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Abstract: This study proposes a generally applicable improvement strategy for metaheuristic al-
gorithms, improving the algorithm’s accuracy and local convergence in finite element (FE) model
updating. Based on the idea of “survival of the fittest” in biological evolution, the improvement strat-
egy introduces random crossover and mutation operators into metaheuristic algorithms to improve
the accuracy and stability of the solution. The effectiveness of the improvement strategy with three
typical metaheuristic algorithms was comprehensively tested by benchmark functions and numerical
simulations of a space truss structure. Meanwhile, the initial FE model of a railway hybrid girder
cable-stayed bridge was updated to examine the effect of the improved metaheuristic algorithm
within the FE model, updating for complex engineering structures. The results show that the accuracy
and stability of the improved metaheuristic algorithm were improved by this process. After the
initial FE model of the hybrid girder cable-stayed bridge was updated, the calculated frequencies
and displacements were closer to the measured values, better representing the actual structure, and
showing that this process can be used for baseline FE models of bridges.

Keywords: metaheuristic algorithm; model updating; random crossover; hybrid girder cable-stayed
bridge; kriging model

1. Introduction

Due to material performance degradation, overloading, corrosive environments, and
other effects, the performance of a bridge structure will gradually degrade, leading to
potential safety hazards. In August 2008, the I-35W Bridge in the United States suddenly
collapsed during rush hour, resulting in 13 deaths and 145 injuries [1]. In April 1987,
the Schoharie Creek Bridge in New York, USA, collapsed, resulting in 10 deaths [2]. To
avoid bridge accidents, structural health monitoring and condition assessments are usually
implemented to evaluate the technical condition of existing bridge structures. A baseline
finite element (FE) model, which can reflect the structural behavior of the actual bridge,
is widely used in bridge condition assessment. However, due to the simplifications in FE
modeling and the uncertainties in material properties, and also the errors of boundary
conditions, the initial FE model established according to the design drawings usually
fails to represent the actual bridge. Thus, updating the initial FE model, called FE model
updating, according to the experimentally measured results, is necessary [3–6]. Many
studies regarding FE model updating have been published in the past decade. A detailed
overview of FE model updating can be found in reference [7].

FE model updating is essentially defined as an optimization problem with an objective
function, which is usually expressed by the discrepancies between FE-calculated structural
responses (such as displacement and modal parameters) and the experimentally measured
ones. The objective function of bridge FE model updating usually has the characteristics
of multi-dimensionality, high nonlinearity, and multiple local extremes. Traditional op-
timization algorithms, such as gradient-based algorithms [8,9] and the Newton iteration
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method [10,11], easily fall into the local optimum when dealing with such optimization
problems. Consequently, these algorithms find it difficult to obtain the global optimal
solution of the objective function. In recent years, metaheuristic algorithms, such as particle
swarm optimization algorithm (PSO) [12,13], bee colony algorithm (BCA) [14,15], ant colony
algorithm [16,17], and gravitational search algorithm (GSA) [18,19], which are based on
intelligent optimization theory, have been developed and widely used in multidisciplinary
optimization problems. For example, Huang et al. [20] proposed a nondestructive global
damage identification method based on vibration and successfully applied the method
to three-span continuous beams and two-span steel grids in multiple damage scenarios.
Huang et al. [21] proposed a structural damage identification method based on support
vector machine (SVM) and moth-flame optimization (MFO) and successfully applied the
method to a simply-supported beam and an actual bridge engineering example. It is
generally accepted that, compared with traditional algorithms, metaheuristic algorithms
have certain advantages in dealing with nonlinear and multi-extremum issues [22].

Although the metaheuristic algorithm is superior to traditional optimization algo-
rithms to a certain extent, it is still limited by the characteristics of the algorithm itself [22,23].
There is a contradiction between the population’s diversity and the algorithm’s convergence
speed in the search process. Especially in actual engineering cases, most of them have mul-
tiple extreme points, and the algorithm easily falls into the local optimum. Therefore, the
metaheuristic algorithm’s performance needs to be improved. On this issue, some relevant
research has been conducted. Ding et al. [24] introduced two local search strategies into the
artificial bee colony algorithm to improve the identification accuracy of the algorithm. The
authors proved that the improved algorithm could provide more accurate results using
incomplete modal data through a case study of a real structure. To solve the problem of
premature convergence in the ant colony algorithm, Yang [25] utilized step control parame-
ters to improve the performance of the standard ant colony algorithm. Their study shows
that the improved ant colony algorithm can provide better results. Jiang et al. [26] divided
the population into several subpopulations by combining the concepts of PSO, competitive
evolution, and complex shuffle to solve the local convergence problem. Each subpopulation
independently executes the standard PSO, and after several iterations the subpopulations
are mixed to ensure information sharing. The authors applied the improved algorithm
to hydrological model updating and proved that the improved PSO could jump out the
local minimums. Marzband et al. [27] proposed an optimization method based on GSA.
A control parameter was added to the GSA algorithm to adjust the searching ability of
the algorithm in later stages to avoid premature inaccuracies. The improved GSA algo-
rithm was applied to a real-time energy management system of the microgrid to achieve
the highest efficiency, improve the efficiency of economic dispatch, and obtain the best
performance. The above studies aim to optimize and improve the algorithm parameters
of a particular algorithm, while some other studies integrate two optimization algorithms
to improve the algorithms’ performance. Wang et al. [28] introduced the artificial fish
swarm algorithm to construct an entropy path planning model of the hybrid ant colony
and artificial fish swarm algorithm to improve the convergence speed and accuracy of
the algorithm. Based on the combination of GSA and PSO, Hu et al. [29] changed the
constant acceleration coefficient into an exponential function and proposed an improved
PSO-GSA algorithm to solve the robot’s surface water quality and movement direction. The
results showed that the hybrid algorithm can improve the local convergence problem of
the standard algorithm. Huang et al. [30] introduced Levy-flight in the whale optimization
algorithm to increase the diversity of the population to solve the problems of premature
maturity and slow convergence of the whale optimization algorithm. The improved whale
optimization algorithm was applied to the damage identification of three examples. To
improve the sampling efficiency of standard Metropolis-Hastings (MH), Luo et al. [31]
introduced the particle position update mechanism of PSO into the MH algorithm and
formed the MH-PSO hybrid Markov chain Monte Carlo sampling method. The sampling
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method was successfully applied to the Bayesian model updating of a cantilever beam and
ASCE benchmark frame.

The abovementioned improvement strategy is only applicable to one metaheuristic
algorithm. Most metaheuristic algorithms receive inspiration from random phenomena
and swarm intelligence behaviors in nature, and the random search module is introduced
based on the heuristic algorithm, making the metaheuristic algorithm more widely applica-
ble. This study proposes an improvement strategy that is generally applicable to different
metaheuristic algorithms to improve the metaheuristic algorithm’s local convergence and
search accuracy. Based on the idea of survival of the fittest in biological evolution, the im-
provement strategy adds random crossover and mutation calculations within the standard
metaheuristic algorithm to improve the position of the population in the search space to
jump out of the local optimum and improve the search accuracy.

The framework of this paper is as follows. Section 2 introduces the basic theory of FE
model updating, based on the kriging surrogate model. Section 3 presents the metaheuristic
algorithm and the improvement strategy and verifies the results of the improvement
through benchmark functions. Section 4 numerically investigates the performance of the
improvement strategy through FE model updating of a space truss structure. In Section 5,
the FE model updating of a full-scale long-span hybrid girder cable-stayed railway bridge
is implemented based on the proposed algorithm. The basic information of the bridge, the
in situ testing, the initial FE model, the kriging model, and the updating results, using the
improved metaheuristic algorithms, are introduced and discussed. The conclusions are
made in the final section.

2. Model Updating Assisted with the Kriging Model

The essence of FE model updating is to reduce the error between the FE-calculated
response values and the experimentally measured ones by updating the structural design
parameters in the FE model. Therefore, the objective function J(x) can be defined as:

J(x) = min
m
∑

i=1
αiri(x)

s.t. xmin
m ≤ xm ≤ xmax

m

 (1)

where x is the design parameter to be updated; ri(x) is the residual function between
the calculated value and the measured value of the i-th type of structural response; m is
the number of the kinds of structural responses considered in model updating; αi is the
weighting coefficient of the i-th residual function; and xmax

m and xmin
m are the upper and

lower bounds of the m-th design parameter to be updated, respectively.
The iterative method is widely used to obtain the minimum value of the objective

function in a design space. However, due to the implicit functional relationship between
the structural response and the design parameters, the FE model calculates the residual
function in each iteration, which is very time-consuming, especially for complex FE models
of bridge structures. Surrogate models, such as polynomial response surface, radial basis
function, and the kriging model, have been used for model updating to improve calculation
efficiency. Study [32] has shown that the kriging model predicts the value of each point
in the design space and gives each point’s prediction error. Therefore, the kriging model
was selected as the surrogate model in FE model updating to save computational cost.
The primary process of FE model updating based on the kriging model can be divided
into three steps. Firstly, the data samples of structural responses and design parameters
are generated by the design of the experiment with the aid of the initial FE model. The
commonly used experimental design methods include central composite design, D-optimal
design, uniform design, and latin hypercube design. Then, the kriging model is established
based on the data samples using mathematical regression. An accuracy test of the kriging
model is usually evaluated before it is applied within FE model updating. Finally, the
optimization algorithm is applied to find the minimum of the objective function in the
design space.
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The kriging model comprises a deterministic regression model and a random process.
The structural response matrix Y(x) can be expressed as the function of the design parameter
x in the kriging model, and the formula is represented by:

Y(x) =
n

∑
j=1

β j f j(x) + Z(x) (2)

where n is the number of structural responses;
n
∑

j=1
β j f j(x) is the polynomial regression

model, which approximates the model at the global scale; β j is the regression coefficient;
f j(x) is a polynomial function of the structural design parameters; and Z(x) is a random
process matrix with a mean value of 0 and a covariance of σ2, which provides a local
approximation of the model. The kriging model has been successfully applied to model up-
dating, geological parameter analysis, and within multidisciplinary research fields [33–36].
A detailed description of the kriging model can be found therein.

3. Improvement Strategy of Metaheuristic Algorithm
3.1. Metaheuristic Algorithm

The metaheuristic algorithm improves on the heuristic algorithm, which combines
random and local search algorithms. Metaheuristics are an iterative generation process;
through the intelligent combination of different concepts, the process realizes the explo-
ration and development of a search space by the heuristic algorithm. Learning strategies
acquire and master information to discover near-optimal solutions in this process. Typical
metaheuristic algorithms include GSA, simulated annealing algorithm (SA), genetic algo-
rithm (GA), and PSO. GSA is taken as an example to illustrate the idea of a metaheuristic
algorithm in this section.

GSA is an intelligent search algorithm that simulates the law of universal gravitation.
Each particle in GSA can be regarded as an individual with its own position and moving
speed. It can retain the optimal position that the particles have found so far and the global
optimal position that all particles can find currently. In the standard GSA, the attraction Fd

ij
between particles i and j can be expressed as:

Fd
ij = G(t)

Mpi(t)×Mai(t)
Rij(t) + ε

(pd
j (t)− pd

i (t)) (3)

where pd
i (t) is the position of the i-th individual in d-dimensional space at time t; Mpi(t)

is the mass of individual i at time t; Maj(t) is the mass of individual at time t; ε is a small
constant; and Rij(t) is the Euclidean distance between particles i and j, which can be
expressed as:

Rij(t) =
∥∥pi(t), pj(t)

∥∥ (4)

G(t) represents the constant coefficient of universal gravitation at time t, which can be
defined as:

G(t) = G0e−α t
T (5)

where G0 represents the initial value of the constant coefficient; α denotes the descent
coefficient; and T is the total number of iterations. Therefore, the resultant force Fd

i of the
i-th individual in the d-dimensional space can be expressed by:

Fd
i =

N

∑
j=1,j 6=1

rand× Fd
ij (6)

where N is the number of particle populations and rand is a random number between 0
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and 1. The acceleration accd
i (t) of a particle i at time t instant can be expressed as:

accd
i (t) =

Fd
i (t)

Mii(t)
(7)

where Mii(t) is the inertial mass of the particle i at time t. The speed at which particles i
move in d-dimensional space and the update of their position can be expressed as:

Vd
i (t + 1) = rand×Vd

i (t) + accd
i (t) (8)

pd
i (t + 1) = pd

i (t) + Vd
i (t + 1) (9)

where Vd
i (t) and pd

i (t) represent the moving speed and position of the t-th particle, respec-
tively. The inertial mass of i-th particle mi(t) at the t-th time step can be expressed as:

mi(t) =
worst(t)− f iti(t)
worst(t)− best(t)

(10)

where f iti(t) denotes the best solution of the individual at the t-th time step. worst(t) and
best(t) denote the worst and best fitness of the individual in the population at the t-th
time step, respectively. Assuming that the gravitational mass Mai and inertial mass of the
individual Mpi are equal to the mass of the individual Mi, it follows that:

Mai = Mpi = Mi, i = 1, 2, · · ·, N (11)

Mi(t) =
mi(t)

N
∑

i=1
mi(t)

(12)

It is known that when the particle’s fitness is greater, the mass of the particle will
be more prominent, and its moving speed will be slower, which will continue to attract
particles with poor fitness to move to the position with better fitness.

3.2. Improvement Strategy

As previously mentioned, the metaheuristic algorithm easily falls into local opti-
mal values because of the limitation of the algorithm itself when the search reaches the
later stage, thus reducing the search accuracy and efficiency. This study proposes an im-
provement strategy that is generally applicable to different metaheuristic algorithms. The
proposed improvement strategy introduces random crossover and mutation into a standard
metaheuristic algorithm, improving the algorithm’s searching ability at the later stage. The
idea of using GA to improve the performance of the algorithm has already been adopted in
multi-objective optimization; for examples of this, see Deb et al. [37] and Li and Zhang [38].
However, local convergence is a complex issue for metaheuristic algorithms. It is affected
by many factors such as the algorithm’s parameters, the definition of the optimization
problem, termination criterion, etc. Although the improvement strategy can improve the
performance of the standard algorithm to a certain extent, the improvement strategy is
not free from local convergence problems. The detailed procedure for the improvement is
described as follows.

The proposed method firstly generates an initial population with the population
number of N, calculating the fitness value f it(t) of all particles and sorting the particles.
Then, the algorithm divides the particles into optimal and inferior solution groups according
to fitness values; the first 50% of the particles with better fitness values are regarded as the
optimal solution group, and the last 50% of the particles with worse fitness are regarded
as the inferior solution group. Since the individual particles of the optimal solution group
are excellent, the random crossover operation is applied for the optimal solution group,
which can retain the population information of the optimal solution group and ensure the



Buildings 2022, 12, 958 6 of 22

algorithm’s search accuracy. However, inferior solutions require more remarkable changes
to generate new offspring. The mutation operation is applied for the inferior solution group,
which can enrich population diversity, help the metaheuristic algorithm to jump out of the
local optimal solution, and improve the search ability in the later stage of the algorithm.

For example, all particles of PSO move in the direction of the particle with the best fit-
ness value during optimization, resulting in a gradual decrease in the diversity of particles,
with the particles often not being able to escape from the local optimal solution. In the case
of the PSO algorithm falling into the local optimal solution, the mutation operation of the
improvement strategy can enrich population diversity so that the algorithm can jump out
of the local optimal solution and find the global optimal solution.

This study introduces a random judge condition to judge whether the algorithm
entered into the later searching stage or not. If a random number rand(0, 1) in each
generation satisfies the following condition, the random crossover and mutation are applied
to the two particles group. The condition is:

rand(0, 1) > 0.1 + 0.9e−10·t/Gmax (13)

where Gmax is the maximum generation; t is the current generation; and e is the natural
index. It can be concluded from Equation (13) that with a generation’s increase, the
probability of implementing random crossover and mutation operation also increases.

It is worth mentioning that the two particles for the random crossover operation in
the improved algorithm are randomly selected, which can be expressed by:
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which are global variables; f (t) = rand × (1− t/Gmax)

2, rand represents the random
number between 0 and 1; and t represents the current number of iterations.

A new population
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is merged with the initial population to form an expanded population. The expanded
population is rearranged according to the fitness, and finally, the optimal half-population is
selected as a new iterative population for updating iteration.

3.3. Algorithm Procedure

The procedure of the improved algorithm is described as follows. Figure 1 shows the
flow chart of the improved algorithm.
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Figure 1. Flow chart of the improved algorithm.

Step 1: Initialize the parameters of the algorithm;
Step 2: Randomly generate an initial population;
Step 3: Calculate the fitness of the initial population and initializing an individual

optimal value and a global optimal value;
Step 4: Judge whether random crossover and mutation should be implemented or not.

If rand(0, 1) > 0.1 + 0.9e−10·t/Gmax , enter step 5, otherwise, enter step 7;
Step 5: Dividing the particles into two groups: optimal and inferior, according to the

fitness values. The random crossover and mutation are respectively implemented in the
optimal and inferior groups to generate new offspring;

Step 6: Elite selection. Merging the offspring generated by random crossover and
mutation into one group further establishes an expanded population with the initial popu-
lation under the current generation. Sorting the expanded population according to fitness
and selecting the half of the population which has better fitness as the elite population to
participate in the next iteration;

Step 7: Updating the velocity and position of the particles using Equations (8) and (9);
Step 8: Updating the individual optimal value and the global optimal value of particles;
Step 9: Judge whether that iteration termination standard is met; if the algorithm

reaches the maximum iteration times, terminate the algorithm; otherwise, jump to step 3;

3.4. Benchmark Functions

To test the effectiveness of the improvement strategy, the performance of three typical
metaheuristic algorithms, including PSO, GSA, SA, artificial fish swarm algorithm (AFSA),
artificial ant colony (ABC) algorithm, and their respective improved versions, IPSO, IGSA,
ISA, IAFSA, and IABC, are compared based on benchmark functions. Furthermore, to test
the generality and effectiveness of the improved strategy, the PSOGA and the IPSO are
compared based on benchmark functions. PSOGA [39] is a hybrid algorithm proposed by
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Kao and Zahara in 2008. At present, the PSOGA algorithm has been widely applied in
the comparison of improvement strategies and optimization problems in the engineering
field. The population size of all algorithms is set to 50, and the maximum number of
iterations is 100 to ensure the comparability of each algorithm. For PSO, the learning factors
c1 and c2 are 1.5 and 0.5, respectively, and the inertia constant is 0.726. These parameters
are the default parameters of standard PSO and have been proved suitable for various
optimization problems. For GSA, the universal gravitation coefficient is 10 and the descent
coefficient is 20. For SA, the attenuation parameter is 0.95, the initial temperature is 50, and
the final temperature is 0. For AFSA, the field of view is 0.025, the step size is 0.3, and the
crowding factor is 0.1. For ABC, the number of observed bees and the number of employed
bees take the same value of 50.

The two benchmark functions are the Ackley’s path function and the sum of different
power function, represented by f 1 and f 2, respectively. The f 1 is a multimodal function
that has several extreme points but only one global optimal point. The f 2 is a unimodal
function. The objective functions f 1 and f 2 can be defined as:

f1 = −5 · e−0.2

√
n
∑

i=1
x2

i
n − e

n
∑

i=1
cos(2π·xi)

n + 5 + e1, i = 1, 2, · · ·, 10 (16)

f2 =
d

∑
i=1
|xi|i+1, i = 1, 2, · · ·, 10 (17)

where xi denotes the i-th design variable; and e is the natural index.
The dimensions of both functions are set as 2, and the corresponding function graphs

are plotted in Figure 2a,b, respectively. The two functions are utilized to test the convergence
accuracy of the algorithm and the ability to jump out of local optimal solution. The
global optimal values of the two test functions are xi = 0, (i = 1 : n), f (x) = 0. To
eliminate the influence of randomness in the algorithm, each algorithm is independently
run 100 times with MATLAB R2018a. The CPU is i5-9400F@2.90 GHz, and the memory size
is 16 GB. The statistical results, including the mean value and standard deviation of the
100 independent runs, are employed to evaluate the searching accuracy and stability of
each algorithm, respectively.

Figure 2. Image of the benchmark functions: (a) Ackley’s path function; and (b) the sum of different
power function.

Table 1 shows the mean and standard deviation of the two functions obtained from
the 100 independent runs of the 5 algorithms. It can be seen that the mean and standard
deviation values of both test functions obtained from the improved algorithms are smaller
than those obtained from standard algorithms. For example, the mean and standard devia-
tion values of f 1 obtained from standard GSA are 6.71 × 10−1 and 1.83 × 10−2, respectively,
while corresponding values obtained from IGSA are 5.50 × 10−2 and 7.43 × 10−3. This
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comparison indicates that the searching accuracy of IGSA is far better than GSA. Simi-
lar conclusions can be made for the other four algorithms. It can be seen from Table 1
that the mean and standard deviation of f 1 obtained from PSOGA are 4.41 × 10−1 and
2.57 × 10−1, respectively, while corresponding values obtained from IPSO are 3.10 × 10−1

and 1.38 × 10−2. From the comparison of the above results, it can be found that in the case
of multiple local optimal solutions, IPSO has a greater probability of jumping out of the
local optimal solution. In order to better demonstrate the generality of the improvement
strategy, the following numerical and engineering cases mainly compare GSA, PSO, and
SA and the corresponding improved algorithms.

Table 1. The mean and standard deviation values obtained from different algorithms for bench-
mark functions.

Algorithm
f 1 f 2

Mean Standard
Deviation Mean Standard

Deviation

IGSA 5.50 × 10−2 7.43 × 10−3 2.72 × 10−6 9.43 × 10−6

GSA 6.71 × 10−1 1.83 × 10−2 6.77 × 10−6 2.53 × 10−5

IPSO 3.10 × 10−1 1.38 × 10−2 1.89 × 10−5 2.92 × 10−5

PSOGA 4.41 × 10−1 2.57 × 10−1 5.43 × 10−6 2.49 × 10−5

PSO 1.25 2.51 × 10−2 6.32 × 10−4 6.31 × 10−5

ISA 6.52 × 10−1 4.91 × 10−3 3.46 × 10−6 3.39 × 10−5

SA 8.22 × 10−1 6.58 × 10−3 6.51 × 10−5 2.27 × 10−4

IAFSA 5.74 × 10−1 9.01 × 10−3 3.15 × 10−5 3.52 × 10−5

AFSA 6.31 × 10−1 5.92 × 10−3 9.02 × 10−5 7.58 × 10−5

IABC 5.67 × 10−2 4.62 × 10−3 3.00 × 10−6 9.45 × 10−6

ABC 1.79 9.72 × 10−3 9.62 × 10−6 1.93 × 10−5

Figure 3 shows the convergence curves of each algorithm for the two functions. The
solid lines represent the convergence curves of the standard algorithms, while the dotted
lines denote the convergence curves of the improved algorithms. It can be seen that
compared with the standard algorithms, all improved algorithms have a higher capability
to jump out of the local minimum and converge to a global minimum. For example, the
standard GSA fell into a local minimum in generation 5, with an average fitness value of
1.2492 when searching the global minimum of f 1, whereas the IGSA reached a far smaller
value of 0.3099. A similar situation can be found in the other two algorithms.

Figure 3. The convergence curves of each algorithm for the two functions: (a) f 1; and (b) f 2.

4. Numerical Simulation

This section numerically updates the FE model of a simply supported space truss
structure to test the effectiveness of the improvement strategy in FE model updating.
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Compared with the actual engineering structure, the damage location in the numerical
example is known, and there is no updating parameter selection problem. Therefore, it can
more accurately reflect the effectiveness of the improved heuristic algorithm. The truss
structure is shown in Figure 4. The structural parameters are as follows: the span of the
truss is 4 m, the height is 1 m, the elastic modulus of the material is set as 100 GPa, the
density is 7850 kg/m3, and the section area of the beam element is 1.717 × 10−3 m2. The
FE model was established by ANSYS, and the beam element was used to simulate the
truss members.

Figure 4. The simply supported truss structure. (Unit: cm).

The truss’s diagonal members are divided into three groups according to the color,
as illustrated in Figure 4. The elastic modulus of each group and the first six frequencies
are taken as the design parameters and responses, respectively. The damage scenario is as
follows: the elastic modulus of the first and second group of members is reduced by 30%,
and the elastic modulus of the third group of members is increased by 30%. Figure 5 shows
the first 6 mode shape of the truss.

Figure 5. The first six mode shapes of the truss: (a) first order mode; (b) the second mode; (c) the
third mode; (d) the fourth mode; (e) the fifth mode; and (f) the sixth mode.

To conveniently establish the kriging model, the relative value of the changed elastic
modulus and the initial elastic modulus is taken as the design variable, and the sixth order
frequency is taken as the response. The latin hypercube sampling method was used to



Buildings 2022, 12, 958 11 of 22

design the experiment for the data samples of updating parameters. The three design
parameters were sampled 36 times, and the sampling range of the parameters was set
within ±30% of their initial values. Then the updating parameters were brought into the
initial FE model to obtain the frequency. Finally, the kriging model was established by
using the sample points as the input and the modal frequency response as the output.

Figure 6 plots the kriging response surface model and the corresponding mean square
error (MSE) for the first-order frequency versus the updating parameters E1 and E2. The
surface represents the kriging model response surface, the scattered points represent the
sample points, and the sample points are located on the curved surface. It can be seen from
the MSE surface that the maximum error is less than 4 × 10−7, indicating that the kriging
model has high accuracy and can replace the FE model in predicting the structural response.

Figure 6. The first-order frequency kriging model and the corresponding MSE: (a) kriging model;
and (b) MSE.

The first six frequency residuals of the truss are used to construct the objective func-
tion, and the three standard optimization algorithms and the corresponding improved
algorithms are used to find the global minimum of the objective function. The objective
function is expressed by:

min f it(x) = min
6

∑
i=1

ωi

(
fai − fei

fei

)2

, (18)

where fit(x) represents the objective function; x represents the updating parameter; ωi
represent the weight factor, which is set to 1 [6]; fai is the i-th order frequency value
calculated by the kriging response surface model; and fei is the i-th order frequency value
calculated by the FE model.

Regarding the algorithm parameters, in order to ensure the comparability between
different algorithms, the population size of each algorithm is 50, and the maximum number
of iterations is 100. For PSO, the learning factors c1 and c2 are 1.5 and 0.5, respectively, and
the inertia constant is 0.726. For GSA, the universal gravitation coefficient G0 is 10, and the
descent coefficient α is 20. The attenuation parameter of the SA algorithm is 0.95, the initial
temperature is set at 50, and the final temperature is set to 0.

Table 2 shows the change in updating parameters in different algorithms. The relative
error means the discrepancy of the updating parameters between the updated model and
the predetermined damage value. The smaller the relative error, the higher the updated
model’s accuracy. It can be seen from Table 2 that relative errors obtained with improved
algorithms are all smaller than that obtained with standard algorithms. For example, the
relative errors of E1 obtained from IGSA and GSA are 0.74% and 5.49%. These data indicate
that the improved algorithms are better than standard algorithms in model updating.
Nevertheless, the updating results of each algorithm still need further discussion.
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Table 2. The change of updating parameters in model updating.

Parameters E1 (100 GPa) E2 (100 GPa) E3 (100 GPa) Relative Error (%)

Damaged Model 0.7 0.7 1.3 -

Initial model 1 1 1 42.86 42.86 −23.08

Updated model

IGSA 0.705 0.714 1.282 0.71 2.00 −1.38
GSA 0.738 0.682 1.280 5.43 −2.57 −1.54
IPSO 0.727 0.740 1.320 3.86 5.71 1.54
PSO 0.740 0.771 1.315 5.71 10.14 1.15
ISA 0.700 0.695 1.311 0.00 −0.71 0.85
SA 0.703 0.673 1.342 0.43 −3.86 3.23

Table 3 compares the first six frequencies of the truss structure obtained from the
initial FE model and the updated FE model. The frequencies of the damage model are
also listed for comparison. It can be seen that the maximum relative errors of the six
frequencies obtained from the initial FE model and updated FE model are 6.29% and
1.44%, respectively, indicating that the accuracy of the updated FE model has been greatly
improved. All relative errors of the updated FE model, obtained with improved algorithms,
are smaller than 1%. The improved algorithms obtained a more accurate updated FE model
than the standard algorithms. Table 4 summarizes the statistical results of the updating
results obtained from 100 independent runs of each algorithm. It can be seen that all
improved algorithms have a smaller mean and standard deviation value compared with
the standard algorithms. This result indicates that the improved algorithm has higher
searching accuracy and stability than standard algorithms.

Table 3. The comparison of the first six frequencies obtained from the initial FE model and updated
FE model.

Frequency f 1
(Hz)

f 2
(Hz)

f 3
(Hz)

f 4
(Hz)

f 5
(Hz)

f 6
(Hz) Relative Error (%)

Damage Model 7.50 15.72 19.57 23.67 31.42 33.68 -

Initial model 7.63 16.65 20.18 25.16 32.54 34.32 1.73 5.92 3.12 6.29 3.56 1.90

Updated model

IGSA 7.50 15.71 19.61 23.71 31.45 33.67 0.00 −0.06 0.20 0.17 0.10 −0.03
GSA 7.50 15.72 19.61 23.71 31.46 33.68 0.00 0.00 0.20 0.17 0.13 0.00
IPSO 7.54 15.87 19.69 23.88 31.59 33.91 0.53 0.95 0.61 0.89 0.54 0.68
PSO 7.55 15.96 19.76 24.01 31.70 34.00 0.67 1.53 0.97 1.44 0.89 0.95
ISA 7.50 15.7 19.57 23.65 31.41 33.70 0.00 −0.13 0.00 −0.08 −0.03 0.06
SA 7.50 15.71 19.54 23.61 31.37 33.74 0.00 −0.06 −0.15 −0.25 −0.16 0.18

Table 4. The mean and standard deviation of the objective function.

Algorithm IGSA GSA IPSO PSO ISA SA

Mean 2.56 × 10−4 5.20 × 10−4 1.91 × 10−4 8.16 × 10−4 9.64 × 10−1 9.72 × 10−1

Standard deviation 7.61 × 10−3 1.65 × 10−2 1.74 × 10−3 2.00 × 10−2 1.04 × 10−1 1.36 × 10−1

5. Case Study: FE Model Updating of a Cable-Stayed Bridge
5.1. Bridge Description

The Yongjiang Railway Bridge is located in Ningbo, China. The main bridge of the
Yongjiang Bridge is a double-pylon double cable plane cable-stayed bridge with a hybrid
girder composed of a steel box girder and a concrete box girder. The span layout of the
main bridge is 53 + 50 + 50 + 66 + 468 + 66 + 50 + 50 + 53 m, in which the 400.9 m girder
section of the middle span is a steel box girder, and the stiffness transition section is 5.0 m
long. The length of the steel-concrete joint section is 7.35 m, and the rest of the beam
sections are pre-stressed concrete box girders. The steel box girder is enclosed by a top
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plate, bottom plate, inclined bottom plate, middle longitudinal web, side longitudinal web,
and side plate. The concrete box girder adopts a single box, three rooms, and an equal
height section. The height of the two pylons is 141.5 m. The width of the bridge deck is
21 m, on top of which are laid two railway lines in opposite directions. Figure 7 shows the
layout of the bridge.

Figure 7. The Yongjiang Bridge: (a) overview; (b) the elevation layout; (c) the section layout of the
steel box girder; and (d) the section layout of the concrete box girder. (Unit: cm).
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The bridge’s initial FE model (Figure 8) was established based on Midas Civil 2012.
The beam element simulates the concrete/steel/reinforced concrete structural members
such as the beam body, bridge tower, pier, and pile cap. The stay-cables were modeled
using a truss element. Vertical supports were provided at P1 #~P4 # and P7 #~P10 # piers for
side span longitudinal beams on both banks. An elastic connection was adopted between
the main beam and the cross-tie beam between the bridge towers. The bridge structure
is a semi-floating system. The pier and foundation were consolidated. In total, 999 beam
elements and 200 truss elements were used in the initial FE model.

Figure 8. The initial FE model of the Yongjiang Bridge.

5.2. In Situ Tests and Experimental Results

The in situ tests of the Yongjiang Bridge included two parts: static load tests and
dynamic load tests. Figure 9 shows the loading train and the data acquisition system
employed in the in situ testing. In the static load tests, the displacements of the main
girder were recorded under six load cases, namely test cases A~F. The position of loading
trains in each load case was determined using the influence line method based on the most
unfavorable loading principle. Figure 7b shows the location of the loading train of each
load case and the displacement measuring points’ locations. For the number of loading
trains for each load case, cases A and D include one locomotive, and twelve freights. Load
cases B and C include one locomotive and four freights, and load cases E and F include
one locomotive and 20 freights. Figure 10 shows the axial load distribution of the loading
trains used in the static load tests. The loading trains were disassembled according to each
load case to meet the most unfavorable loading condition. The load efficiency coefficients
of each load case were between 0.75 and 0.88.

Figure 9. Photos of in situ test: (a) the loading train and (b) the instrumentation and data acquisi-
tion system.
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Figure 10. The Wheelbase Distribution of the Locomotive/Freight Car. (Unit: m).

In the dynamic tests, the accelerations of the bridge deck were recorded under am-
bient excitation. In total, the accelerations at 65 measuring points were recorded. The
sampling frequency and sampling time for each setup were 200 Hz and 15 min, respectively.
The bridge’s natural frequencies and mode shapes were identified utilizing stochastic
subspace identification.

Table 5 summarizes the experimental measured displacement values and the corre-
sponding predicted values by the initial FE model. Each test section has two displacement
measuring points; therefore, the experimental measured values include the upstream and
downstream value. The mean value of the upstream and downstream displacement value
were included in the model updating. The displacement’s maximum relative error reaches
up to 30.94%, indicating the initial FE model should be updated.

Table 5. Calculated value and test value of displacement of each measuring point under each
load case.

Test Cases Test Section
Experimental Value (mm)

Initial FE Model (mm) Relative Error (%)
Upstream Downstream Mean

A
1 414.00 412.60 413.30 486.21 17.64
2 394.60 386.60 390.60 410.60 5.12

B
1 211.00 213.00 212.00 237.14 11.86
2 240.00 236.30 238.15 258.12 8.39

C
3 102.00 110.00 106.00 125.73 18.61
4 139.00 139.60 139.30 161.31 15.80

D
2 263.00 264.30 263.65 304.01 15.31
3 353.00 350.40 351.70 442.41 25.79

E
2 313.00 311.80 312.40 370.15 18.49
3 386.00 386.80 386.40 489.42 26.66

F
1 435.00 434.50 434.75 569.27 30.94
2 555.00 542.40 548.70 624.84 13.88

Figure 11 shows the comparison of the first two order mode shapes between their
experimental measured values and calculated values from the initial FE model. It can be
seen that the calculated vibration modes are in good agreement with the measured ones.
Table 6 summarizes the first two modes calculated and the experimental frequency values.
The experimental values are slightly higher than the calculated ones, which implies that
the stiffness of the initial model is smaller than the actual structure. It can be seen that the
modal assurance criterion (MAC) [40] values of the measured and calculated vibration
modes are 0.936 and 0.947, respectively, which are larger than 0.9. This result indicates that
the experimentally identified, first two frequencies can be further used to update the initial
FE model.
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Figure 11. Measured vibration mode and calculated vibration mode MAC: (a) first order mode and
(b) the second mode.

Table 6. Calculated value and test value of frequency.

Vibration Mode Experimental Value (Hz) Initial FE Model (Hz) MAC Relative Error (%)

1 0.390 0.347 0.936 −11.03
2 0.490 0.456 0.947 −6.94

5.3. Selection of Updating Parameters

The selection of the updating parameters was carried out by considering the following
facts. On the one hand, the prefabricated steel segments in the primary structure give
comparatively small errors in the cross-section profile. On the other hand, the initial
FE model for the bridge was mainly simplified in local stiffening ribs, which affects the
stiffness and mass distribution of the whole structure. Therefore, the material properties,
including elastic modulus and density, were selected as the updating parameters for
sensitivity analysis. The selected design parameters for sensitivity analysis include the
elastic modulus and mass density of the concrete box girder (E1, D1), steel box girder
(E2, D2), bridge pylon (E3, D3), pier (E4, D4), stay cable (E5, D5), and secondary tension
of three stay cables (F1, F2, F3). Figure 12 shows the results of the sensitivity analysis. In
Figure 12, the MAC1 and MAC2 are the MAC values of the first and second mode shapes,
respectively. The f 1 to f 2 are the first two natural frequencies, respectively.

Figure 12. Updating parameter sensitivity.

For sensitivity analysis, this study selected the elastic modulus of steel box girder
E2, the density of steel box girder D2, the elastic modulus of bridge pylon E3, the density
of bridge pylon D3, elastic modulus of stay cable E5, and the density of stay cable D5 as
the updating parameters, and their initial values were 2.1 × 108 kN/m2, 78.5 kN/m3,
3.55 × 107 kN/m2, 25 kN/m3, 2.1 × 108 kN/m2, 84.5 kN/m3, respectively.

5.4. Kriging Model Construction

The selected six parameters were sampled 81 times in their design space by using latin
hypercube sampling to establish the kriging model. The sampling range of the parameters
was set at 0.7~1.3 times their initial value to ensure the physical meaning of each updating
parameter [41]. Then 81 groups of samples were input into the initial FE model to calculate
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the displacement response and frequency response under the corresponding load. The
kriging model was constructed with sampling points as input, node displacement, and
modal frequency response as output.

Figure 13a shows the relationship between the first frequency and E2 and E3. The
surface in Figure 13a represents the kriging predicted value, and the dots are analytical
values obtained from the initial FE model. Since the frequency kriging model includes six
updating parameters, the other four updating parameters (D2, D3, E5, and D5) are set as
initial values when calculating the analytical values. Figure 13b shows the kriging model’s
mean square error (MSE). The maximum error is smaller than 6 × 10−9, indicating that
the kriging predicted value has very high accuracy and can replace the FE model when
calculating the response values.

Figure 13. Kriging model: (a) first order frequency response surface and (b) MSE error of the
first-order frequency.

5.5. Objective Function

In the model updating of Yongjiang Bridge, the relative error between the response
value obtained from the kriging response surface and the measured value is used as the
objective function, and the objective function is expressed by:

min f it(x) = min(
12

∑
i=1

ωi

(
dai − dei

dei

)2

+
2

∑
j=1

ωj

(
faj − fej

fej

)2

). (19)

where fit(x) represents the objective function values; x represents the updating parameter;
ωi and ωj represent the weight factors; dai and faj are the i-th displacement value and the
j-th order frequency value calculated by the kriging response surface model, respectively;
and dei and fej are the i-th displacement value and the j-th order frequency value measured
by Yongjiang Bridge, respectively.

5.6. Discussion on the Updating Results

The standard algorithms and their improved versions were employed to find the
optimal solution for the objective function. The algorithms’ parameters were the same
as that used in the numerical simulation of the truss structure. The weighting factors of
frequencies and displacements were all set as 1.

Table 7 shows the comparison of the updating parameters between their initial values
and updated values obtained from each algorithm. The updated values obtained from
each standard algorithm and its improved version generally show the same change trend;
however, there also exist exceptions. For example, all six parameters have the same
change trend in PSO and IPSO, while the change trends of E1 obtained from SA and ISA
are totally different. Except for D2, an overall increase in the rest of the parameters is
apparent. A similar updating rate of elastic modulus for a cable-stayed bridge can be
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found in reference [42]. This increase indicates that the stiffness and mass distribution
of the initial FE model is underestimated. The reason for this could be attributed to the
simplifications of the local stiffening ribs, diaphragms, and other local members in the
initial FE model. The parameters’ updated values obtained from different algorithms are
different, indicating that each algorithm and its improved version converged to a different
solution in the design space. It should be mentioned that the changes in the updating
parameters only represent the change in the overall stiffness and mass between the FE
model and the physical structure. Therefore, the updating parameters can be viewed as
equivalent elastic modulus and equivalent density. Nevertheless, the rationality of the
updated FE model still needs to be evaluated by analyzing the prediction accuracy.

Table 7. Comparison of the design parameters between initial values and updated values.

Parameters Initial Value
Updated Value Updating Rate (%)

IGSA GSA IPSO PSO ISA SA IGSA GSA IPSO PSO ISA SA

E2 3.55 4.23 4.35 4.17 3.83 3.20 4.60 19.15 22.54 17.46 7.89 −9.86 29.58
D2 2.50 2.78 2.65 2.72 2.59 2.72 2.60 11.20 6.00 8.80 3.60 8.80 4.00
E3 2.10 2.42 2.42 2.39 2.29 2.29 2.31 15.24 15.24 13.81 9.05 9.05 10.00
D3 7.85 7.25 8.14 7.66 7.07 7.07 7.19 −7.64 3.69 −2.42 −9.94 −9.94 −8.41
E5 2.00 2.52 2.46 2.47 2.50 2.48 2.55 26.00 23.00 23.50 25.00 24.00 27.50
D5 8.45 9.89 9.43 9.40 8.56 7.92 9.75 17.04 11.60 11.24 1.30 −6.27 15.38

Figure 14 compares the displacement values obtained from the experiment, initial FE
model, and updated FE models. Table 8 summarizes the displacement relative errors of the
initial FE model and updated FE models. Compared with the initial FE model, it is obvious
that the updated model obtained from each algorithm provides higher prediction accuracy.
The displacement relative errors have a significant decrease after model updating except for
the displacement at Test section 2 for load case A. Nevertheless, the displacement relative
errors of the updated model are generally controlled at around 10%, which is an acceptable
accuracy level from an engineering judgment perspective. Compared with the standard
algorithm, the improved algorithms achieved a slightly higher accuracy. For example, the
displacement relative errors of Test section 3 in load case D obtained from IGSA and GSA
are 6.81% and 7.10%, respectively, indicating that the prediction accuracy of the updated
model obtained from IGSA is higher than GSA. A similar situation can be found in the
other two algorithms. These results indicate that the improved algorithm performs better
than standard algorithms.

Table 8. Comparison of the displacement relative errors between the initial FE model and updated
FE models.

Load Case A B C D E F

Test Section 1 2 1 2 3 4 2 3 2 3 1 2

Initial error (%) 17.64 5.12 11.86 8.39 18.61 15.80 15.31 25.79 18.49 26.66 30.94 13.88

Relative
error (%)

IGSA 0.34 −9.51 −4.08 −6.36 −0.02 −2.76 −1.01 6.81 1.35 7.64 11.33 −2.00
GSA 0.01 −9.96 −4.48 −6.84 −0.14 −2.66 −1.49 7.10 1.85 7.94 11.75 −2.48
IPSO 0.29 −9.73 −4.07 −6.36 −0.36 −2.04 −1.41 7.16 1.62 7.94 11.35 −2.29
PSO 0.36 −9.77 −4.19 −6.67 0.27 −2.17 −1.25 7.22 1.62 8.04 11.66 −2.28
ISA 0.40 −9.32 −3.45 −5.46 0.50 −1.28 −1.35 7.42 1.62 7.99 11.38 −1.85
SA 0.58 −9.99 −4.27 −7.05 −1.00 −2.81 −1.37 7.28 1.69 8.23 11.64 −2.56

Table 9 shows comparisons between the frequencies obtained from the experiment
and the initial FE model and updated FE models. It can be seen that the updated models
obtained from each algorithm provide higher frequency prediction accuracy. After model
updating, the frequency relative error is reduced to a level of 5%. Compared with the
standard algorithms, the improved algorithms provide even smaller relative errors. For
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example, the relative error of f 1 obtained from GSA is −6.15%, while that obtained from
IGSA is −4.10%. These results indicate that the improved algorithms perform better than
standard algorithms in predicting frequency.

Figure 14. The comparison of the displacement values obtained from experiment (EXP), initial FE
model and updated FE models: (a) load case A and B; (b) load case C and D; and (c) load case E
and F.

Table 9. Comparisons of the frequencies obtained from experiment and the initial FE model and
updated FE models.

Frequency f 1 (Hz) f 2 (Hz)
Relative Error (%)

Experimental Value 0.390 0.490

Initial FE model 0.347 0.456 −11.03 −6.94

Updating models

IGSA 0.374 0.479 −4.10 −2.24
GSA 0.366 0.474 −6.15 −3.27
IPSO 0.371 0.485 −4.87 −1.02
PSO 0.369 0.476 −5.38 −2.86
ISA 0.370 0.486 −5.13 −0.82
SA 0.370 0.479 −5.13 −2.24

Figure 15 shows the statistical results of the updating results obtained from 100 inde-
pendent runs of each algorithm. In Figure 15, the mean values of the objective function
obtained from IGSA and GSA are 5.14 × 10−2 and 1.14 × 10−1, respectively. The corre-
sponding standard deviations are 3.65 × 10−2 and 1.29 × 10−1, respectively. The mean
value and standard deviation of IGSA are smaller than those of GSA. The same situation is
observed for the other two algorithms. These results indicate that the improved algorithms
have higher accuracy and stability.
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Figure 15. The mean and standard deviation of the objective function. (a) Mean; (b) Standard deviation.

6. Conclusions

This study proposes an improvement strategy for metaheuristic algorithms, improving
the algorithm’s performance in model updating. The improvement strategy introduces
random crossover and mutation operations into the workings of standard metaheuristic
algorithms to improve the searching accuracy at later stages. Three widely used meta-
heuristic algorithms, namely PSO, GSA, and SA, were employed to test the effectiveness
of the improvement strategy. Based on the numerical investigations on the benchmark
functions and a spatial truss structure, and the experimental study of the model updating
of a cable-stayed railway bridge, the following conclusions can be drawn:

(1) The proposed improvement strategy can effectively improve the accuracy and the
global convergence of standard metaheuristic algorithms. The random crossover and
mutation operations are mainly introduced during later-stage searching and aim to
improve the algorithm’s accuracy;

(2) The numerical investigation of the two benchmark functions showed that the im-
proved algorithms had better global convergence and stability than the standard
algorithms. The updated truss model with the improved algorithms showed higher
prediction accuracy than the standard algorithm;

(3) The discrepancies between the calculated and experimental values of displacement
and frequency of the cable-stayed bridge were much smaller after model updating.
The updated models with the improved algorithm had smaller relative errors than
those obtained with the standard algorithms. In the IGSA algorithm, for example, the
relative error in displacement was significantly reduced, with the maximum relative
error reduced from 30.94% to 11.33% and the relative error in first-order frequency
reduced from 11.03% to 4.21%, indicating that the updated model can better represent
the actual structure.
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