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Abstract: A numerical model of 84 high-strength concrete-filled square steel tubular columns
(HSCFST) with local defects is developed using ABAQUS. The effects of parameters such as crack
angle, crack length, impact surface and impact energy on the impact resistance of HSCFST columns
are considered. The results show that under the effect of local corrosion, a model with horizontal
cracks will show the phenomenon of crack closure when subjected to the front impact. The impact
force platform value is mainly affected by the impact surface, followed by the crack angle, while the
increase of the crack length mainly has a greater effect on the model of the rear impact. The impact
resistance of the front impact model is better than that of the side and rear impact models. Increasing
the crack length and decreasing the crack angle will increase the mid-span deflection of the model,
and the mid-span deflection of the front impact model is smaller than that of the side and rear impact
models. The energy absorption ratio of the model is proportional to the increase of the crack length
and inversely proportional to the increase of the crack angle. Decreasing the crack angle will reduce
the increase coefficient (Rd) of the dynamic flexural capacity of the model. A practical calculation
method for the increased coefficient of the dynamic flexural capacity of HSCFST columns under local
corrosion is proposed.

Keywords: localized corrosion; concrete-filled steel tube; impact; numerical simulation

1. Introduction

A concrete-filled steel tube (CFST) structure has the characteristics of high-bearing
capacity, good plasticity and toughness. Meanwhile, a concrete-filled steel tube structure
has good seismic performance and fire resistance, which is suitable for use in seismic zones
as well as in structural engineering that requires fire resistance design [1,2]. Therefore,
concrete-filled steel tube structures are widely used in all kinds of civil engineering struc-
tures, such as large-span space structures of super high-rise buildings, bridge piers, power
towers, subway stations, etc.

Most of the actual engineering design only considers static loads such as constant
load, live load and dynamic loads such as wind load and earthquake action, while ignor-
ing the dynamic impact loads with very short action time and huge energy. The impact
load will cause rapid deformation of structural members, which will lead to the collapse
of the whole structure and the loss of load-bearing capacity in serious cases. Therefore,
the lateral impact resistance of concrete-filled steel tube members is particularly impor-
tant. Bambach et al. [3,4] conducted static and dynamic performance tests and numerical
simulation studies on square concrete-filled steel tubular members under impact load,
and the results indicated that slender concrete-filled steel tubular members were prone
to early fracture, resulting in a decline in energy dissipation capacity. Hou et al. [5] ob-
tained the correlation functions of the improved coefficients of dynamic flexural capacity
of concrete-filled circular steel tubular members through regression analysis. The results of
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the parametric analysis showed that the yield strength of steel, the percentage of steel in
the section, the diameter of the section and the impact velocity were the main parameters
that affected the dynamic flexural strength of the section. Qu et al. [6] simplified the lateral
impact model of concrete-filled circular steel tubes and found that when the section reaches
the dynamic ultimate bending moment the angle could be calculated from the bending mo-
ment and impact energy. Yang [7] systematically studied the dynamic mechanical response
of structural steel and high-strength concrete-filled square steel tubes. The strain rate effect
model of S690 high-strength structural steel under three different working conditions was
proposed. Cai et al. [8] numerically simulated the lateral impact of concrete-filled square
steel tubes and proposed a practical calculation formula for the increased coefficient of
section dynamic flexural capacity. Regarding hollow structural steel, Suzuki and Lignos [9]
experimentally studied the collapse behavior of full-scale steel HSS under a symmetric lat-
eral displacement loading protocol along with a near-collapse lateral displacement protocol,
which represents the ratcheting behavior of steel columns in a special moment frame prior
to collapse. Sediek et al. [10] concluded that the depth-to-thickness ratio and initial axial
load ratio are the most influential parameters on the axial capacity of hollow structural
steel columns under combined axial and lateral loading.

Concrete-filled steel tube structures in different service environments, in addition to
the impact-resistant design of the components, should also pay special attention to the
existence of easy corrosion of steel shortcomings. As CFST structures are exposed to the
natural environment for a long time, it is almost inevitable that the outer steel tube will
suffer from corrosion. The probability of local corrosion is much greater than uniform
corrosion in construction engineering. When the concrete-filled steel tube member is locally
corroded, the local corroded area of the steel tube cannot provide effective restraint to
the concrete, which results in the deterioration of the overall performance of the member.
Therefore, the effect of corrosive environment on the mechanical properties of concrete-
filled steel tubular members is also a concern of many researchers. Gao et al. [11,12] studied
the mechanical properties of concrete-filled circular steel tubular short columns under com-
plex environments of freeze–thaw cycles, salt spray corrosion and freeze–thaw–salt spray
interaction. The results showed that there was a linear decrease in the axial compression
load capacity of the members with the action degree of the three environmental conditions.
Han et al. [13] studied the mechanical properties of CFST under the combined action of
medium and long-term loading and chloride salt corrosion. The studies showed that the
stiffness, bearing capacity and ductility of CFST were significantly reduced by the overall
corrosion of the steel tube. Ding et al. [14] studied the axial compression performance
of CFST with notch and the results showed that the CFST bearing capacity with notch
was significantly reduced. Chen et al. [15] studied the effect of acid rain environment on
the mechanical properties of concrete-filled square steel tubes. The results showed that
acid rain corrosion reduced not only the bearing capacity but also the energy dissipation
capacity of the members.

In the service process of concrete-filled steel tube structures, the external impact on the
structural members and the local corrosion on the steel tube occur almost simultaneously
and cannot be avoided in the construction project. At present, there is no relevant research
on the impact resistance of CFST members under local corrosion and the calculation method
of the impact bearing capacity of CFST members based on local corrosion. Therefore, in this
paper, ABAQUS software will be used to establish the lateral impact model of high-strength
concrete-filled square steel tubular (HSCFST) columns with local corrosion. The corrosion
crack of an HSCFST column will be simulated by setting local notches on the outer steel tube
of the model. The influence of impact energy, impact surface and corrosion morphology on
the impact resistance of the HSCFST column under local corrosion is observed. The design
method of the lateral impact capacity of the HSCFST column under local corrosion is
explored, which provides the basis for the improvement of the impact resistance design
theory of concrete-filled steel tube structures regarding life-cycle service.
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2. Numerical Simulation Program
2.1. Model Design

The finite element analysis (FEA) model design adopted the model parameters in the
literature [7]. The cross-section size of the HSCFST model is D × D = 180 mm × 180 mm.
The model has an overall length of 1700 mm and a steel tube thickness of 6mm. The rigid
support is set 250 mm away from both ends of the model. In addition, the weight of
the drop hammer is 424 kg and its impact height is 4 m, 8 m and 12 m. Based on the
initial model, the local corrosion of the steel tube was simulated by setting local notch
cracks with a width of 8 mm. Meanwhile, different crack lengths (lc), crack angles (θ)
and impact surfaces were designed to analyze the lateral impact response of the HSCFST
model. The local corrosion parameters and model numbers used in this simulation are
detailed in Table 1. The local corrosion locations and crack types of the model are detailed
in Figures 1–3.

Table 1. Parameters of the HSCFST model.

Model Number
Impact Surface Crack Length

lc/mm Crack Angle θ/(◦) Impact Height H/m Impact Mass
m/kg

Impact Energy
Ei/kJ

F/R/S 180/135/90 H/O/V 4/8/12

424-4/8/12 – – – 4/8/12 424 16.6/33.2/49.9
DH/DO/DV-F-424-4/8/12 F 1D H/O/V 4/8/12 424 16.6/33.2/49.9

75DH/75DO/75DV-F-424-4/8/12 F 0.75D H/O/V 4/8/12 424 16.6/33.2/49.9
RH/RO/RV-F-424-4/8/12 F 0.5D H/O/V 4/8/12 424 16.6/33.2/49.9
DH/DO/DV-R-424-4/8/12 R 1D H/O/V 4/8/12 424 16.6/33.2/49.9

75DH/75DO/75DV-R-424-4/8/12 R 0.75D H/O/V 4/8/12 424 16.6/33.2/49.9
RH/RO/RV-R-424-4/8/12 R 0.5D H/O/V 4/8/12 424 16.6/33.2/49.9
DH/DO/DV-S-424-4/8/12 S 1D H/O/V 4/8/12 424 16.6/33.2/49.9

75DH/75DO/75DV-S-424-4/8/12 S 0.75D H/O/V 4/8/12 424 16.6/33.2/49.9
RH/SO/SV-S-424-4/8/12 S 0.5D H/O/V 4/8/12 424 16.6/33.2/49.9

Note: impact surface: F for front, R for rear, S for side; crack length: 1D = 180 mm, 0.75D = 135 mm, 0.5D = 90 mm;
crack angle: H for 0◦, O for 45◦, V for 90◦.
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2.2. Material Model
2.2.1. Material Model for Steel Tube

The structure or component will be in a high strain rate under dynamic conditions such
as high-speed impact and explosion. Currently, the Cowper–Symonds (CS) model [16] and
the Johnson–Cook (JC) model [17] are commonly used to predict the dynamic mechanical
properties of metallic materials. The CS model is commonly used to characterize the
dynamic increment coefficient of dynamic yield strength or ultimate strength, which is
applied to the calculation of dynamical problems at medium strain rates. The JC model
can well predict the relationship between the dynamic flow stress and plastic strain, strain
rate and temperature of the material, and it is suitable for the calculation of high strain
rate problems [18]. In this paper, the improved JC model (i.e., MJC model, as shown
in Equation (1)) from the literature [7] was used as the dynamic mechanical constitutive
model of S690 steel. The MJC model can well predict the dynamic mechanical properties of
S690 steel at medium and high strain rates. The ideal elastic plastic model based on the Von
Mises yield criterion was used to set the steel tube material properties in the finite element
model. The material parameters of the steel tubes were adopted from S690 materiality test
data in the literature [7], as shown in Table 2.

σ = (A + Bε
q
p)(1 + C

.
ε

d
) (1)

in which
.
ε

d
=

.
ε/

.
εo (2)

where σ is the plastic flow stress; εp is the plastic true strain;
.
ε

d is the dimensionless strain
rate parameter;

.
ε is the strain rate;

.
εo is the quasi-static reference strain rate, i.e., 0.001 s−1;

A, B, C, q, and d are material constants. A is usually taken as the yield strength of the
material and B and q are used to characterize the degree of strain reinforcement. C and
d are the material parameter values of the model, which can be fitted using the dynamic
increase coefficients corresponding to the strain rate of the material at each level.
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Table 2. Material parameters of steel.

Density (kg/m3) f y (MPa) fu (MPa) Es (105MPa) Poisson’s Ratio Elongation

7850 722 758 1.96 0.3 0.15

The material constant of S690 in this paper adopts the fitting results in reference [7], as
shown in Table 3.

Table 3. Material constants of S690.

A (MPa) B (MPa) C q d

727 400 0.06 0.57 0.23

2.2.2. Material Model for Core Concrete

The static stress–strain relationship model and strain rate effect model were used to
describe the dynamic mechanical properties of concrete. Since the compressive and tensile
mechanical behaviors of concrete were inconsistent, different constitutive relations were
used for the compressive and tensile properties of concrete in this simulation.

The compressive mechanical behavior of core concrete adopted the stress–strain rela-
tionship model given by Han [1], as shown in Equation (3).

y =

{
2 · x− x2

x
βo(x−1)η+x

(3)

in which
x =

ε

εo
(4)

y =
σ

σo
(5)

σo = f ′c (6)

ξ =
As fy

Ac fck
(7)

εo = εc + 800× ξ0.2 × 10−6 (8)

εc = (1300 + 1.25 f ′c)× 10−6 (9)

η = 1.6 + 1.5/x (10)

βo =
( f ′c)

0.1

1.2
√

1 + ξ
(11)

where Ac is the concrete cross-sectional area; As is the steel tube cross-sectional area; f y is
the steel yield strength; f ck is the standard value of concrete axial compressive strength; f ′c
is the concrete cylindrical compressive strength.

For the tensile response of concrete, the tensile stress–strain relationship model for
concrete from GB 50010-2010 [19] is used, as shown in Equation (12).

σ = (1− dt)Ecε (12)

in which

dt =

{
1− ρt(1.2− 0.2x5)

1− ρt

αt(x−1)1.7+x

x ≤ 1
x > 1

(13)

x =
ε

εt,r
(14)

ρt =
ft,r

Ecεt,r
(15)
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where αt is the parameter value of the falling section of the uniaxial stress–strain curve of
concrete, which can be calculated in accordance with αt = 0.312 f 2

t,r; ft,r is the representative
value of the uniaxial tensile strength of concrete, which can be calculated by ft,r = 0.395 f 0.55

cu ;
εt,r is the peak tensile strain of concrete in uniaxial tension, which can be calculated by
εt,r = f 0.54

t,r × 65× 10−6; Ec is the modulus of elasticity of concrete.
Concrete also showed obvious strain rate effects under dynamic load. In this paper, the

empirical formula provided in the European Concrete Institute code [20] was used to calcu-
late the coefficient of dynamic increase of concrete, as shown in Equations (16) and (17).

Compression effect :

{
fcd/ fcs =

( .
ε/

.
εco
)1.026αs ,

∣∣ .
ε
∣∣ ≤ 30 s−1

fcd/ fcs = γs
( .
ε/

.
εco
)1/3,

∣∣ .
ε
∣∣ > 30 s−1

(16)

Tension effect :

{
ftd/ fts =

( .
ε/

.
εto
)1.016δs ,

.
ε ≤ 30 s−1

ftd/ fts = βs
( .
ε/

.
εto
)1/3,

.
ε > 30 s−1

(17)

in which
.
εco = −30× 10−6 s−1 (18)

.
εto = 3× 10−6 s−1 (19)

αs =
1

5 + 9 f ′c/ fco
(20)

δs =
1

10 + 6 f ′c/ fco
(21)

fco = 10 MPa (22)

log γs = 6.156αs − 2 (23)

log βs = 7.112δs − 2.33 (24)

where f cd is the dynamic compressive strength of concrete; f td is the dynamic tensile
strength of concrete; f cs is the static compressive strength of concrete; f ts is the static tensile
strength of concrete.

The material setup of core concrete was described by the Concrete Damaged Plasticity
(CDP model) of concrete built into the FEA. The mechanical parameters of concrete were
based on the data obtained in the literature [7], where the elastic modulus is 50.8 GPa;
density is 2450 kg/m3; Poisson’s ratio is 0.191. Other specific parameter settings of the
model are shown in Table 4 [21].

Table 4. Material parameters of concrete.

e αf Kc µ/10−3 ϕ/(◦)

0.1 1.16 0.6667 0.5 30

2.3. Modeling Techniques

The FEA model was primarily composed of the HSCFST model, drop hammer and
support, as shown in Figure 4. The impact location was directly above the mid span of the
HSCFST model. The drop hammer and support adopted discrete rigid body elements and
set reference points to facilitate the application of boundary conditions and impact action.
The reference points of the supports were set with fixed constraints. The drop hammer only
allowed translational degrees of freedom in the direction of impact (vertically downward).

Hard contact was used in the normal direction of the contact surface in this numerical
simulation. The tangential direction of the contact surface between the steel tube, drop
hammer and support was set to frictionless. The Coulomb friction model was used to
represent the relative sliding between the steel tube and the concrete and its corresponding
friction coefficient was taken as 0.6 [22]. The steel tube and the core concrete were simulated
by a C3D8R solid element in the ABAQUS library. Drop hammers and supports were
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simulated by an R3D4 discrete rigid body element from the ABAQUS library. The mesh
size of the HSCFST model is 20 mm, which is 1/9 side length. In addition, the mesh size
within 300 mm of the impact position of the drop hammer was encrypted to improve the
calculation accuracy of the finite element model.
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Although the ABAQUS/Standard solver that requires a low computational resource
is normally adopted in structural analysis, great efforts are required for the convergence
of a static solver when complex contact phenomena exist in the model, not to mention
model the impact loading. The ABAQUS/Explicit solver could overcome the difficulties of
convergence problems associated with impact simulation and sophisticated contact. In this
study, about 30–45 min was needed to run an impact simulation of the model by using the
ABAQUS/Explicit solver.

2.4. Validation of Finite Element Model

In order to verify the correctness of the FEA model established in this paper, the above
numerical simulation method was used to compare the specimen numbered HS3-100-1200-6
in reference [7]. The specimen has the same material strength, specimen size and boundary
conditions as the finite element model established in this paper, except that the height of
drop hammer impact is 3 m. The chemical composition of the high-strength steel is listed
in Table 5. The mix proportion of C100 concrete is listed in Table 6.

Table 5. Chemical composition of steel (in mass %).

C Si Mn S P N Ni Mo Cr Cu V Ti Nb CEV

0.14 0.29 1.26 0.0006 0.014 0.0018 0.02 0.11 0.2 0.01 0.003 0.023 0.015 0.42

Table 6. Mix proportion of C100 concrete.

Water Cement Ratio Water kg/m3 Cement kg/m3 Sand kg/m3 Gravel kg/m3 Silica Fume kg/m3 Superplasticizer kg/m3

0.22 121 500 623 1156 50 10

Figure 5 shows the time history curve comparison of impact force F and displacement
U of specimen HS3-100-1200-6. It can be seen that the finite element simulation results of
the peak impact force, the maximum mid-span deformation and the platform value are in
good agreement with the test data, which proves the reliability of the finite element model.
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3. Numerical Simulation Results
3.1. Failure Pattern of Crack-Free Model

The HSCFST model principally shows a symmetric overall bending failure on both
sides under lateral load. As shown in Figures 6 and 7, the plastic hinge is concentrated in
the mid-span drop hammer impact zone. The surface of the model is slightly depressed
at the contact position with the drop hammer. Meanwhile, the local “drum” buckling
phenomenon occurred on both sides of the mid span and near the impact position due to
the extrusion of the drop hammer.
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3.2. Failure Pattern of the Model under Local Corrosion

Local notch cracks generally increase the amplitude of overall bending and local
“drum” buckling of the model. In addition, the change of crack angle and impact surface
affects the failure pattern of the model. In order to better reflect the influence of each
parameter on the HSCFST model, this paper adopts the failure pattern of the model with
an impact height of 12 m for comparison.

3.2.1. Models with Horizontal Cracks (θ = 0◦)

Compared with the crack-free model, the front impact will reduce the amplitude of
buckling near the impact point of the drop hammer and increase the amplitude of buckling
on both sides of the model. The rear impact will reduce the amplitude of the buckling near
the impact point of the drop hammer, while both sides of the model have a slight buckling
near the top surface. The side impact model has a small amplitude of buckling near the
impact point of the drop hammer and in the crack area. In addition, the crack width
near the impact surface will decrease while the crack width far from the impact surface
will increase when the model is side impacted. As the impact energy or the crack length
increases, the horizontal crack will gradually shrink or crack close under front impact, as
shown in Figure 8; crack width no longer decreases or crack closure generally occurs at the
end of the impact platform segment. With the increase of impact energy, the time of crack
closure is relatively earlier than the time of impact platform section end. Nevertheless, the
model with crack width no longer decreasing or crack closure occurring earlier has lower
impact platform values. Back impact will increase the width of cracks, while the increase of
crack length and impact energy will lead to excessive local stress at both ends of cracks and
yield failure phenomenon, as shown in Figure 9. In side impact, the increase of crack length
and impact energy will lead to the yield failure of the steel tube at the bottom of the crack. In
addition, the increase in crack length reduces the local buckling amplitude of the side impact
model and the cracks eventually take on similar “triangular” shapes, as shown in Figure 10.
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When the model is subjected to rear impact, the model with oblique crack almost 
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Figure 10. Failure pattern of a model with horizontal cracks under side impact. (a) RH-424-S-12.
(b) 75DH-424-S-12. (c) DH-424-S-12.

3.2.2. Models with Vertical or Oblique Cracks (θ = 45◦, 90◦)

The model with oblique and vertical cracks presents an obvious bending failure
pattern. Compared with the crack-free model, the front impact will increase the local
“drum” buckling amplitude of the model. For the model with oblique cracks, increasing the
crack length will increase the amplitude and area of buckling on both sides of the mid span,
while the amplitude of buckling near the impact point will decrease. The phenomenon of
the vertical cracks model is the opposite to that of the oblique cracks model. In addition,
the oblique crack width gradually decreases but does not close during impact, while the
vertical crack width basically remains unchanged, as shown in Figure 11.

Buildings 2022, 12, x FOR PEER REVIEW 11 of 28 
 

 
Partial failure  Partial failure

Reduce the size of the bulge

 
(a)  (b)  (c)  

Figure 10. Failure pattern of a model with horizontal cracks under side impact. (a) RH-424-S-12. (b) 
75DH-424-S-12. (c) DH-424-S-12. 

3.2.2. Models with Vertical or Oblique Cracks (θ = 45°, 90°) 
The model with oblique and vertical cracks presents an obvious bending failure 

pattern. Compared with the crack-free model, the front impact will increase the local 
“drum” buckling amplitude of the model. For the model with oblique cracks, increasing 
the crack length will increase the amplitude and area of buckling on both sides of the mid 
span, while the amplitude of buckling near the impact point will decrease. The phe-
nomenon of the vertical cracks model is the opposite to that of the oblique cracks model. 
In addition, the oblique crack width gradually decreases but does not close during im-
pact, while the vertical crack width basically remains unchanged, as shown in Figure 11. 

  

Enlargement of bulge area

 
(a)  (b)  (c)  

  

Reduce the size of bulge

 
(d)  (e)  (f)  

Figure 11. Failure patterns of models with oblique and vertical cracks under front impact. (a) 
RO-424-F-12. (b) 75DO-424-F-12. (c) DO-424-F-12. (d) RV-424-F-12. (e) 75DV-424-F-12. (f) 
DV-424-F-12. 

When the model is subjected to rear impact, the model with oblique crack almost 
does not appear to buckle near the impact point, while the buckling amplitude of the 
model with vertical crack is not much different from that of the crack-free model. In ad-
dition, increasing the crack length will increase the width of oblique cracks and the local 
buckling area of the vertical crack model, as shown in Figure 12. 

Figure 11. Failure patterns of models with oblique and vertical cracks under front impact. (a) RO-
424-F-12. (b) 75DO-424-F-12. (c) DO-424-F-12. (d) RV-424-F-12. (e) 75DV-424-F-12. (f) DV-424-F-12.

When the model is subjected to rear impact, the model with oblique crack almost does
not appear to buckle near the impact point, while the buckling amplitude of the model
with vertical crack is not much different from that of the crack-free model. In addition,
increasing the crack length will increase the width of oblique cracks and the local buckling
area of the vertical crack model, as shown in Figure 12.
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When the model is subjected to side impact, the buckling amplitude of the model with
oblique cracks is lower than that of the crack-free model, while the buckling amplitude of
the model with vertical cracks is increased. Increasing the crack length will enlarge the
buckling area of the model on both sides of the mid span, especially the crack area near the
impact surface, as shown in Figure 13.
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Figure 14. Time history curve of impact force for crack-free model. 

Figure 15 takes the same impact energy (m = 424 kg, H = 4 m) as an example to an-
alyze the influence of impact surface (F, R and S), crack angle (H, O and V) and crack 
length (0.5D, 0.75D and 1D) on the impact time history curve. Figure 15a shows that the 
three impact surfaces affect the impact duration to different degrees. The increase in 
impact duration for the models subjected to front, rear and side impacts are 12%, 16.4% 
and 6%, respectively. Figure 15b shows that the change of crack angle has a stable influ-
ence on impact duration. The influence of the crack angle on the impact duration of the 
model is about 11%. Figure 15c shows that the increase in crack length prolongs the im-
pact duration of the model by about 12~30%. Meanwhile, the changes in impact surface, 
crack angle and crack length will reduce the impact platform value of the model to var-
ying degrees. Among the three impact surfaces, front impact reduces the impact platform 

Figure 13. Failure patterns of models with oblique and vertical cracks under side impact. (a) RO-
424-S-12. (b) 75DO-424-S-12. (c) DO-424-S-12. (d) RV-424-S-12. (e) 75DV-424-S-12. (f) DV-424-S-12.
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3.3. Impact Force versus Time Curves
3.3.1. Comparison between Crack-Free Model and Local Corrosion Model

Figure 14 shows that raising the impact height has almost no effect on the impact
platform value of the crack-free model, but it will significantly increase the peak segment
of the impact time history curve and prolong the impact duration of the model. When the
impact height is increased to 8 m and 12 m, the peak segment of the impact time history
curve increases by 56% and 90%, respectively, while the impact duration increases by 16%
and 39%, respectively.
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Figure 14. Time history curve of impact force for crack-free model.

Figure 15 takes the same impact energy (m = 424 kg, H = 4 m) as an example to
analyze the influence of impact surface (F, R and S), crack angle (H, O and V) and crack
length (0.5D, 0.75D and 1D) on the impact time history curve. Figure 15a shows that the
three impact surfaces affect the impact duration to different degrees. The increase in impact
duration for the models subjected to front, rear and side impacts are 12%, 16.4% and 6%,
respectively. Figure 15b shows that the change of crack angle has a stable influence on
impact duration. The influence of the crack angle on the impact duration of the model is
about 11%. Figure 15c shows that the increase in crack length prolongs the impact duration
of the model by about 12~30%. Meanwhile, the changes in impact surface, crack angle
and crack length will reduce the impact platform value of the model to varying degrees.
Among the three impact surfaces, front impact reduces the impact platform value by about
11%; rear impact reduces the impact platform value by about 26%; side impact reduces
the impact platform value by less than 5%. Crack angles (H, O and V) reduce the impact
platform values by 11%, 5% and 7%, respectively. In addition, when the crack length
increases from 0.5D to 1D, the impact platform value reduction of the model is increased
from 11% to 30%.
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Figure 15. Comparison of each parameter with the crack-free model. (a) Change of impact surface. 
(b) Change of crack angle. (c) Change of crack length. 

3.3.2. Comparison of Horizontal Crack Models 
1. Comparison of peak segment of impact time history curve 

As shown in Figure 16, the peak segment of the impact time history curve of the 
model with horizontal cracks is mainly influenced by the impact height. When the impact 
height is increased to 8 m and 12 m, the peak segment of the model impact time history 
curve will increase by 31% and 56%, respectively. Compared with the peak segment of 
the impact time history curve of the crack-free model, the peak segment of the impact 
time history curve of the horizontal crack model is basically unchanged when the impact 
height is 4 m. When the impact height is increased to 8–12 m, the peak segment of the 
impact time history curve will be reduced by about 21%. 

0.000 0.006 0.012

0

500

1000

1500

2000

2500

3000  DH-4m
 75DH-4m
 RH-4m
 424-4

Im
pa

ct
 lo

ad
(k

N
)

0.000 0.006 0.012

0

500

1000

1500

2000

2500

3000  DH-8m
 75DH-8m
 RH-8m
 424-8

t/s
0.000 0.008 0.016

0

500

1000

1500

2000

2500

3000  DH-12m
 75DH-12m
 RH-12m
 424-12

 
(a)  

Figure 15. Comparison of each parameter with the crack-free model. (a) Change of impact surface.
(b) Change of crack angle. (c) Change of crack length.
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3.3.2. Comparison of Horizontal Crack Models

1. Comparison of peak segment of impact time history curve

As shown in Figure 16, the peak segment of the impact time history curve of the model
with horizontal cracks is mainly influenced by the impact height. When the impact height
is increased to 8 m and 12 m, the peak segment of the model impact time history curve will
increase by 31% and 56%, respectively. Compared with the peak segment of the impact
time history curve of the crack-free model, the peak segment of the impact time history
curve of the horizontal crack model is basically unchanged when the impact height is 4 m.
When the impact height is increased to 8–12 m, the peak segment of the impact time history
curve will be reduced by about 21%.
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Figure 16. Comparison of impact time history curve and impact platform value of horizontal crack 
model. (a) Front impact. (b) Rear impact. (c) Side impact. (d) Impact platform value of horizontal 
crack model. 

2. Comparison of impact duration 
Figure 16a,c shows that crack length, impact surface and impact energy all affect the 

impact duration of the horizontal crack model. Overall, the impact surface has the 
greatest effect on the impact duration, while the crack length has the least effect on the 
impact duration. With the increase in impact energy, the impact duration of the front 
impact model is more stable in variation and its overall performance is better than that of 
the rear and side impact models. 

Figure 16. Cont.
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Figure 16. Comparison of impact time history curve and impact platform value of horizontal crack
model. (a) Front impact. (b) Rear impact. (c) Side impact. (d) Impact platform value of horizontal
crack model.

2. Comparison of impact duration

Figure 16a,c shows that crack length, impact surface and impact energy all affect the
impact duration of the horizontal crack model. Overall, the impact surface has the greatest
effect on the impact duration, while the crack length has the least effect on the impact
duration. With the increase in impact energy, the impact duration of the front impact model
is more stable in variation and its overall performance is better than that of the rear and
side impact models.

3. Comparison of impact platform values

Figure 16d shows that the impact platform values show a downward trend with the
change of impact surface (F, S and R). Increasing impact energy has a greater influence on
the impact platform values of the side and rear impact models, while it has little influence
on the impact platform values of the front impact model. Meanwhile, increasing the crack
length will reduce the impact platform value of the model. Compared with the crack-free
model, the impact platform value of the model with front impact decreases by about 17%.
Under impact heights of 4 m, 8 m and 12 m, the impact platform values of the rear impact
model decrease by 35%, 55% and 60% respectively, while the impact platform values of
the side impact model decrease by 8%, 26% and 38% respectively. Figure 16a–d show
that the impact platform value and impact duration of the model with horizontal cracks
are relatively stable under the front impact load and it exhibits better impact resistance
performance.

3.3.3. Comparison of Oblique Crack Models

1. Comparison of peak segment of impact time history curve

As shown in Figure 17a–c, the peak segment of the impact time history curve is mainly
influenced by impact height. When the impact height is raised to 8 m and 12 m, the peak
segments of the impact time history curves of the model increase by about 23% and 44%,
respectively. Compared with the crack-free model, the peak segment of the impact time
history curve of the model with oblique cracks is basically unaffected when the impact
height is 4 m. However, when the impact height is increased to 8–12 m, the peak segment
of the impact time history curve of the model decreases by about 24%.
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2. Comparison of impact duration

Figure 17a–c show that the impact duration of the oblique crack model is less affected
by crack length than that of the horizontal crack model. Among the three impact surfaces,
the rear impact significantly increases the impact duration of the model, while the front
impact has the least effect on the model impact duration. In addition, the impact duration
of the model is gradually prolonged with the increase of impact energy.

3. Comparison of impact platform values

Figure 17d shows that the impact platform values overall show a decreasing trend
with the change of impact surface (F, S and R). Increasing impact energy will reduce the
impact platform values of side and rear impact models, while the impact platform values
of front impact models will increase. Meanwhile, increasing crack length will reduce the
impact platform value of side and rear impact models, but it has basically no effect on
the front impact model. Under impact heights of 4 m, 8 m and 12 m, the impact platform
values of the front impact model decrease by about 10%, while the impact platform values
of the rear impact model decrease by 24%, 42% and 49%, respectively. The impact platform
values of the side impact model decrease by 6%, 16% and 22% at impact heights of 4 m, 8 m
and 12 m, respectively. Compared with the horizontal cracked model, the crack length and
impact energy have less effect on the oblique cracked model. In addition, the front impact
model still shows good impact resistance in the three impact surfaces.

3.3.4. Comparison of Vertical Cracking Models

1. Comparison of peak segment of impact time history curve

As shown in Figure 18a–c, the peak segment of the impact time history curve is mainly
affected by impact height. When the impact height is increased to 8 m and 12 m, the peak
segment of the impact time history curve of the vertical cracks model increases by 24% and
45%, respectively. Compared with the crack-free model, the peak segment of the impact
time history curve of the vertical crack model is basically unaffected when the impact
height is 4 m. When the impact height is increased to 8–12 m, the peak segment of the
impact time history curve of the model decreases by about 25%.

2. Comparison of impact duration

Figure 18a–c show that the crack length only has a great influence on the impact
duration of the rear impact model. Overall, the impact duration of the vertical crack model
is mainly affected by the impact energy followed by the crack length. The impact surface
has little influence on the impact duration of the vertical crack model.

3. Comparison of impact platform values

Figure 18d shows that both the reduction of the impact energy and the increase of
crack length will improve the impact platform value of the rear impact model. In general,
the impact platform value of the vertical crack model is relatively stable as a whole, and its
impact platform value varies in the range of 4% to 16%. The results show that the overall
impact resistance of the vertical crack model is better than that of the model with horizontal
and oblique cracks.



Buildings 2022, 12, 996 17 of 26

Buildings 2022, 12, x FOR PEER REVIEW 18 of 28 
 

3.3.4. Comparison of Vertical Cracking Models 
1. Comparison of peak segment of impact time history curve 

As shown in Figure 18a–c, the peak segment of the impact time history curve is 
mainly affected by impact height. When the impact height is increased to 8 m and 12 m, 
the peak segment of the impact time history curve of the vertical cracks model increases 
by 24% and 45%, respectively. Compared with the crack-free model, the peak segment of 
the impact time history curve of the vertical crack model is basically unaffected when the 
impact height is 4 m. When the impact height is increased to 8–12 m, the peak segment of 
the impact time history curve of the model decreases by about 25%. 
2. Comparison of impact duration 

Figure 18a–c show that the crack length only has a great influence on the impact 
duration of the rear impact model. Overall, the impact duration of the vertical crack 
model is mainly affected by the impact energy followed by the crack length. The impact 
surface has little influence on the impact duration of the vertical crack model. 

0.000 0.005 0.010

0

500

1000

1500

2000

2500

3000  DV-4m
 75DV-4m
 RV-4m
 424-4

Im
pa

ct
 lo

ad
(k

N
)

0.000 0.006 0.012

0

500

1000

1500

2000

2500

3000  DV-8m
 75DV-8m
 RV-8m
 424-8

t/s
0.000 0.007 0.014

0

500

1000

1500

2000

2500

3000  DV-12m
 75DV-12m
 RV-12m
 424-12

 
(a) 

0.000 0.005 0.010

0

500

1000

1500

2000

2500

3000  DV-4m
 75DV-4m
 RV-4m
 424-4

Im
pa

ct
 lo

ad
(k

N
)

0.000 0.006 0.012

0

500

1000

1500

2000

2500

3000  DV-8m
 75DV-8m
 RV-8m
 424-8

t/s
0.000 0.007 0.014

0

500

1000

1500

2000

2500

3000  DV-12m
 75DV-12m
 RV-12m
 424-12

 
(b)  

0.000 0.005 0.010

0

500

1000

1500

2000

2500

3000  DV-4m
 75DV-4m
 RV-4m
 424-4

Im
pa

ct
 lo

ad
(k

N
)

0.000 0.006 0.012

0

500

1000

1500

2000

2500

3000  DV-8m
 75DV-8m
 RV-8m
 424-8

t/s
0.000 0.007 0.014

0

500

1000

1500

2000

2500

3000  DV-12m
 75DV-12m
 RV-12m
 424-12

 
(c)  

Buildings 2022, 12, x FOR PEER REVIEW 19 of 28 
 

 
(d)  

Figure 18. Comparison of impact time history curve and impact platform value of vertical cracking 
model. (a) Front impact. (b) Rear impact. (c) Side impact. (d) Impact platform values of vertical 
crack model. 

3. Comparison of impact platform values 
Figure 18d shows that both the reduction of the impact energy and the increase of 

crack length will improve the impact platform value of the rear impact model. In general, 
the impact platform value of the vertical crack model is relatively stable as a whole, and 
its impact platform value varies in the range of 4% to 16%. The results show that the 
overall impact resistance of the vertical crack model is better than that of the model with 
horizontal and oblique cracks. 

3.4. Mid-Span Displacement versus Time Curves 
The model starts to rebound after reaching the mid-span peak displacement, and its 

mid-span displacement reverses until the energy is completely absorbed. In this case, the 
mid-span final deflection of the model is the mid-span final displacement. The mid-span 
final displacement of the model is generally lower than its peak displacement. Figure 19 
shows the influence of each parameter on mid-span peak displacement. Overall, the 
mid-span peak displacement of the model gradually increases with the increase of impact 
energy and crack length. Among the three impact surfaces, the mid-span peak dis-
placement of the rear impact model is the largest, while the mid-span peak displacement 
of the front impact model is the smallest. Increasing the crack angle can effectively reduce 
the effect of impact surface and crack length on the mid-span peak displacement of the 
model. In addition, the crack length has the greatest effect on the rear impact model and 
the least effect on the front impact model. 

Figure 18. Comparison of impact time history curve and impact platform value of vertical cracking
model. (a) Front impact. (b) Rear impact. (c) Side impact. (d) Impact platform values of vertical
crack model.



Buildings 2022, 12, 996 18 of 26

3.4. Mid-Span Displacement versus Time Curves

The model starts to rebound after reaching the mid-span peak displacement, and its
mid-span displacement reverses until the energy is completely absorbed. In this case, the
mid-span final deflection of the model is the mid-span final displacement. The mid-span
final displacement of the model is generally lower than its peak displacement. Figure 19
shows the influence of each parameter on mid-span peak displacement. Overall, the mid-
span peak displacement of the model gradually increases with the increase of impact energy
and crack length. Among the three impact surfaces, the mid-span peak displacement of the
rear impact model is the largest, while the mid-span peak displacement of the front impact
model is the smallest. Increasing the crack angle can effectively reduce the effect of impact
surface and crack length on the mid-span peak displacement of the model. In addition,
the crack length has the greatest effect on the rear impact model and the least effect on the
front impact model.
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Figure 19. Comparison of peak displacement of models. (a) Horizontal crack. (b) Oblique crack. (c) 
Vertical crack. 

Figure 20 shows that when the impact height of the crack-free model is increased to 
8 m and 12 m, its mid-span peak displacement increases by 68% and 160%, respectively. 
The existence of cracks will deepen the influence of impact height on the mid-span peak 
displacement of the model. Meanwhile, increasing the impact height will reduce the re-
bound amplitude of the model with local corrosion, especially the model with horizontal 
cracks that has the most obvious reduction. Combining Figures 19 and 20, it can be seen 
that the model with vertical cracks has a smaller change in the mid-span peak displace-
ment under the front impact and a larger rebound after reaching the mid-span peak dis-
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Figure 19. Comparison of peak displacement of models. (a) Horizontal crack. (b) Oblique crack.
(c) Vertical crack.

Figure 20 shows that when the impact height of the crack-free model is increased to
8 m and 12 m, its mid-span peak displacement increases by 68% and 160%, respectively.
The existence of cracks will deepen the influence of impact height on the mid-span peak
displacement of the model. Meanwhile, increasing the impact height will reduce the
rebound amplitude of the model with local corrosion, especially the model with horizontal
cracks that has the most obvious reduction. Combining Figures 19 and 20, it can be seen
that the model with vertical cracks has a smaller change in the mid-span peak displacement
under the front impact and a larger rebound after reaching the mid-span peak displacement,
which shows better impact resistance stability.
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3.5. Comparison of Impact Platform Value and Mid-Span Peak Displacement 
Figure 21 shows the influence of each parameter on the impact platform value and 

mid-span peak displacement of the model. As shown in the figure, the impact platform 
value is negatively correlated with the overall change trend of mid-span peak displace-
ment. Increasing the crack length will decrease the impact platform value and increase 
the mid-span peak displacement. Among the three impact surfaces, the rear impact has 
the greatest influence on the impact platform value and mid-span peak displacement of 
the model, while the front impact has the least influence on the impact platform value 
and mid-span peak displacement of the model. The influence of crack length and impact 
surface on the model decreases with the increase of crack angle. Overall, the impact sur-
face has the greatest influence on the impact platform value and mid-span peak dis-
placement of the model, while increasing the crack angle can effectively reduce the in-
fluence of the impact surface. 
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Figure 20. Mid-span displacement time history curve of the models. (a) 424-4/8/12 (b) H-424-4.
(c) H-424-8. (d) H-424-12. (e) O-424-4. (f) O-424-8. (g) O-424-12. (h) V-424-4. (i) V-424-8. (j) V-424-12.

3.5. Comparison of Impact Platform Value and Mid-Span Peak Displacement

Figure 21 shows the influence of each parameter on the impact platform value and
mid-span peak displacement of the model. As shown in the figure, the impact platform
value is negatively correlated with the overall change trend of mid-span peak displacement.
Increasing the crack length will decrease the impact platform value and increase the mid-
span peak displacement. Among the three impact surfaces, the rear impact has the greatest
influence on the impact platform value and mid-span peak displacement of the model,
while the front impact has the least influence on the impact platform value and mid-span
peak displacement of the model. The influence of crack length and impact surface on
the model decreases with the increase of crack angle. Overall, the impact surface has
the greatest influence on the impact platform value and mid-span peak displacement of
the model, while increasing the crack angle can effectively reduce the influence of the
impact surface.
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Figure 20. Mid-span displacement time history curve of the models. (a) 424-4/8/12 (b) H-424-4. (c) 
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3.5. Comparison of Impact Platform Value and Mid-Span Peak Displacement 
Figure 21 shows the influence of each parameter on the impact platform value and 

mid-span peak displacement of the model. As shown in the figure, the impact platform 
value is negatively correlated with the overall change trend of mid-span peak displace-
ment. Increasing the crack length will decrease the impact platform value and increase 
the mid-span peak displacement. Among the three impact surfaces, the rear impact has 
the greatest influence on the impact platform value and mid-span peak displacement of 
the model, while the front impact has the least influence on the impact platform value 
and mid-span peak displacement of the model. The influence of crack length and impact 
surface on the model decreases with the increase of crack angle. Overall, the impact sur-
face has the greatest influence on the impact platform value and mid-span peak dis-
placement of the model, while increasing the crack angle can effectively reduce the in-
fluence of the impact surface. 
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Figure 21. Comparison of impact platform value and mid-span peak displacement of the model. (a) 
H-424-4. (b) O-424-4. (c) V-424-4. (d) H-424-8. (e) O-424-8. (f) V-424-8. (g) H-424-12. (h) O-424-12. (i) 
V-424-12. 

3.6. Energy Absorption Ratio of the Model 
The energy loss caused by friction during impact is ignored in this paper. The total 

gravitational potential energy of the free-falling motion of the drop hammer is used as 
the impact energy of the whole system, i.e., Ei = mgH. The total impact energy of the drop 
hammer in the first impact process will be divided into three parts, namely the energy 
absorbed by the local denting and buckling, the energy absorbed by the overall bending 
deformation and the remaining kinetic energy of the drop hammer. Local corrosion will 
increase the overall bending and local buckling deformation of the model to a certain 
extent. Since the amplitude of the local deformation of the model is smaller than that of 
the whole bending deformation, most of the energy may be absorbed mainly by the 
whole bending deformation of the model [23]. 

The impact force mid-span displacement curve is obtained by combining the impact 
force and mid-span displacement time history curves of the model, thus quantifying the 
energy absorbed by the whole bending deformation of the model. A typical impact force 
mid-span displacement curve is shown in Figure 22. The energy value Eg absorbed by the 
whole bending deformation of each model can be obtained by mathematically integral 
calculation of the area enveloped by the impact force mid-span displacement curve of 
each model. Thus, the energy absorption ratio (EAR) of the whole deformation can be 
obtained, i.e., EAR = Eg/Ei. As shown in Figure 23a, the EAR of the crack-free model in-
creased by 7.2% and 11% as impact height increased to 8 m and 12 m, respectively. Fig. 
23b–d show the influence of impact surface, crack length and crack angle on the EAR of 
the model. Overall, the EAR of the model is generally inversely proportional to the in-
crease in crack angle and directly proportional to the increase in crack length. The front 
impact will reduce the EAR of the model, while the side and rear impacts will generally 
increase the EAR of the model. The energy absorption ratio of the rear impact model is 
the highest among the three impact surfaces. This indicates that the model is more fa-
vorable to absorbing impact energy when subjected to rear impact under local corrosion. 

Figure 21. Comparison of impact platform value and mid-span peak displacement of the model.
(a) H-424-4. (b) O-424-4. (c) V-424-4. (d) H-424-8. (e) O-424-8. (f) V-424-8. (g) H-424-12. (h) O-424-12.
(i) V-424-12.

3.6. Energy Absorption Ratio of the Model

The energy loss caused by friction during impact is ignored in this paper. The total
gravitational potential energy of the free-falling motion of the drop hammer is used as
the impact energy of the whole system, i.e., Ei = mgH. The total impact energy of the drop
hammer in the first impact process will be divided into three parts, namely the energy
absorbed by the local denting and buckling, the energy absorbed by the overall bending
deformation and the remaining kinetic energy of the drop hammer. Local corrosion will
increase the overall bending and local buckling deformation of the model to a certain extent.
Since the amplitude of the local deformation of the model is smaller than that of the whole
bending deformation, most of the energy may be absorbed mainly by the whole bending
deformation of the model [23].

The impact force mid-span displacement curve is obtained by combining the impact
force and mid-span displacement time history curves of the model, thus quantifying the
energy absorbed by the whole bending deformation of the model. A typical impact force
mid-span displacement curve is shown in Figure 22. The energy value Eg absorbed by
the whole bending deformation of each model can be obtained by mathematically integral
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calculation of the area enveloped by the impact force mid-span displacement curve of each
model. Thus, the energy absorption ratio (EAR) of the whole deformation can be obtained,
i.e., EAR = Eg/Ei. As shown in Figure 23a, the EAR of the crack-free model increased by
7.2% and 11% as impact height increased to 8 m and 12 m, respectively. Figure 23b–d show
the influence of impact surface, crack length and crack angle on the EAR of the model.
Overall, the EAR of the model is generally inversely proportional to the increase in crack
angle and directly proportional to the increase in crack length. The front impact will reduce
the EAR of the model, while the side and rear impacts will generally increase the EAR of
the model. The energy absorption ratio of the rear impact model is the highest among the
three impact surfaces. This indicates that the model is more favorable to absorbing impact
energy when subjected to rear impact under local corrosion.
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Figure 22. Typical impact force mid-span deformation curve (RV-F-424-8). 
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Figure 23. Comparison of energy absorption ratio. (a) 424-4/8/12. (b) Impact height: 4 m. (c) Impact 
height: 8 m. (d) Impact height: 12 m. 

3.7. The Evaluation of Dynamic Flexural Strength 
For the convenience of the analysis, the concept of increasing coefficient Rd of dy-

namic flexural strength of the model is defined as shown in Equation (25). According to 
the literature [1], the static ultimate bending moment Msu of CFST under bending failure 
is shown in Equation (26). 
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Figure 22. Typical impact force mid-span deformation curve (RV-F-424-8).
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3.7. The Evaluation of Dynamic Flexural Strength

For the convenience of the analysis, the concept of increasing coefficient Rd of dynamic
flexural strength of the model is defined as shown in Equation (25). According to the
literature [1], the static ultimate bending moment Msu of CFST under bending failure is
shown in Equation (26).

Rd =
Md
Msu

(25)

Msu = γm ·Wscm · fscy (26)

in which

Md =
Ep · L

4U
(27)

γm = 1.04 + 0.48 ln(ξ + 0.1) (28)

ξ =
As · fy

Ac · fck
(29)

Wscm = B3/6 (30)

fscy = (1.18 + 0.85ξ) fc (31)

where Md is the simplified rigid-plasticity theory formula, which is the dynamic plastic
moment of CFST under impact loading [8]; L is the effective length of the model; Ep and
U are the plastic strain energy and mid-span final deflection obtained by FEA; Msu is the
flexural strength value of the model under static loading; γm is the calculation coefficient
of flexural strength; ξ is the degree of the confinement on the concrete fill provided by the
steel tube; As and Ac are the cross-sectional areas of the steel tube and core concrete; f y is
the yield strength of steel; f ck is the standard value of concrete compressive strength; Wscm
is the modulus of flexural resistance of the model section; B is the cross-section side length
of the model; f scy is the index of axial compression strength bearing capacity of the model.

Figure 24a shows that the Rd of the crack-free model decreases with the increase
of impact energy. It shows that the increase of flexural strength of the model decreases
gradually. This is because when the impact height increases to 8 m and 12 m, the plastic
strain energy Ep of the model increases only by 6% and 29.3%, while the mid-span final
deflection increases by 99.1% and 264.8%, respectively. It can be seen that the mid-span
final deflection values of the model basically increase exponentially. The relative value of
the strength increase of the model is decreased due to the small difference of the strength
increase caused by the strain rate effect of the material. Figure 24b–d show the influence of
crack length and crack angle on Rd under different impact surfaces. Overall, the Rd value
of the model can be reduced by decreasing the crack angle and increasing the crack length.
With the increase of impact height, the overall variation amplitude of the rear impact model
is more obvious than that of the front and side impact models. The Rd value of the side
impact model is basically higher than that of the front and rear impact models when the
impact height is 4 m. In addition, the maximum reduction in Rd value for the front impact
model is 8% when the impact height is 12 m, while the maximum reduction in Rd value
for the rear and side impact models is 62.2% and 38.5%, respectively. The results show
that the decrease in crack length and the increase in crack angle are proportional to the
increase of Rd. Under the same crack angle and crack length, the Rd reduction amplitude
of the rear impact model is more obvious than that of the front impact and side impact
models. The impact resistance of side impact models is better than that of front and rear
impact models when impact energy is small. When the impact energy is large, the impact
resistance of the front impact model is better than that of rear and side impact models.
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4. Practical Design Method for Dynamic Flexural Strength

Both the local corrosion type and the impact direction will affect the impact resistance
of CFST. An important index to predict the impact resistance of CFST is the dynamic
flexural strength improvement coefficient Rd under impact loading. In this paper, based
on the parametric analysis results, the key factors affecting the improvement coefficient of
dynamic flexural strength are selected, including crack length (lc), crack angle (θ), impact
surface (F, R and S) and impact energy (Ei). The practical design method (32–33) for the
improvement coefficient Rd of the dynamic flexural strength of the concrete-filled square
steel tube model section is obtained by regression analysis.

Rd = 3.76682 · f (n) · f (Ei) · f (β) θ = [0o, 90o) (32)

in which
f (n) = −0.84476 + 2.26886n− 0.97719n2

f (Ei) = 3.97012− 0.12813Ei + 1.28× 10−3Ei
2

f (β) = 1.72369 + 0.69479β− 1.19763β2

Rd = 2.05226 · f (lc) · f (Ei) · f (β) θ = 90o (33)

in which
f (lc) = 3.8859 + 0.03977lc − 1.58754× 10−4lc2

f (Ei) = 1.14824− 0.03763Ei + 3.8461× 10−4Ei
2

f (β) = 0.73013 + 0.06594β− 0.04551β2

where n is the ratio of the cross-sectional area of the steel tube before and after local
corrosion. The area after corrosion is the horizontal projection area and calculated according
to n = (A− t · lc · cos θ)/A; A is the cross-sectional area of the steel tube; t is the wall
thickness of the steel tube; β is the impact orientation factor, which is the angle formed by
the impact direction of the drop hammer and the normal direction of the corrosion surface.
The angle range 0–180◦ is normalized by taking β = 0 for front impact, β = 0.5 for side
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impact and β = 1 for rear impact. The specific application range of each parameter in the
formula is shown in Table 7.

Table 7. Application scope of the practical formula of Rd.

lc/mm θ/(o) β Ei/kJ

90~180 0~90◦ 0, 0.5, 1 16.6~49.9

Figure 25a,b shows the comparison results of the improvement coefficient Rd of
dynamic flexural strength by finite element simulation and proposed design method.
The relative error between them is less than 10% basically, which shows that the calculation
results of the proposed design method are in good agreement with the finite element
simulation results. The proposed design method could be used to predict the dynamic
plastic moment of CFST with local defects under impact loading.
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5. Conclusions

In this paper, the impact resistance of locally corroded HSCFST members simulated
by local notch cracks is numerically simulated. The influence of crack length, crack angle,
impact surface and impact energy on the impact resistance of members is considered.
The prediction method of impact resistance of HSCFST under the local corrosion is pro-
posed. Some conclusions could be drawn as follows:

(1) The change in crack angle and crack length under the local corrosion will affect
the amplitude and range of the local drum curvature. A model with horizontal cracks
will show the phenomenon of crack closure when subjected to the front impact. The side
impact will cause the horizontal crack to take on a “triangular” shape and will also cause
the tensile failure of the steel tube at the bottom of the crack.
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(2) The front impact and vertical cracks have little influence on the impact platform
values of the model under local corrosion. Increasing the crack length and impact energy
will reduce the impact platform value of the model. Among the three impact surfaces,
the rear impact has the greatest influence on the impact platform value and impact duration
of the model.

(3) The energy absorption ratio of the model under local corrosion is inversely pro-
portional to the increase of crack angle and proportional to the increase of crack length in
general. The side and rear impacts will promote the absorption of impact energy by the
model and the energy absorption ratio of both is basically above 90%.

(4) The Rd of the model is generally proportional to the increase in crack angle and
inversely proportional to the increase in crack length. The impact resistance of the side
impact model is better than that of the front and rear impact models when the impact
energy is small. The impact resistance of the front impact model is better than that of the
side and rear impact models when the impact energy is larger.

(5) Based on the parametric analysis results, a practical design method for the im-
provement coefficient of dynamic flexural strength Rd of the HSCFST model under local
corrosion under lateral impact is proposed and validated against the simulation results.
The proposed design method could be used to predict the dynamic plastic moment of
HSCFST with local defects under impact loading.
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