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Abstract: The mega-sub controlled structure system with laminate rubber bearings is an emerging
seismic control system for high-rise buildings. The system is high-order statically indeterminate with
numerous failure modes. To study the failure modes of the structural system and further improve
its seismic performance, the dynamic equations and the finite element model of the system were
established. Ten different ground motions were selected from the Pacific Earthquake Engineering
Research Center ground motion database for the incremental dynamic analysis (IDA). Based on the
results of the IDA, the weakest failure mode of the system was identified, and its failure path was
found. Two schemes were proposed to optimize the weakest failure mode of the system, and the
optimization results were compared. The results show that although the IDA curves from different
ground motion inputs are diverse, the plastic hinges are all formed on the sub-structures. Failures of
the system are caused by either the excessive floor drift or the excessive shear deformation of rubber
bearings. By adjusting the locations and parameters of dampers and rubber bearings, the seismic
performance of the system can be improved.

Keywords: MSCSS; incremental dynamic analysis; seismic; rubber bearing; high-rise building;
mega-frame

1. Introduction

High-rise buildings are often built in densely populated areas in metropolises. They
shape the skyline of cities and symbolize a thriving economy and advanced technology.
Because of the economic and cultural value of high-rise buildings, keeping them safe is
essential. Due to the slender shape of high-rise buildings, they are flexible and prone to
excessive vibration under wind and earthquakes. Extreme vibration can cause structures to
collapse. To prevent such a disaster, various solutions are used to suppress the vibration.

Installing tuned mass dampers (TMD) on structures is one of the most common
solutions. Many high-rise buildings around the world, such as the Tokyo Skytree in Tokyo,
Al Mas Tower in Dubai, and World Financial Center in Shanghai have TMDs installed [1].
The TMD has a significant effect on reducing the discomfort caused by wind vibration, but
it has a limited effect on preventing collapse caused by strong earthquakes. The reason is
that although the tuning mass in the TMD sometimes weighs hundreds of tons, it is still too
light compared to the weight of the entire structure. In most cases, the tuning mass in the
TMD only accounts for 3% of the total mass of the structure; however, the best vibration
control effect is achieved when the mass ratio is around 50% [2]. Besides installing TMDs,
seismic isolation is another method that can mitigate vibrations caused by earthquakes.
Laminated rubber bearings (LRB) are normally used as isolators. Structures above the
isolators are separated from the ground or other structures below, so the structure above is
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less affected by the earthquake. Isolation works best on low-rise buildings with a natural
period of less than 1 s but is not as effective on super-high-rise buildings.

The mega-sub configuration, as shown in Figure 1a, is widely used for the design and
construction of high-rise buildings. The mega-sub structure (MSS) is a two-level structural
system that contains a mega-structure and multiple sub-structures. Each sub-structure has
multiple floors that are referred to as sub-floors in this paper. Sub-floors carry the loads
of the floor slabs, partitions, occupants, equipment, etc. The mega-structure has several
mega-floors. Each sub-structure is built on and carried by the mega-floor. MSS has many
advantages. It can achieve high structural rigidity while minimizing the use of structural
steel and multiple sub-structures can be constructed in parallel to save construction time.
However, since the sub-structures and mega-structure in the MSS are fixedly connected, it
is not a vibration-controlled structure.
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Figure 1. Different structure configurations. (a) MSS without seismic control devices; (b) MSCSS with
LRBs [3]; (c) MSCSS without LRBs.

The mega-sub controlled structure system (MSCSS) with LRBs, as shown in Figure 1b,
is a new vibration-controlled system. It combines the MSS configuration, LRBs, and the
idea of the TMD. It can achieve better seismic performance than the MSS and the traditional
MSCSS without LRBs (Figure 1c) [3,4]. In the MSCSS, the sub-structures in the MSS are
used as tuning masses. Constraints between the mega-structure and sub-structures in the
MSS are replaced by viscous dampers. The relative motion between the main structure
and the sub-structure can dissipate the energy input by the earthquake, thereby controlling
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the seismic response of the structure. Since the mass ratio of the sub-structure to the main
structure can reach 100%, MSCSS performs better than TMD in strong earthquakes [5–7].
Additional columns on sub-structures in the MSCSS can support mega-beams above, reduce
bending moments in mega-beams, and allow for larger beam spans. LRBs on additional
columns not only dissipate the energy but also further increase the relative motion between
the mega-structure and sub-structures, thereby increasing the energy dissipated by the
dampers [8–10].

The MSCSS with LRBs has been explored by several researchers. LRBs in the MSCSS
can both support the mega-beam above and allow relative motion between the sub-
structures and the mega-structure. The relative motion increases the energy dissipation
of dampers, and LRBs themselves also dissipate seismic energy, so the kinetic energy and
response of the structure will be reduced. Abdulhadi et al. studied the influence of the num-
ber, distribution, stiffness, and damping coefficients of dampers and LRBs on the structural
response [4] and assessed the fragility of the system to earthquakes [9]. They found that the
addition of an LRB at the top of the additional column improves the mechanical behavior.
An LRB works well with dampers to reduce the response of the structure. The fragility
curve of the MSCSS with LRBs also demonstrates that it has better seismic performance at
the moderate and collapse damage limit state. Later, they further investigated the effect
of different relative stiffness ratios and mass ratios on the vibration control performance
of the sub-structure. The accelerations and displacements of sub-structures in structural
systems during earthquakes, and the optimal ranges of relative stiffness ratios and mass
ratios were found [10]. Fan et al. developed an optimization program based on a genetic
algorithm. Taking the inter-story drift ratio, acceleration, and energy dissipation as opti-
mization objectives, the distribution and parameters of dampers and LRBs in the system
were optimized [3]. Fan et al. also proposed the use of structural behavior matrices that
are based on the inter-story drift ratio and failure paths as more comprehensive indicators
to describe the seismic behavior of MSCSS with LRBs [8]. Yet, there is no investigation
on the failure modes of the MSCSS with LRBs. Structural failure is caused by the gradual
accumulation of member failures. Different failure types and failure sequences of members
lead to different failure modes. The MSCSS with LRBs is high-order statically indeterminate.
Its behavior varies greatly under different earthquakes, and it has many failure modes.
Obtaining the primary failure mode is essential for improving the seismic performance of
the MSCSS with LRBs.

Pushover analysis and incremental dynamic analysis (IDA) are often used to analyze
the failure modes of seismic structures. Sun et al. analyzed the failure mode of a high-rise
steel-frame structure with the limit state time history analysis and limit state pushover
analysis. The seismic capacity of the structure in the governing failure mode was enhanced
by progressively strengthening the weakest floors from the bottom floors up, thereby the
overall seismic performance of the structure was improved [11]. Bai and Ou identified the
weakest failure mode of a reinforced-concrete frame structure [12]. Liu et al. identified
the failure modes of multi-span isolated continuous girder bridges based on the weighted
rank-sum ratio method [13]. Qiao discussed the failure mode of the rubber bearing of
frame-shear foundation isolation structures under near-field impulse earthquakes [14].
In MSCSS with LRBs, the relative motion between the mega-structure and substructures
and the hysteresis effects of viscous dampers and LRBs complicate the seismic response
of the structure and induce more possible failure modes, but there has been no research
on the failure modes of MSCSS with LRBs. In this paper, the dynamic equations of the
MSCSS with LRBs are derived. The finite element model was established in ABAQUS.
Ground motions from different events and different sites were selected from the Ground
Motion Database NGA-West2 of the Pacific Earthquake Engineering Research Center, and
IDA was performed on the MSCSS with LRBs. After identifying the failure mode of the
structure, the structure was optimized, and the seismic performance of the MSCSS with
LRBs was improved.
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2. Methods

Incremental dynamic analysis (IDA) is a parametric analysis method used in earth-
quake engineering. IDA involves scaling seismic records to different intensities, and then
using these records of different intensities to perform multiple nonlinear dynamic analyses
on the structural model, and record the damage to the structure under each analysis [15–17].
The parameter that measures the intensity of an earthquake is called the intensity measure
(IM), and the parameter that measures structural damage is called the damage measure
(DM). With IM and DM as the horizontal and vertical axes, the IDA curve can be plotted.
This method has been widely used in seismic analysis [18–22].

The selection of ground motion accelerograms has a significant influence on the results
of IDA. The accelerograms can be from real seismic events or can be a combination of
real and synthetic ones. Haselton et al. and Bazzurro and Cornell suggested that at least
seven waves must be used in the analysis to get sufficiently accurate results [23,24]. In
this study, ten typical strong earthquake records were selected from the PEER Ground
Motion Database NGA-West2 as the ground motion input for the IDA. The ten records
are shown in Table 1. RSN in Table 1 stands for the record sequence number, which is a
unique number for each ground motion record. Vs30 in the table represents the average
shear wave velocity. For the ten selected waves, the average shear wave velocity for the top
30 m of the site is between 360 m/s to 760 m/s, in line with the FEMA450 Class C site [25].
The moment magnitude for all records is above 6.5, and the PGA is between 0.2 g to 1 g. To
increase the diversity of the ground motions, records from the same seismic event were
avoided. The ten records are from earthquakes that have occurred all over the world. The
time interval of all ground motion records is 0.02 s. The duration of all ground motions was
cropped to a length of 20 s, leaving the part with the largest acceleration. The acceleration
response spectrum and displacement response spectrum of the 10 ground motion records
are shown in Figure 2a,b.

Table 1. Selected ground motion records.

No. RSN Earthquake
Name Year Station

Name Magnitude Vs30 (m/s) PGA

1 71 San Fernando, USA 1971 Lake Hughes #12 6.61 602 0.3464
2 125 Friuli-01, Italy 1976 Tolmezzo 6.5 505 0.3571
3 139 Tabas, Iran 1978 Dayhook 7.35 472 0.4094
4 741 Loma Prieta, USA 1989 BRAN 6.93 477 0.5023
5 830 Cape Mendocino, USA 1992 Shelter Cove Airport 7.01 519 0.2285
6 864 Landers, USA 1992 Joshua Tree 7.28 379 0.2840
7 952 Northridge-01, USA 1994 Beverly Hills-12520 Mulhol 6.69 546 0.6209
8 1111 Kobe, Japan 1995 Nishi-Akashi 6.9 609 0.4832
9 1148 Kocaeli, Turkey 1999 Arcelik 7.51 523 0.2101

10 1485 Chi-Chi, Taiwan 1999 TCU045 7.62 705 0.5068

There are many studies regarding the selection of the IM, and more than thirty IM
indicators have been proposed [15,16,26–29]. The proposed indicators can be divided
into two categories: the first includes ground motion indicators such as PGA and peak
ground velocity (PGV); the other is the response spectrum indicators, such as the spectral
acceleration of the first natural vibration period of the structure. The parameter most
widely used as the IM is PGA or the 5% damped spectral response acceleration at the
fundamental period of the structure, SaT1,5%. The two indicators are well defined and easy
to calculate, but their effectiveness is controversial. For low-level multi-floor structures
that are dominated by the first mode, the calculated results are less dispersed when SaT1,5%
is used as the IM; this conclusion is widely supported in the literature [30,31]. For super
high-rise buildings, on the other hand, high-order modes also play an important role. It
is generally believed that SaT1,5% is more dispersed than the PGA [28,29]. The MSCSS
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with LRBs is designed for high-rise buildings, and the high-order modes have a significant
influence on the structure response, so PGA was used as the IM in this research.
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Figure 2. Response spectrum of the selected input ground motions. (a) Displacement response
spectrum; (b) acceleration response spectrum.

Whether in real earthquakes or structural model tests, it is rare for structures to remain
dynamically stable under earthquakes with a PGA of 5 g. Therefore, the range of the
IM on the IDA curve was taken from 0 g to 5 g. The initial increment in PGA for each
nonlinear time history analysis was 0.05 g. The accelerograms shown in Table 1 were scaled
by multiplying them by a factor. The hunt and fill method proposed by Vamvatsikos [32]
was used to reduce unnecessary points on the IDA curve, thereby reducing the number of
time history analyses and improving the calculation efficiency. At points where the IDA
curve was discontinuous, we reduced the size of the increment to obtain a more refined
result. A Python script was used to change the scale of accelerograms at each step of IDA.

The inter-story drift ratio θ was used as the DM, as it is recommended in the FEMA350.
The inter-story drift ratio is clearly defined and can be easily determined from the results of
linear or nonlinear analyses. It can reliably predict the seismic performance and is closely
related to the plastic rotation angle [33]. The inter-story drift ratio θ is defined as the relative
displacement between floors divided by floor height. There are mega-floors and sub-floors
in the structure. To avoid confusion, θ and the word “drift” in this paper always refer to
the sub-floor level drift, even when discussing the drift of the mega-structure.

3. Failure Criteria

Structures respond differently under different ground motions, and there are many
possible failure modes of the structure. When one of the failure criteria is met, the struc-
ture is considered failed. The MSCSS with LRBs may fail on the structural frame or the
LRBs, so the failure criteria can be divided into structural frame failure criteria and LRB
failure criteria.

3.1. Structural Frame Failure Criteria

The failure criteria of the structural frame apply to both the mega-frame and the
sub-frames. The singularity of the stiffness matrix, excessive deformation, and flattening of
the IDA curve are all signs of structural failure. The singularity of the stiffness matrix is
the mathematical representation of the instability of the structure. The instability is often
caused by the formation of the plastic hinges. As the earthquake intensity increases, so
does the number of plastic hinges in the structure. When plastic hinges are formed at some
specific locations, the structure will lose stability. For example, when all the columns on
the same floor have plastic hinges at both ends, as shown schematically in Figure 3a, the
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structure is unstable. Or when the columns form plastic hinges on different floors and
the ends of all the restraining beams between them also form plastic hinges, as shown in
Figure 3b, the structure is also unstable.
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The deformation of the structure is measured by the inter-story drift ratio. According
to the China seismic design code GB50011-2010, when θ > 1/50, high-rise buildings are
considered to fail [34].

In most cases, the IDA curve flattens as the IM increases. This phenomenon is called
softening. According to FEMA350, when the slope of the line connecting two consecutive
points on the individual IDA curve is less than 0.2 Se, the structure is considered to fail. Se
is the elastic slope of the IDA curve defined as the slope of the line connecting the origin
of the axes to the first point on the curve. When the structure fails, the first of the two
consecutive points is considered the ultimate point of the structure.

3.2. LRB Failure Criteria

LRBs in MSCSS are used to reduce the bending moment in the mega-beam. They must
have enough vertical stiffness to withstand the massive vertical stress from the structures
above. At the same time, to allow relative movements between sub-structures and the mega-
structure, LRBs must have a small horizontal stiffness and be able to deform significantly in
the horizontal direction. When the vertical stress or horizontal shear deformation exceeds
the allowable value, the LRBs on additional columns will be unstable.

The failure criteria of LRBs in this study refer to the seismic design code GB50011-2010.
For vertical load in Category B buildings, when the second shape coefficient of the LRB,
which is defined as the ratio of effective diameter to total rubber layer thickness, is greater
than 5, the vertical compressive stress in the rubber bearing shall be less than 12 MPa, and
the vertical tensile stress shall be less than 1 MPa.

The horizontal drift of the LRB shall not exceed the lesser of 0.55 times the effec-
tive diameter of the LRB and three times the total thickness of the inner rubber, i.e.,
1/θLRB ≤ min(0.55D, 3Tr). The horizontal drift of the LRB is defined as the displacement
between the top and bottom of the LRB.

4. Computational Model
4.1. Lumped Mass Model and Dynamic Equations

The MSCSS with LRBs can be simplified to a lumped mass model as shown in Figure 4.
The mass of the mega-structure on each mega-floor is assumed to be concentrated at the
roof of the mega-floor, and it is denoted as mp,i, where the subscript i is the mega-floor
number from 1 to n. The displacement of mp,i relative to the ground is xp,i. Similarly, the
mass of each sub-floor is assumed to be concentrated at the roof of the sub-floor, and it is
denoted as mij, where j is the sub-floor number from 1 to m. The floors where LRBs and
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additional columns are located are also counted as sub-floors, which are colored in black in
Figure 4 to distinguish them from other sub-floors. The displacement of the lumped mass
of each sub-floor is denoted as xij. The damping coefficient and stiffness of each sub-floor
frame are denoted as cij and kij, and the damping coefficient and stiffness of the dampers
or LRBs are denoted as cd,ij and kd,ij.
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The dynamic equation of the mega-structure can be written as

Mp
..
Xp + Cp

.
Xp + KpXp = −Γ

..
xg + f (1)

where Mp = diag
[
mp,i

]
, Γ =

{
mp,i

}
, Xp =

{
xp,i

}
. Cp and Kp are the damping and stiffness

matrices of the mega-structure.
..
xg is the ground acceleration. f is the force exerted on

the mega-structure by the sub-structures, and f = { fi}. When i < n, fi can be calculated
as follows:

fi = ci,m+1
( .
xim −

.
xp,i

)
+ ki,m+1

(
xim − xp,i

)
+ ci+1,1

( .
xi+1,1 −

.
xp,i

)
+ki+1,1

( .
xi+1,1 −

.
xp,i

)
+

m
∑

j=1
cd,ij

( .
xij −

.
xp,i

)
+

m
∑

j=1
kd,ij

(
xij − xp,i

) (2)

When i = n, fi can be calculated as follows:

fn = cn,m+1
( .

xnm −
.
xp,n

)
+ kn,m+1

(
xnm − xp,n

)
+

m

∑
j=1

cd,nj
( .
xnj −

.
xp,n

)
+

m

∑
j=1

kd,nj
(
xnj − xp,n

)
. (3)

The dynamic equation of the sub-structure can be written as

mij
..
xij + cij

( .
xij −

.
xi,j−1

)
+ kij

(
xij − xi,j−1

)
+ ci,j+1

( .
xij −

.
xi,j+1

)
+ki,j+1

(
xij − xi,j+1

)
+ cd,ij

( .
xij −

.
xp,i+1

)
+ kd,ij

(
xij − xp,i+1

)
= −mij

..
xg

(4)

The above dynamic equations can effectively analyze the structure in the elastic stage,
but they are not applicable in the plastic stage. Plastic analysis requires the establishment
of a finite element model.
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4.2. Finite Element Model

The finite element model uses Model III and its optimization results are presented
by Fan et al. in [4]. The layout of the structure and section properties are shown in
Figure 5. The mega-structure has four mega-floors and is represented by bold lines. Four
sub-structures are represented by thin lines, and each has seven sub-floors. The first sub-
structure is connected with the mega-structure, while the others are partially released and
connected to the mega-structure through viscous dampers, additional columns, and LRBs.
The damper and LRB are modeled with the Maxwell viscoelastic model and the Bouc–Wen
model, respectively. The damping coefficient and the damping exponent of the damper are
4.5 kN·s/m and 1.4. LRB400 is used. The axial stiffness is 1700 kN/m. Shear stiffnesses
before and after yield are 24 kN/m and 2.4 kN/m. The model is 128 m tall and 26 m
wide. The heights of the mega-floor and sub-floor are 32 m and 4 m, respectively. The
gap between the mega-structure and the released sub-structure is 2.7 m. The sides and the
middle beams of the released sub-structures are 4.7 m and 5.6 m. The steel of the frame is
Q345 according to Chinese standards.
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Figure 5. Finite element model of MSCSS with LRBs.

All frames were modeled by beam elements B21 in ABAQUS. Dampers and LRBs were
modeled by connector elements CONN2D2, with “axial” connection type for dampers,
and “Cartesian + Rotation” for LRBs. By adding inertia non-structure mass, a dead load
of 1020 kg/m was applied along the length of beams. The model was submitted to the
ABAQUS dynamic implicit solver. Rayleigh damping was used for the structure, and
the damping ratio was taken as 0.05. The time history analysis used the fixed 0.02 s
increment size.
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5. Results and Discussion
5.1. Failure Mode

The IDA curve for the entire structural system and the LRBs are shown in Figure 6a,b.
The curves generated under different ground motions are dispersed. The slopes of the
curves vary widely, and they exhibit a strong correlation with the displacement response
spectra shown in Figure 2a. For instance, at 4 s, which is the natural period of the analyzed
model, the displacement response spectrum of GM06 is the highest and that of GM05 is the
lowest. These correspond to the curve slopes in Figure 6: GM06 has the smallest slope and
GM05 has the largest.
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Figure 6. IDA curves under various ground motions: (a) IDA curves for the entire structure; (b) IDA
curves for LRBs.

The IDA curves in Figure 6 do not show significant softening. The slopes of curves are
always greater than 0.2 Se. The softening criterion is never reached. This can be explained
by the high flexibility and the long natural period of the structure. The yielding of the
structural members has little effect on the value of θ. Some curves even exhibit hardening
phenomena, such as GM04 and GM06, and structural resurrection, such as GM04, GM06,
and GM10 in Figure 6b.

Figure 7 shows the IDA curves of different parts of the structure. These parts include
the four mega-floors and three released sub-structures. The IDA curves intersect each
other, indicating that the most deformed location changes with earthquake intensity. The
location also varies under different ground motions and is related to the mode of the
structure. However, the maximum θ almost always occurs on sub-structures rather than
the mega-structure. This is desirable because the mega-structure is the more critical part.
Sub-structures are attached to the mega-beams in the mega-structure. The different sub-
structures are independent of each other, and the weight of each sub-structure is borne by
the mega-structure. The failure of one sub-structure will not cause the rest of the structure
to fail, but the collapse of the mega-structure will bring down the entire structure. So, the
mega-structure should be stronger than the sub-structures.

Figure 8 shows the maximum inter-story drift ratios on each floor when the 1/50 criterion
is reached. Since the criterion is never reached under GM01 and GM05, there are no data
for the two ground motions. The shapes of the curves are similar under different ground
motions. Drifts are always smaller near the mega-beams and gradually increase with the
distance. They are also smaller on the top and bottom mega-floors than on the middle
two mega-floors. Drifts on the sub-structure are highly dependent on ground motion.
Maximum deformation can occur in any of the three sub-structures.
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Figure 7. IDA curves for each mega-floor and sub-structure under different ground motions.
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Figure 8. Maximum inter-story drift ratios when the 1/50 criterion is reached. (a) The ratio on each
floor in the mega-structure; (b) the ratio on each floor in sub-structures. Vertical axes are sub-floors
numbered from the bottom up. Each of the 4 mega-floors includes 8 sub-floors, and each of the
3 released sub-structures includes 7 sub-floors.

The formation of plastic hinges did not destabilize the structure, even when the PGA
reached 5 g. The stability failure criterion defined in Section 3 was not exceeded. The
governing failure criterion was the floor drift or the horizontal shear deformation of the
LRB. The allowable values for the floor drift and the deformation of the LRB were 1/50
and 220 mm. To improve the capacity of the structure, an effort should be made to reduce
the floor drift and the shear deformation of LRBs. Table 2 shows the PGA at the allowable
values for each ground motion. The structure does not fail under GM01 and GM05, it fails
due to excessive drift under GM06 and GM08, and fails due to excessive LRB deformation
under the other ground motions. GM06 is the most destructive ground motion with a
failure PGA that is much smaller than other records. The shape of the IDA curve of GM06
is also different from the others. The failure mode under the action of GM06 is the weakest.

Table 2. Failure PGA for frame and LRB.

Ground Motion No. Failure PGA for Frame (g) Failure PGA for LRB (g)

GM01 - -
GM02 2.42 2.06
GM03 1.72 1.41
GM04 1.59 1.46
GM05 - -
GM06 0.83 0.84
GM07 2.70 2.43
GM08 1.95 1.99
GM09 1.59 1.15
GM10 1.79 1.62

5.2. Optimization of Structures in Weakest Failure Mode

Figure 9 and Table 3 show the location and sequence of plastic hinge formation under
the weakest failure mode. Almost all plastic hinges are formed on sub-beams, and only
one is formed on the sub-column. The structure is designed with strong columns and weak
beams. The labels in Table 3 indicate member sections. The letter b or c at the beginning of
a label represents a sub-beam or a sub-column section. The last letter L or R means that
the section is at the left or right end of the beam, and T or B means that it is at the upper
or lower end of the column. The three numbers between letters represent the mega-floor
number, the sub-floor number, and the number of members counting from left to right. One
hundred and seven sections enter the plastic state, and beams on the lower four floors of
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released sub-structures all enter the plastic state. The plastic hinges are all formed between
10.02 s and 10.54 s of the earthquake. The drift ratio exceeding 1/50 occurs at 10.36 s, on
the third sub-floor of the third sub-structure. The formation of the plastic hinge occurs at
almost the same time as the overrun of the drift. The failure of the structure is not due to
the accumulation of plastic hinges.
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02 b224R 18 b234L 34 b321L 50 b322R 66 b341R 82 b413L 98 b431R
03 b211L 19 b231L 35 b251L 51 b334R 67 b353L 83 b413R 99 c413B
04 b211R 20 b231R 36 b324R 52 b334L 68 b353R 84 b423L 100 b443L
05 b224L 21 b233L 37 b314R 53 b333L 69 b351L 85 b423R 101 b443R
06 b214R 22 b233R 38 b314L 54 b333R 70 b352L 86 b422L 102 b442L
07 b214L 23 b232L 39 b324L 55 b331L 71 b352R 87 b422R 103 b442R
08 b221R 24 b232R 40 b321R 56 b331R 72 b354R 88 b433R 104 b441L
09 b213L 25 b244R 41 b323L 57 b332L 73 b354L 89 b432L 105 b444R
10 b212R 26 b241L 42 b323R 58 b332R 74 b351R 90 b431L 106 b444L
11 b222L 27 b244L 43 b311L 59 b343L 75 b421L 91 b414R 107 b441R
12 b222R 28 b243L 44 b311R 60 b343R 76 b424R 92 b414L
13 b223L 29 b243R 45 b312L 61 b341L 77 b424L 93 b434L
14 b223R 30 b241R 46 b312R 62 b342L 78 b434R 94 b411L
15 b213R 31 b242L 47 b313L 63 b342R 79 b421R 95 b411R
16 b212L 32 b242R 48 b313R 64 b344R 80 b412L 96 b433L

Based on the above analysis, we first tried to strengthen the structure by increasing
the size of weak members. The locations where plastic hinges are formed are the weak
points, so the cross-sections of all sub-beams on the lower four floors of released sub-
structures were increased from H30 × 30 × 0.8 × 0.8 to H40 × 30 × 0.8 × 0.8. The criteria
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for the increase were to increase the bending resistance of the members and minimize
the amount of steel added. The performance of the structure was not improved after the
strengthening. The structural response was not reduced but increased. The plastic hinges
on the weak sub-beams were not eliminated, but new plastic hinges formed on the original
unyielded sub-beams. This phenomenon can be explained by the fact that the stiffened
sub-beams attract more stresses that are redistributed from the other part of the structure,
thus the original plastic hinges are not eliminated. The increase in stiffness also reduces the
relative motion between the mega-structure and the sub-structures, which in turn reduces
energy dissipation in the dampers and LRBs and results in greater floor drift and new
plastic hinges.

Therefore, we took another approach, which was to increase the energy dissipation of
the structure by modifying the locations and parameters of the dampers and LRBs. The
studied structure has many possible mounting locations for dampers and LRBs and several
parameters that can be adjusted; therefore, the genetic algorithm presented by Fan et al. [3]
was applied to optimize the structure. The optimized design variables included the lo-
cations of dampers and LRBs, the damping coefficient and exponent of dampers, and
the stiffness of LRBs. Maximizing the energy dissipation was set as the objective of the
optimization. All design variables were encoded as a 33 digits binary code. The code is
a so-called chromosome that represents one possible configuration of the structure. The
initial population consisted of 50 randomly generated chromosomes. The fitness of these
50 chromosomes was evaluated based on energy dissipation. Chromosomes with poor
fitness were eliminated, and survivors reproduced new chromosomes through crossover
and mutation. The probabilities of crossover and mutation were set to 0.8 and 0.02. The
results converged in 50 generations. According to the optimization results, the damping
coefficient of the damper was adjusted to 4.0 kN · s/cm, and the LRB400 was changed
to LRB500. More dampers were added to the roofs of the third floors in the third and
fourth sub-structures.

The IDA curves for the original structure and the two modified structures are shown
in Figure 10a. The maximum inter-story drift ratios of the three structures are shown in
Figure 10b. The PGA, drift ratio, and LRB deformation at failure are reported in numbers
in Table 4. It can be seen that strengthening the weak member does not work and should
not be used. Increasing the energy dissipation produces the desired result. The failure PGA
in the second approach is increased and the maximum inter-story drift ratio is decreased
compared to the original structure.
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Figure 10. Structure response under GM06 before and after optimization. (a) IDA curve of the
structure; (b) maximum inter-story drift ratio of the sub-structures at the 0.83 g PGA.
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Table 4. Comparison of the different schemes.

Structure PGA (g) Drift (Rad) LRB Deformation
(mm)

Original 0.83 0.02 212
Increasing member size 0.80 0.02 205

Increasing energy dissipation 0.91 0.02 224

This was a preliminary study to explore possible factors that can optimize the de-
sign. A fully optimized design process should be proposed and this is the likely goal of
future papers.

6. Conclusions

In this study, IDA was performed on the MSCSS with LRBs. Ten ground motions
from different events were used for the analysis. The structure used for the analysis has
4 mega-floors and 32 sub-floors and was modeled in ABAQUS. The IDA curves of the
structure were obtained. The weakest failure mode was identified based on the IDA curve
and the failure criteria of the structure. The structure was optimized for the weakest failure
mode, and the following conclusions were obtained:

(1) The IDA curves of the MSCSS with LRBs vary greatly under different ground motion
inputs. The maximum inter-story drift ratio is related to the displacement spectrum
of ground motions. The failure of the structure is either caused by the excessive
drift of sub-floors or the excessive shear deformation of LRBs. The plastic hinges are
mainly formed on the ends of sub-beams, which satisfies the “strong column and
weak beam” principle.

(2) Strengthening the yielded weak members cannot improve the seismic performance of
the MSCSS with LRBs. The adjustment of the parameters and LRBs of dampers and
LRBs can optimize the weakest failure mode and improve the seismic performance of
the structure.
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