damage information contained
is the highest. Concurrently, according to the sampling theorem [42,43], the maximum
frequency of the signal is 400 Hz, so the 3-layer decomposition has met the accuracy
requirements, and the optimal number of decomposition layers in this study is 3.
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2.4. Damage Identification and Analysis

Figure 7 portrays the acceleration data of the two nodes, which is grouped according
to n = 200, the MDS values of the elements with different damage severity are calculated,
and 30 groups are selected to draw a scatter diagram, as indicated in Figure 8.
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Figure 8. The scatter plot of MDS with different damage severities.

It can be observed from Figure 8 that with the increase of the damage severity, the
MDS increases correspondingly. In the healthy state, the MDS values are distributed in
the interval of 16–18, and the threshold is 16.9. The MDS values with the preset damage
severity of 5%, 10%, 20% are 17.8–19.1, 19.3–22 and 22–24.8, respectively.

By extracting the acceleration data at each node for processing, the MDS values at the
node may be obtained. The node MDS average value under the healthy sample is selected
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as the threshold for identifying the damage location, which is used to judge whether the
structure is damaged or not. When the node MDS value is above the threshold, it means
that the structure is damaged. Conversely, it means that the structure is not damaged.

It can be clearly observed from Figure 9 that the maximum value of nodes 2, 3 under
Case 1, nodes 2, 3, 4, and 5 under Case 2 and nodes 2, 3, 4, 6, and 7 under Case 3 are above
the threshold line in bar charts. However, it is necessary to use the MDS information of
the two nodes attached to the element at the same time when judging whether the element
is damaged or not, according to the abnormal value of the node MDS. When the MDS
value of only one node is abnormal, it is difficult to determine which element the corrupted
node information belongs to, so the following research uses the element center acceleration
signal to perform damage identification research.
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Figure 9. Bar graph of MDS values for each damage case. (a) Case 1; (b) Case 2; (c) Case 3.

2.4.1. Damage Localization Results

Based on the acceleration data through the center of the element, the bar graphs of
element MDS values for Cases 1, 2, and 3 are portrayed in Figure 10.
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Figure 10. Damage localization results. (a) Case 1; (b) Case 2; (c) Case 3.

It can be seen from Figure 10 that the tops of the element MDS bar graphs are connected
successively, and the position of the broken line protrusion can be more clearly seen, where
the abscissa corresponding to the protrusion position represents the code of the damaged
element. There are obvious protrudes at element #2 in Case 1, elements #2 and #4 in Case 2,
and elements #2, #3, and #6 in Case 3, which corresponds to the damage of the preset
elements. The MDS values of elements #1, #3, and #5 in Case 2 are all above the threshold
line of 16.5, and a small amount of damage occurs, which may be because it is close to the
damaged element [11,15]. The error is within the acceptable range, which proves that the
location of structural damage can be accurately judged by the abnormal MDS value of the
element. Figures 9 and 10 indicate the effect of damage localization, which indicates that it
is more obvious to select the acceleration data at the center of two nodes for analysis than
that at the nodes. Therefore, the damage location of the element can be more accurately
identified by selecting the acceleration data at the center of the two nodes for processing.
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2.4.2. Damage Severity Identification Results

After the damage localization, the damage severity of the structure is quantitatively
identified, and the damage severity results of each case are portrayed in Figure 11.
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Figure 11. Identification results of damage severity. (a) Case 1; (b) Case 2; (c) Case 3.

It can be observed from Figure 11 that the damage severity calculated under the three
cases is mostly consistent with the preset damage severity of each element. There are
some elements identified as damaged around the main damaged element, which may
be due to the short distance from them to the primary damaged element [11,15], but the
damage severity of the adjacent damaged elements is within the allowable error range.
Therefore, the change rate between the MDS value of the element that exceeds the MDS
value in the healthy state and the MDS mean value in the healthy state is defined as the
objective function, and the improved HTF-SAPSO algorithm is used for iterative operation
to quantify the damage severity, where the research method has a good identification effect.
In summary, it can be preliminarily verified that the research method for structural damage
identification based on WPE-MDS and HTF-SAPSO is feasible.

2.5. Damage Identification Considering the Influence of Noise

To simulate the real environment for the numerical model, different levels of noise are
added under each damage case to investigate the change of the MDS value. According to
Equation (17), white noise is added to the acceleration data, and the damage identification
results are portrayed in Figure 12.
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Figure 12. Changes in MDS before and after adding noise. (a) Case 1; (b) Case 2; (c) Case 3.

Figure 12a–c above indicate the changes in MDS values after adding different levels of
noise in Cases 1, 2, and 3. In the noise-added environment, the MDS value of the element
in the healthy state and the MDS value of the damaged element are both increased. With
the increase of the noise-added level, the increase of the MDS value also accelerated. For
example, in the process from no noise to 10% noise, the MDS value of element 7 increases
by 4% in Case 3, while in the process from adding 10% noise to 20% noise, the MDS value
increases by 6%. At the primary damaged element location, the rate of increase is greater
than that at the healthy state node. For example, the MDS value of element #2 changes from
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20.6 to 22.5 and then to 24.8 in Case 2, while the MDS value of element #3 in the healthy
state changes from 18.4 to 19.6 at 10% noise and then to 20.9 at 20% noise.

The effect of adding different levels of noise on the damage severity results of each
case is portrayed in Figure 13.
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Figure 13. Changes in damage severity before and after adding noise. (a) Case 1; (b) Case 2; (c) Case
3.

In accordance with the increase of the noise addition ratio, it can be observed from
Figure 13 that the damage identification results of damaged elements under each case are
essentially unchanged and remain constant. The results indicate that the method proposed
in this paper is of good robustness.

3. Experimental Test
3.1. Introduction to the Test

An I-shaped steel beam (Figure 14) was used for the research, which is with a length
of 5 m, a cross-sectional area of 0.0014 m2, a Young’s modulus of 2.0 × 1011 Pa, and a mass
density of 7850 kg/m3. The full length is divided into 8 elements with 9 nodes, the length
of each element is 0.625 m, and the 8 sensors are placed in the center of the 8 elements,
respectively.
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3.2. Setting the Damage Case

Damage in this experiment is adopted by cutting an I-beam with a different depth,
and the stiffness reduction is calculated according to Equation (19). The test is set up with a
group of non-destructive cases and 3 damaged cases (Table 3). The settings of each case in
the entire test are as follows:

β =
p× q

pe × qe
(20)

where pe and p are the lengths of the intact and cut elements respectively, qe and q are the
widths of the intact and cut elements, respectively.

Table 3. Damage cases of the I-beam.

Damage Case Preset Damage Severity Damaged Element

Healthy / /
1 5% #2
2 5%, 10% #2, #4
3 10%, 20% #2, #4

3.3. Damage Identification Analysis

The measured acceleration data is displayed in Figure 15. After integrating the MDS
values of different damage severities in each case, it is discovered that the MDS values
of the same damage severity in different cases are close, and the results are indicated in
Figure 16.
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Figure 15. Acceleration time-history curve corresponding to Case 1.
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Figure 16. Scatter diagram of MDS values for each damage severity.

As can be observed from Figure 16, the element MDS values of healthy state, 5%,
10%, and 20% damaged elements are concentrated in the range of 15–17, 16–18, 17–19, and
20–22, respectively. The damage localization results and damage quantification results are
demonstrated in Figures 17 and 18, respectively.
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Figure 17. Damage localization result map. (a) Description of Case 1; (b) Description of Case 2;
(c) Description of Case 3.
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Figure 18. Identification result graph of damage severity. (a) Description of Case 1; (b) Description of
Case 2; (c) Description of Case 3.

In Figure 17, the top of the bar graph is connected successively. The protruding part of
the broken line corresponds to the element number of the damaged location under each
case. There are abnormal MDS values for element #2 in Case 1, elements #2 and #4 in
Case 2, and elements #2 and #4 in Case 3, and there are different degrees of protrusions
on the connection lines at the corresponding elements, which is highly consistent with the
damaged cut site. So, the research method based on WPE-MDS is feasible and can better
identify the damage location.

It can be observed from Figure 18 that the primary damaged element under Case 1
is element #2, and the damage severity is 5%, which is consistent with the actual cutting
damage. For Case 2, the damage of elements #2 and #4 is much higher than that of other
elements, and the damage severity corresponds to 5% and 10% of the stiffness reduction.
The damage of elements #2 and #4 under Case 3 is also higher than that of other elements,
and the damage severity is consistent with the 10% and 20% of the stiffness reduction.
Because the measured acceleration data is close to the cutting damage element, there will
be small fluctuations [11,15]. Under the three cases, small damage is identified near the
main damaged element, but it does not affect the damage severity of the main damaged
element. Therefore, the damage severity can be better quantified based on the HTF-SAPSO
algorithm.

4. Conclusions

In this paper, a research method based on the combination of WPE-MDS values
and HTF-SAPSO algorithm is proposed to identify the severity of structural damage.
First, the wavelet packet three-layer decomposition is performed based on the original
monitored acceleration signal, and the MDS value between samples is calculated based on
the frequency band energy value that obtained by the decomposition, where the damage
location can be well identified according to the abnormal MDS value of the element. The
change rate between the MDS value of the unit that exceeds the MDS value in the healthy
state and the MDS mean value in the healthy state is defined as the objective function,
and the improved HTF-SAPSO algorithm is used for iterative operation to quantify the
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damage severity. The feasibility and effectiveness of the method are verified by numerical
simulations and experimental examples, respectively, and the primary conclusions are as
follows:

(1) The abnormal MDS value of the element obtained by the calculation based on the WPE-
MDS value can be used to locate the damage, and then the HTF-SAPSO algorithm is
used for the damage quantification method, which has a good damage identification
effect. Among them, the performance of damage identification using the acceleration
data of element midpoint and node is compared and analyzed, where the damage
identification performance obtained by the former is better.

(2) The addition of different noise ratios has different effects on the MDS value. As the
noise ratio increases, the MDS value of node element also increases, which has a good
amplification effect on damage location. The impact of same ratio noise on the MDS
values of damaged elements and healthy elements is also different, and the result is
that the damaged elements have a greater impact. According to the analysis results of
the damage severity, the size of the noise ratio does not affect the damage severity, by
which it can be proven that the method research based on WPE-MDS and HTF-SAPSO
has strong robust performance;

(3) Considering the particularity of the damaged signal as a time series, the HTF-SAPSO
algorithm converges earlier than the SAPSO algorithm in the iterative operation of
the objective function, which can improve the computational efficiency.
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