
Citation: Grabska, E.J. Generative

and Evolutionary Techniques for the

Process of Creating Architectural

Objects on the Base of a 3D Prototype

Model. Buildings 2022, 12, 899.

https://doi.org/10.3390/buildings

12070899

Academic Editors: David Arditi and

Derek Clements-Croome

Received: 17 March 2022

Accepted: 22 June 2022

Published: 25 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Generative and Evolutionary Techniques for the Process of
Creating Architectural Objects on the Base of a 3D
Prototype Model
Ewa Janina Grabska

Faculty of Physics, Astronomy, and Applied Computer Science, Institute of Applied Computer Science,
Department of Design and Computer Graphics, The Jagiellonian University, 30-348 Kraków, Poland;
ewa.grabska@uj.edu.pl

Abstract: The use of a genetic algorithm in evolutionary design is one of the major generative ap-
proaches for synthesis and evaluation during the design process. The process stimulates creativity in
generating new, unexpected artifacts and aiding in their evaluation. We analyze the subject of the
evolutionary design of building form styling following the aesthetic preferences of the designer. Com-
ponent types and connection patterns characterize the building form and the rules of its composition.
The designer using a graphics editor creates a 3D prototype model of a building form representative
of his/her stylistic preferences by selecting different types of components and patterns of their
connections. In the proposed evolutionary design, how the designer prototype model is organized,
processed, and manipulated in generating buildings is based on the special graph structures. The
research question addressed in this paper is, “How can a designer-defined 3D prototype model along
with non-numerical graph calculations, influence computational creativity?” The main aim is to
contribute to a better understanding of the non-numerical graph calculations describing the design
process where visual perception is the driving force of creativity. Utilizing the developed formal
description of the design synthesis, methodological contributions to generative and evolutionary
techniques for computational creativity are presented.

Keywords: evolutionary design; computational creativity; visual perception; style; 3D prototype
model; CP-graph; rewriting rules

1. Introduction

The subject of the paper concerns generative and evolutionary techniques from the
perspective of supporting designers in the process of generating forms of buildings to the
designer’s stylistic preferences. By a style of buildings, we will understand a rule relating
to a class of buildings for which its components can be structured by using the same set of
aesthetic criteria [1]. Having to generate individual building styles is one of the biggest
challenges in city generators. Buildings are procedurally difficult to generate due to their
stylistic individuality, which is often the result of numerous architectural and cultural
influences. Moreover, beauty perception is neither stable nor universal. Such an elaborate
form of building styles for methods of Computer Aided Architectural Design (CAAD)
needs an approximated or reduced model to limit the complexity. An attempt to solve this
problem was presented in paper [2] for computer games. The main ideas from the paper
are presented in a modified version here, in which we focus on the relation between the
creativity of the designer and computational creativity in evolutionary design with the
visual interactive environment, i.e., with the interface supported by visual modules such as
graphics editor and visual communication module used during the design process. The
designer creates a design object in a visual language using the graphics editor and receives
system messages in this language, which can influence his/her creativity.

Buildings 2022, 12, 899. https://doi.org/10.3390/buildings12070899 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12070899
https://doi.org/10.3390/buildings12070899
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings12070899
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12070899?type=check_update&version=2

Buildings 2022, 12, 899 2 of 19

Research on the relation is considered here in the framework of computational creativ-
ity based on Computational Design Synthesis (CDS), which aims to support conceptual
design by using formalization and a computer-aided process of finding solutions for design
tasks [3,4]. The research carried out so far on the generation of stylized buildings has
shown, on the one hand, that graphs are an effective tool representative for a variety of data,
including architecture, urban, and planning designs, and on the other hand, that building
style conceptualization is based on the visual and spatial perception. For this reason, the
proposed CDS graphs are used to represent design objects created by the designer through
a graphics editor. The process of the design synthesis is characterized by the variability
of design structures modified by graph rewriting rules, i.e., the technique of creating a
new graph out of an original graph algorithmically [5,6]. Within this framework, a stylized
building is described in terms of the graph rule sequence and not as a static data block.
The sequence of the rules reflects the sequence of the designer’s actions in the visual envi-
ronment. Possibilities expressing these actions as rules in evolutionary design have been
explored by John Frazer using genetic algorithms since 1968 [7]. Evolutionary design is a
generative method that has been used for many years to synthesize and evaluate designed
objects during the design process [8,9]. Evolutionary design will be used to stimulate
creativity in generating new, unexpected forms of building for evaluating the designer’s
aesthetic preferences.

The proposed approach combines CDS with evolutionary design from the point of
view of an interactive visual environment, in which the designer creates a 3D prototype model
to represent his/her stylistic preferences [10,11]. The designer’s preferences are visualized
as a configuration of distinct three-dimensional primitives attached. The analysis of the
configuration enables a generation of buildings for which its components are structured
using a set of the designer’s criteria. Research to date has shown that significant rela-
tionships exist between prototypical and aesthetic evaluation [12]. It also turns out that
the prototypical stimuli related to visual perception are processed faster and easier than
non-prototypical stimuli [13]. Moreover, the basis of all empirical aesthetic measures is the
construction of formal models of human perceptual processes [14]. This was one of the
reasons that the conceptualization of stylistic preferences is here based on the Biederman
visual perception model and assumes that the recognition of an object takes place through
the exploration of three-dimensional structural components of the object, together with
a description of the way they are connected [14]. An example of such an approach is the
interactive system called Virtual City Creator (VCC) for computer games [2].

A central element of the presented design philosophy is the belief that the aesthetic
experience of style depends on an individual’s ability to visual perception in identifying a
structural object [15]. Generally, only a person who has developed complex visual skills
will be able to create a complex form of a 3D prototype model [16]. Figure 1 shows such an
example of the prototype model of building style inspired by two built Eduardo Souto de
Moura projects. It is known that visual communications concepts cannot be taught directly.
Therefore, the methodology presented in this paper encourages the discovery of principles
of visual design and not learning about them directly [17].

The knowledge of structured buildings in the proposed method is represented by
composition graphs (CP-graphs) that define the relations not only between whole building
components but also between fragments of these components at different levels of de-
tail [18]. Design structure representations in the form of CP-graphs are particularly useful
for creative design in engineering [19]. Since 2007, CP-graphs have been used in modeling
the parallel direct solver algorithm utilized by the hp finite element method [20]. Research
to date has shown that CP-graphs make it easier to describe designing both at the design
object level and the design process level.

Buildings 2022, 12, 899 3 of 19Buildings 2022, 12, 899 3 of 19

Figure 1. A prototype model inspired by two built Eduardo Souto de Moura projects.

The knowledge of structured buildings in the proposed method is represented by

composition graphs (CP-graphs) that define the relations not only between whole build-

ing components but also between fragments of these components at different levels of

detail [18]. Design structure representations in the form of CP-graphs are particularly use-

ful for creative design in engineering [19]. Since 2007, CP-graphs have been used in mod-

eling the parallel direct solver algorithm utilized by the hp finite element method [20].

Research to date has shown that CP-graphs make it easier to describe designing both at

the design object level and the design process level.

Today, designers are faced with the need to recreate individual styles of buildings in

areas such as computer games, movies, and commercials. There are generative methods

for styling buildings, but the results are not satisfactory [21]. There is no generation tool

for stylized building design commonly used to search for a new style during the design

process. A shape grammar is the best-known generation tool. There are two types of shape

grammar: analytical and original. Analytical shape grammar focuses on the one-time for-

malization of a particular architectural style. Original shape grammar focuses on the types

of design rules that are generated and used during the design phase. However, no shape

grammar can change the associated design space into a slightly changed version, whereas

an actual architectural designer is capable of generating design alternatives that are be-

yond the design space [22].

The purpose of the work is to highlight the role of computational creativity with the

use of generative and evolutionary techniques in the possibility of modifying design space

during the design process. A better understanding of the design process based on human

visual perception, which is the driving force of creativity, is necessary. Section 2 intro-

duces CP-graph representations of building design structures, which are based on the

Biederman model of human vision. Then, a system of CP-graph rewriting rules that de-

scribe the design process is presented. In Section 3, a constructive evolutionary procedure

for styling buildings based on a visual metaphor reflecting the aesthetic requirements of

the designer is described. In Section 4, computational creativity with an evolutionary de-

sign procedure based on non-numeric calculations, including visual perception, is char-

acterized for aesthetic applications. It shows how computational creativity, along with the

visual environment, can influence the designer’s conceptual actions. The conclusion sum-

marizes the research presented.

2. Innovative Designing and Composition Graphs (CP-Graphs)

By designed structure, we refer to the basic components and their relationships to a

design object. Designing is innovation when dealing with the variability of the design

structure [23]. A data structure based on graphs provides a fundamental principle to

Figure 1. A prototype model inspired by two built Eduardo Souto de Moura projects.

Today, designers are faced with the need to recreate individual styles of buildings in
areas such as computer games, movies, and commercials. There are generative methods
for styling buildings, but the results are not satisfactory [21]. There is no generation tool
for stylized building design commonly used to search for a new style during the design
process. A shape grammar is the best-known generation tool. There are two types of shape
grammar: analytical and original. Analytical shape grammar focuses on the one-time
formalization of a particular architectural style. Original shape grammar focuses on the
types of design rules that are generated and used during the design phase. However, no
shape grammar can change the associated design space into a slightly changed version,
whereas an actual architectural designer is capable of generating design alternatives that
are beyond the design space [22].

The purpose of the work is to highlight the role of computational creativity with
the use of generative and evolutionary techniques in the possibility of modifying design
space during the design process. A better understanding of the design process based on
human visual perception, which is the driving force of creativity, is necessary. Section 2
introduces CP-graph representations of building design structures, which are based on
the Biederman model of human vision. Then, a system of CP-graph rewriting rules that
describe the design process is presented. In Section 3, a constructive evolutionary procedure
for styling buildings based on a visual metaphor reflecting the aesthetic requirements of the
designer is described. In Section 4, computational creativity with an evolutionary design
procedure based on non-numeric calculations, including visual perception, is characterized
for aesthetic applications. It shows how computational creativity, along with the visual
environment, can influence the designer’s conceptual actions. The conclusion summarizes
the research presented.

2. Innovative Designing and Composition Graphs (CP-Graphs)

By designed structure, we refer to the basic components and their relationships to
a design object. Designing is innovation when dealing with the variability of the design
structure [23]. A data structure based on graphs provides a fundamental principle to
represent a design structure, while graph rewriting is an adequate description of design
process actions.

2.1. Visualization and Graph Representation of Building Forms

In this paper, a 3D prototype model will be visualized as a set of three-dimensional
generic primitives, together with a set of spatial connectivity relations among them. It is
based on the qualitative volumetric representation proposed by Irving Biederman, both as

Buildings 2022, 12, 899 4 of 19

a model of human vision and a computer model in which 3D objects are constructed using
three-dimensional structural components of objects called geons. Biederman developed
the catalog of 36 geons that are classified by four qualitative features: edge (straight or
curved), types of symmetry, size variation (constant, expanding), and axis (straight or
curved) [14]. For instance, some geons in Figure 1 are truncated square pyramids; i.e.,
they are geons with the qualitative feature of size variation. These design objects represent
so-called structural skeletons defined by their distinct parts attached. It is worth noting
that in designing, it is always worth ensuring that the connection points between parts
of objects are as clear as possible [24]. Two relations of attaching will be used between
components of buildings: end-to-side and end-to-end.

In the proposed approach, the designer communicates with the design system using
a visual design language on the monitor screen. A majority of visual languages are
characterized by a vocabulary being a finite set of basic primitives and a finite set of rules
specifying possible configurations of these. Visual languages often contain elements of
vocabularies that have a precise meaning. It is impossible to discuss universal visual
language because there are thousands of them in existence. In the first part of the creative
design process, when designers attempt to express stylistic preferences regarding the form
of buildings, they use visual language as an essential cognitive tool. The type and pattern
of the form of buildings as well as their components are considered by the designer as
stylistic criteria. They relate to the physical form and the rules of its composition [25].
The initial phase of designing combines some of the cognitive activities of normal seeing
with the activities of visual imagination. Therefore, we propose a graphics editor based
on Biederman’s volumetric representation as a model of human vision. Designers begin
with defining their vocabularies of the visual language by having a choice of four types of
3D objects with straight or curved edges, an appropriate kind of symmetry, size variations,
and a straight or curved ax. They generate patterns for attaching appropriate elements of
the vocabulary recalling, for example, existing architectural objects that serve as a reference
or can be derived from metaphors. The use of the visual language makes the designer’s
ideas concrete and leads to the creation of his/her 3D prototype model.

To represent the design structures of such building descriptions using data, we need
a specific type of graph that can describe the relations not only between whole building
components but also between fragments of these components at different levels of detail.
In the proposed method, these design structures are represented by CP-graphs that are
especially useful for creative design in architecture [26]. A CP-graph is a labeled and
attributed graph, where the components of the designed solid objects are represented by
object nodes and bond nodes. The entire component is represented by the object node, while
the bond nodes specify its parts. The labels of object nodes correspond to 3D-primitives for
which their icons are also placed in the nodes.

Let us consider the 3D prototype model shown in Figure 2b; it consists of nine com-
ponents, including the transformed 3D primitives in Figure 2a. The model in Figure 2b is
represented by its CP-graph in Figure 3b. For each object node, the graphic code for any
its bond is a small circle placed on the border of the node or of the bond (for hierarchical
bonds). Bonds are numbered and represent the faces of solids or parts of the faces for
hierarchical bonds. The number of bonds, without hierarchical bonds, in an object node
(see: the node with label a in Figure 3b) is equal to the face number of the cube represented
by the object node (see: Figure 3a). The CP-graph in Figure 3b has an object node labeled
b with two hierarchical bonds. In this case, this node has seven bonds. Instead of the
sixth bond, bonds 6.1 and 6.2 are considered, which represent parts of the 6th face of the
solid with label b. Object nodes are equipped with two types of bonds: source bonds and
target bonds; directed edges are drawn from source bonds to target bonds. The edges of
CP-graphs are labeled. Each edge in Figure 3b corresponds to one of the two adjacency
relations, named as either end-to-end or end-to-side. For the sake of simplicity, edges are
drawn as a dashed line for the first label and a solid line for the second. Bonds that are

Buildings 2022, 12, 899 5 of 19

neither source nor target are called free, and they signal potential connections of their object
nodes with other object nodes.

Buildings 2022, 12, 899 5 of 19

bond, bonds 6.1 and 6.2 are considered, which represent parts of the 6th face of the solid

with label b. Object nodes are equipped with two types of bonds: source bonds and target

bonds; directed edges are drawn from source bonds to target bonds. The edges of CP-

graphs are labeled. Each edge in Figure 3b corresponds to one of the two adjacency rela-

tions, named as either end-to-end or end-to-side. For the sake of simplicity, edges are

drawn as a dashed line for the first label and a solid line for the second. Bonds that are

neither source nor target are called free, and they signal potential connections of their

object nodes with other object nodes.

Figure 2. (a) Three basic primitives. (b) The 3D prototypical model.

Figure 3. (a) The face numbering of a cube corresponds to the bond numbering in the object node

representing the cube. (b) The CP-graph of the 3D prototype model in Figure 2a.

We formally start with the following definition of an attributed, labeled CP-graph

with hierarchical bonds.

Let Σ be an alphabet for labels of object nodes and edges. Let A be a set of node and

bond attributes and P(A) be a set of all subsets of A. Let P(B) be a set of all subsets of bonds

from B.

Definition 1. By an attributed, labeled composition graph (CP-graph) over Σ and A, we mean a

tuple C = (V, E, B, ch, bd, s, t, lb, attV, attB), where we have the following:

• V, E, and B are pairwise disjoint sets, for which their elements are called object nodes, bond

nodes, and edges, respectively;

• ch: B → P(B) is a function that nests bond descendants such that none of a bond can be nested

in two different bonds, and a bond cannot be its own descendant;

• bd: V → B* is a function that specifies a sequence of different bonds for each object node, such

that ∀b ∈ B ∃! v ∈ V: b ∈ bd(v); i.e., each bond is assigned to exactly one object node;

Figure 2. (a) Three basic primitives. (b) The 3D prototypical model.

Buildings 2022, 12, 899 5 of 19

bond, bonds 6.1 and 6.2 are considered, which represent parts of the 6th face of the solid

with label b. Object nodes are equipped with two types of bonds: source bonds and target

bonds; directed edges are drawn from source bonds to target bonds. The edges of CP-

graphs are labeled. Each edge in Figure 3b corresponds to one of the two adjacency rela-

tions, named as either end-to-end or end-to-side. For the sake of simplicity, edges are

drawn as a dashed line for the first label and a solid line for the second. Bonds that are

neither source nor target are called free, and they signal potential connections of their

object nodes with other object nodes.

Figure 2. (a) Three basic primitives. (b) The 3D prototypical model.

Figure 3. (a) The face numbering of a cube corresponds to the bond numbering in the object node

representing the cube. (b) The CP-graph of the 3D prototype model in Figure 2a.

We formally start with the following definition of an attributed, labeled CP-graph

with hierarchical bonds.

Let Σ be an alphabet for labels of object nodes and edges. Let A be a set of node and

bond attributes and P(A) be a set of all subsets of A. Let P(B) be a set of all subsets of bonds

from B.

Definition 1. By an attributed, labeled composition graph (CP-graph) over Σ and A, we mean a

tuple C = (V, E, B, ch, bd, s, t, lb, attV, attB), where we have the following:

• V, E, and B are pairwise disjoint sets, for which their elements are called object nodes, bond

nodes, and edges, respectively;

• ch: B → P(B) is a function that nests bond descendants such that none of a bond can be nested

in two different bonds, and a bond cannot be its own descendant;

• bd: V → B* is a function that specifies a sequence of different bonds for each object node, such

that ∀b ∈ B ∃! v ∈ V: b ∈ bd(v); i.e., each bond is assigned to exactly one object node;

Figure 3. (a) The face numbering of a cube corresponds to the bond numbering in the object node
representing the cube. (b) The CP-graph of the 3D prototype model in Figure 2a.

We formally start with the following definition of an attributed, labeled CP-graph
with hierarchical bonds.

Let Σ be an alphabet for labels of object nodes and edges. Let A be a set of node and
bond attributes and P(A) be a set of all subsets of A. Let P(B) be a set of all subsets of bonds
from B.

Definition 1. By an attributed, labeled composition graph (CP-graph) over Σ and A, we mean a
tuple C = (V, E, B, ch, bd, s, t, lb, attV, attB), where we have the following:

• V, E, and B are pairwise disjoint sets, for which their elements are called object nodes, bond
nodes, and edges, respectively;

• ch: B→ P(B) is a function that nests bond descendants such that none of a bond can be nested
in two different bonds, and a bond cannot be its own descendant;

• bd: V→ B* is a function that specifies a sequence of different bonds for each object node, such
that ∀b ∈ B ∃! v ∈ V: b ∈ bd(v); i.e., each bond is assigned to exactly one object node;

• s, t: E→ B are injective functions assigning to edges source and target bond nodes, respectively,
in such a way that ∀e ∈ E ∃v1, v2 ∈ V: s(e) ∈ bd(v1) ∧ t(e) ∈ bd(v2) ∧ v1 6= v2;

• lb: E ∪ V→ ∑ is an edge and object node labeling function;
• attV: V→ P(A) is a function of object nodes attributes;
• attB: B→ P(A) is a function of bonds attributes.

Let us denote elements of a CP-graph C by (VC, EC, BC, bdC, sC, tC, lbC, attVC, attBC).
The CP-graph in Figure 3b describes only the structure of the building’s form, i.e., its

Buildings 2022, 12, 899 6 of 19

components and relations between their faces. This is, however, not sufficient to represent a
visual instance of such a building. This problem is solved by adding attributes to CPgraphs.
In def. 1, the object nodes and bond nodes are attributed by means of the functions attV and
attB, respectively. The node attributes are divided into two groups: structural attributes,
corresponding to properties used for defining component types, and descriptive attributes
corresponding to metric properties that also define attributes for bonds. For CP-graph
in Figure 3b, cuboid dimensions and the cube location data are examples of the metrical
attributes for the object nodes with label b and for the 2nd bond of the 6th face of the object
nodes with hierarchical bonds, respectively. Details of attribution are presented in [9]. It is
worth noting that different numbers of attributes can be assigned to particular object nodes
and bonds of CP-graphs.

Adding information about attribute values to a CP-graph C produces its graph instance.
The CP-graph C is a basis for instances that differ only in the values of attributes. Formally,
let AV and AB be sets of node attributes and bond attributes, respectively, and A = AV ∪ AB.

Definition 2. An instance of a CP-graph C over Σ and A is a tuple I = (C, valV, valB), where we
have the following:

• C = (V, E, B, ch, bd, s, t, lb, attV, attB) is a CP-graph;
• valV: V× AV→ DV is a function assigning attribute values to object nodes, where DV = ∪a∈AV

Da is a family DV of sets Da of values of object node attributes, such that ∀v ∈ V ∀a ∈ attV(v):
valV(v, a) ∈ Da;

• valB: B× AB→ DB is a function assigning attribute values to bonds, where DB =∪a∈AB Da is a
family DB of sets Da of values of bond attributes, such that ∀b ∈ B ∀a ∈ attB(b): valB(b, a) ∈ Da.

In the following section, the instants of CP-graphs will be used to represent the design
in the evolutionary design.

2.2. Design Process and CP-Graph Rewriting System

With advances in modern information technology, computers are used to generate
innovative results. In this context, a data structure based on graphs provides a fundamental
principle for representing a design object, while graph rewriting is an adequate description
of the design process actions.

An innovative process of the design will refer to the generation of stylized buildings by
the aesthetic preferences created by the designer in the form of visual data. As it has been
considered, the designer’s aesthetic preferences for style are presented as a 3D prototype
model that is composed of distinct three-dimensional primitives attached.

A CP-graph of a 3D prototype model describes its design structure. However, further
analysis is required to capture elements of building style. By a building style, we understand
a rule relating to a class of buildings for which its components can be structured using the
same set of aesthetic criteria [27]. These aesthetic criteria will be determined by the set of
3D primitives used by the designer as components and by a description of any possible way
they are connected in the designer’s creation of the prototype model. After reconstructing
the structural properties of the form, a search is made for a design space containing all the
buildings that meet the stylistic criteria specified by the designer. The primary tool for
automatically creating a set of design solutions is a generative system that generates each
solution by a sequence of rules. In our approach, buildings are represented by CP-graphs;
therefore, CP-graph rule rewriting will be used to automatically generate derived buildings
based on the prototype model.

In the proposed system (see: Figure 4) for the process of making architectural forms, the
interface uses three modules: visualization, graphics, and control. A 3D prototype model
created by the designer through the graphics editor consists of geons with appropriate
qualitative features as components connected according to Biederman relations (end-to-
end or end-to-side). The editor is integrated with the structure and rule analyzer, which
defines an attributed CP-graph representation of the model and a set of CP-graph rules

Buildings 2022, 12, 899 7 of 19

for its generation. The new contribution is that different sequences of the elements of the
CP-graph rule set using the Structure Generator enable the generation of different instances
of CP-graphs, which are automatically transformed into new forms of buildings by the
Visualization Module. Examples of new buildings are useful for the designer because
provide helpful clues related to other possibilities of the use of patterns of connections than
proposed in the 3D prototype model. In Figure 4, we have a path from the graphics module
through the analyzer module, generator module, and visualization module. The designer
using the new buildings can either modify the prototype model in the graphics module and
repeat the cycle, which results in generating a new building proposal, or accept them by the
control module as candidates for the initial genetic algorithm population of the building
evolutionary generator.

Buildings 2022, 12, 899 7 of 19

that generates each solution by a sequence of rules. In our approach, buildings are repre-

sented by CP-graphs; therefore, CP-graph rule rewriting will be used to automatically

generate derived buildings based on the prototype model.

In the proposed system (see: Figure 4) for the process of making architectural forms,

the interface uses three modules: visualization, graphics, and control. A 3D prototype

model created by the designer through the graphics editor consists of geons with appro-

priate qualitative features as components connected according to Biederman relations

(end-to-end or end-to-side). The editor is integrated with the structure and rule analyzer,

which defines an attributed CP-graph representation of the model and a set of CP-graph

rules for its generation. The new contribution is that different sequences of the elements

of the CP-graph rule set using the Structure Generator enable the generation of different

instances of CP-graphs, which are automatically transformed into new forms of buildings

by the Visualization Module. Examples of new buildings are useful for the designer be-

cause provide helpful clues related to other possibilities of the use of patterns of connec-

tions than proposed in the 3D prototype model. In Figure 4, we have a path from the

graphics module through the analyzer module, generator module, and visualization mod-

ule. The designer using the new buildings can either modify the prototype model in the

graphics module and repeat the cycle, which results in generating a new building pro-

posal, or accept them by the control module as candidates for the initial genetic algorithm

population of the building evolutionary generator.

Figure 4. The main components of the system model for the generation of stylized buildings.

Examples of such buildings for the prototype model in Figure 2b with the set of CP-

graph rules shown in Figure 5 will be discussed at the end of this subsection. The new

buildings are accepted by the designer as elements of the initial population.

Figure 4. The main components of the system model for the generation of stylized buildings.

Examples of such buildings for the prototype model in Figure 2b with the set of CP-
graph rules shown in Figure 5 will be discussed at the end of this subsection. The new
buildings are accepted by the designer as elements of the initial population.

Buildings 2022, 12, 899 8 of 19

Figure 5. The system of the CP-graph rewriting rules for the 3D prototype model in Figure 2b.

Following the idea of the architect John Frazer for genetic algorithm, possibilities of

expressing a designer’s actions as generative rules are explored [7]. The designer creates

a 3D prototype model by adding and attaching individual components. Figure 5 shows

the steps of the designer during generating the prototype model and the eight CP-graph

rules that generate CP-graph (Figure 2b), recreating that process. This CP-graph rewriting

system is context-free; that is, all left-hand-side rules are CP-graphs containing exactly one

object node. The right-hand side of each rule contains an isomorphic object node to the

left-hand side of the rule (informally, a copy of the left-hand side of the rule) and a new

node is connected to it.

Let us denote by Γ(Σ, Α) the set of all attributed, labeled CP-graphs over Σ and A,

and by γ(Σ, Α), its subset that contains all CP-graphs with one-element sets of object

nodes. Now, we are ready to formally define rewriting rules for CP-graphs.

Definition 3. By a context-free CP-graph rewriting rules over Σ and A, we understand a system

G = (P, s), where we have the following:

1. P is a finite set of rules p = (l(p),r(p)) satisfying the following conditions:

• l(p) γ(Σ, Α). i.e., l(p) is a CP-graph with a one-element set of object nodes Vl(p) = {w},

called the left-hand-side of p;

• r(p) Γ(Σ, Α) and #Vr(p) = 2 and Er ≠ ∅, i.e., r(p) is a CP-graph with a two-element set of

object nodes and with at least one edge, called the right-hand-side of p; and there exists v

Vr(p) such that lb(v) = lb(w) and bd(v) = bd(w);

• attV(v) = attV(w), i.e., the node v is isomorphic to the node w;

2. s γ(Σ, Α) is called the axiom of CP-graph.

A context-free CP-graph rewriting rules are made for a generation. During the gen-

eration, the left-hand side of a rule is replaced by its right-hand side. Let us consider the

323 system of the rewriting rules shown in Figure 4. We start with the axiom CP-graph

containing one object node with label c. Each of the four rules p1, p2, p3, and p7 can be

applied to the axiom graph. The CP-graphs, being the result of applying these rules, will

be equal to their right-hand sides (formally, will be isomorphic to these right-hand sides).

After applying one of the rules, we obtain a CP-graph containing two connected object

nodes. If a rule is applied to a CP-graph with more than one object node, the necessary

condition for the rule to be applied is the existence of an isomorphic object node in the

CP-graph graph to the node of the left-hand side of the rule.

Figure 5. The system of the CP-graph rewriting rules for the 3D prototype model in Figure 2b.

Following the idea of the architect John Frazer for genetic algorithm, possibilities of
expressing a designer’s actions as generative rules are explored [7]. The designer creates
a 3D prototype model by adding and attaching individual components. Figure 5 shows
the steps of the designer during generating the prototype model and the eight CP-graph

Buildings 2022, 12, 899 8 of 19

rules that generate CP-graph (Figure 2b), recreating that process. This CP-graph rewriting
system is context-free; that is, all left-hand-side rules are CP-graphs containing exactly one
object node. The right-hand side of each rule contains an isomorphic object node to the
left-hand side of the rule (informally, a copy of the left-hand side of the rule) and a new
node is connected to it.

Let us denote by Γ(Σ, A) the set of all attributed, labeled CP-graphs over Σ and A, and
by γ(Σ, A), its subset that contains all CP-graphs with one-element sets of object nodes.
Now, we are ready to formally define rewriting rules for CP-graphs.

Definition 3. By a context-free CP-graph rewriting rules over Σ and A, we understand a system
G = (P, s), where we have the following:

1. P is a finite set of rules p = (l(p),r(p)) satisfying the following conditions:

• l(p) ∈ γ(Σ, A). i.e., l(p) is a CP-graph with a one-element set of object nodes Vl(p) = {w},
called the left-hand-side of p;

• r(p) ∈ Γ(Σ, A) and #Vr(p) = 2 and Er 6= ∅, i.e., r(p) is a CP-graph with a two-element
set of object nodes and with at least one edge, called the right-hand-side of p; and there
exists v ∈ Vr(p) such that lb(v) = lb(w) and bd(v) = bd(w);

• attV(v) = attV(w), i.e., the node v is isomorphic to the node w;

2. s ∈ γ(Σ, A) is called the axiom of CP-graph.

A context-free CP-graph rewriting rules are made for a generation. During the gen-
eration, the left-hand side of a rule is replaced by its right-hand side. Let us consider
the system of the rewriting rules shown in Figure 4. We start with the axiom CP-graph
containing one object node with label c. Each of the four rules p1, p2, p3, and p7 can be
applied to the axiom graph. The CP-graphs, being the result of applying these rules, will
be equal to their right-hand sides (formally, will be isomorphic to these right-hand sides).
After applying one of the rules, we obtain a CP-graph containing two connected object
nodes. If a rule is applied to a CP-graph with more than one object node, the necessary
condition for the rule to be applied is the existence of an isomorphic object node in the
CP-graph graph to the node of the left-hand side of the rule.

Let us assume that rule p = (l(p), r(p)) applies to CP-graph C. Applying p to C consists
in moving the object node isomorphic to l(p) from the C and inserting in its place the
CP-graph r(p)’ that is isomorphic to r(p). Then, the connections of the removed node are
replaced with the connections of the object node of r(p)’ isomorphic to this node in such
a way that each bond of the first is replaced with a bond of the second having the same
ordinal number. As a result of applying production p, we obtain a new CP-graph C’. The
relation between C and C’ will be called the direct derivation of C’ from C by the rule p and
denoted as C⇒p C’. The generation of the CP-graph in Figure 3b requires the use of all rules
of the sequence in the CP-graph rewriting rules, shown in Figure 5, starting from the axiom.
Such a sequence is called the derivation in the CP-graph rewriting rules, and it is denoted
by⇒*. Figure 6 presents the derivation of the CP-graph in Figure 2b. Since, formally, the
symbol⇒* denotes a reflexive–transitive closure of the direct derivation relation⇒, it can
be used as a designation for any derivation by applicable rule sequences in the rewriting
rules system.

The derivation in Figure 6 is made in 8 steps using rule sequence p1, p2, . . . , p8 and
reflects 9 actions of the designer, as shown in Figure 7. The first action of the designer is to
select a solid from an existing set of basic 3D primitives in the graphical editor or to create
it. The solid is represented in the form of the object node and defined as an axiom of the
CP-graph rewriting rules.

Buildings 2022, 12, 899 9 of 19

Buildings 2022, 12, 899 9 of 19

Let us assume that rule p = (l(p), r(p)) applies to CP-graph C. Applying p to C consists

in moving the object node isomorphic to l(p) from the C and inserting in its place the CP-

graph r(p)’ that is isomorphic to r(p). Then, the connections of the removed node are re-

placed with the connections of the object node of r(p)’ isomorphic to this node in such a

way that each bond of the first is replaced with a bond of the second having the same

ordinal number. As a result of applying production p, we obtain a new CP-graph C’. The

relation between C and C’ will be called the direct derivation of C’ from C by the rule p 338

and denoted as C ⇒p C’. The generation of the CP-graph in Figure 3b requires the use of

all rules of the sequence in the CP-graph rewriting rules, shown in Figure 5, starting from

the axiom. Such a sequence is called the derivation in the CP-graph rewriting rules, and it

is denoted by ⇒*. Figure 6 presents the derivation of the CP-graph in Figure 2b. Since,

formally, the symbol ⇒* denotes a reflexive–transitive closure of the direct derivation re-

lation ⇒, it can be used as a designation for any derivation by applicable rule sequences

in the rewriting rules system.

Figure 6. The derivation of the CP-graph in Figure 2b from the axiom.

The derivation in Figure 6 is made in 8 steps using rule sequence p1, p2, ..., p8 and

reflects 9 actions of the designer, as shown in Figure 7. The first action of the designer is

to select a solid from an existing set of basic 3D primitives in the graphical editor or to

create it. The solid is represented in the form of the object node and defined as an axiom

of the CP-graph rewriting rules.

Figure 7. The actions of the designer are described by the sequence of rules.

When applying different sequences of the eight rules of the CP-graph rewriting rules

in Figure 5, with the possibility of reusing the same rule, different CP-graphs are gener-

ated with the generator structure module (Figure 4). In the next step, the building creator

module generates visualizations of the buildings corresponding to these CP-graphs by

taking into account their attributes. Figure 8 shows examples of various buildings visual-

ized from their CP-graphs generated using different sequences of these rules. The four

buildings belong to the design space containing buildings compliant with the structural

characteristics of the 3D prototype model in Figure 2b. Below these buildings are se-

quences of CP-graph rules from their derivations.

Figure 6. The derivation of the CP-graph in Figure 2b from the axiom.

Buildings 2022, 12, 899 9 of 19

Let us assume that rule p = (l(p), r(p)) applies to CP-graph C. Applying p to C consists

in moving the object node isomorphic to l(p) from the C and inserting in its place the CP-

graph r(p)’ that is isomorphic to r(p). Then, the connections of the removed node are re-

placed with the connections of the object node of r(p)’ isomorphic to this node in such a

way that each bond of the first is replaced with a bond of the second having the same

ordinal number. As a result of applying production p, we obtain a new CP-graph C’. The

relation between C and C’ will be called the direct derivation of C’ from C by the rule p 338

and denoted as C ⇒p C’. The generation of the CP-graph in Figure 3b requires the use of

all rules of the sequence in the CP-graph rewriting rules, shown in Figure 5, starting from

the axiom. Such a sequence is called the derivation in the CP-graph rewriting rules, and it

is denoted by ⇒*. Figure 6 presents the derivation of the CP-graph in Figure 2b. Since,

formally, the symbol ⇒* denotes a reflexive–transitive closure of the direct derivation re-

lation ⇒, it can be used as a designation for any derivation by applicable rule sequences

in the rewriting rules system.

Figure 6. The derivation of the CP-graph in Figure 2b from the axiom.

The derivation in Figure 6 is made in 8 steps using rule sequence p1, p2, ..., p8 and

reflects 9 actions of the designer, as shown in Figure 7. The first action of the designer is

to select a solid from an existing set of basic 3D primitives in the graphical editor or to

create it. The solid is represented in the form of the object node and defined as an axiom

of the CP-graph rewriting rules.

Figure 7. The actions of the designer are described by the sequence of rules.

When applying different sequences of the eight rules of the CP-graph rewriting rules

in Figure 5, with the possibility of reusing the same rule, different CP-graphs are gener-

ated with the generator structure module (Figure 4). In the next step, the building creator

module generates visualizations of the buildings corresponding to these CP-graphs by

taking into account their attributes. Figure 8 shows examples of various buildings visual-

ized from their CP-graphs generated using different sequences of these rules. The four

buildings belong to the design space containing buildings compliant with the structural

characteristics of the 3D prototype model in Figure 2b. Below these buildings are se-

quences of CP-graph rules from their derivations.

Figure 7. The actions of the designer are described by the sequence of rules.

When applying different sequences of the eight rules of the CP-graph rewriting rules
in Figure 5, with the possibility of reusing the same rule, different CP-graphs are generated
with the generator structure module (Figure 4). In the next step, the building creator module
generates visualizations of the buildings corresponding to these CP-graphs by taking into
account their attributes. Figure 8 shows examples of various buildings visualized from their
CP-graphs generated using different sequences of these rules. The four buildings belong to
the design space containing buildings compliant with the structural characteristics of the
3D prototype model in Figure 2b. Below these buildings are sequences of CP-graph rules
from their derivations.

Buildings 2022, 12, 899 10 of 19

Figure 8. Elements of the design space containing all the buildings that meet the stylistic criteria

specified by the designer in the form of the 3D prototype model in Figure 2b.

The urban complex presented in Figure 9 consists of buildings belonging to the de-

sign space under consideration. The following numerals in the figure read counterclock-

wise, starting with 3 on the right of the letter a, are the numbers of the rules applied.

Figure 9. The urban complex.

3. Evolutionary Design and Computational Creativity

Computational creativity is about using a computer to generate results that would be

regarded as creative if produced by humans alone [28]. In the proposed approach, the

evolutionary design will be used to stimulate creativity in generating new, unexpected

forms of building for evaluating their style. Evolutionary design is a generative method

that has been used for many years to synthesize and evaluate designed objects during the

design process [29].

In the Darwinian Theory, a phenotype is an individual’s observable traits, while a

genotype means the genetic contribution to the phenotype. At the design level, the phe-

notype will be understood as a description of the designed object with the possibility of

visualization, while the genotype will be its representation enabling structural and attrib-

ute changes. The fitness function in designs uses the evolutionary theory of the improve-

ment of the organism’s performance by striving for excellence in creating artifacts. This is

performed by improving the designed object at the genotype level and outside of the de-

signers without too much effort on their part. The design process simulates the evolution-

ary process of crossover and mutation at the genotype level [30].

In our approach, a genotype of the building will be represented by a sequence of CP-

graph rules used for the derivation of its CP-graph structure, while a phenotype will be

the visualization of the three-dimensional structured building, i.e., the configuration of its

3D components.

Figure 8. Elements of the design space containing all the buildings that meet the stylistic criteria
specified by the designer in the form of the 3D prototype model in Figure 2b.

The urban complex presented in Figure 9 consists of buildings belonging to the design
space under consideration. The following numerals in the figure read counterclockwise,
starting with 3 on the right of the letter a, are the numbers of the rules applied.

Buildings 2022, 12, 899 10 of 19

Buildings 2022, 12, 899 10 of 19

Figure 8. Elements of the design space containing all the buildings that meet the stylistic criteria

specified by the designer in the form of the 3D prototype model in Figure 2b.

The urban complex presented in Figure 9 consists of buildings belonging to the de-

sign space under consideration. The following numerals in the figure read counterclock-

wise, starting with 3 on the right of the letter a, are the numbers of the rules applied.

Figure 9. The urban complex.

3. Evolutionary Design and Computational Creativity

Computational creativity is about using a computer to generate results that would be

regarded as creative if produced by humans alone [28]. In the proposed approach, the

evolutionary design will be used to stimulate creativity in generating new, unexpected

forms of building for evaluating their style. Evolutionary design is a generative method

that has been used for many years to synthesize and evaluate designed objects during the

design process [29].

In the Darwinian Theory, a phenotype is an individual’s observable traits, while a

genotype means the genetic contribution to the phenotype. At the design level, the phe-

notype will be understood as a description of the designed object with the possibility of

visualization, while the genotype will be its representation enabling structural and attrib-

ute changes. The fitness function in designs uses the evolutionary theory of the improve-

ment of the organism’s performance by striving for excellence in creating artifacts. This is

performed by improving the designed object at the genotype level and outside of the de-

signers without too much effort on their part. The design process simulates the evolution-

ary process of crossover and mutation at the genotype level [30].

In our approach, a genotype of the building will be represented by a sequence of CP-

graph rules used for the derivation of its CP-graph structure, while a phenotype will be

the visualization of the three-dimensional structured building, i.e., the configuration of its

3D components.

Figure 9. The urban complex.

3. Evolutionary Design and Computational Creativity

Computational creativity is about using a computer to generate results that would
be regarded as creative if produced by humans alone [28]. In the proposed approach, the
evolutionary design will be used to stimulate creativity in generating new, unexpected
forms of building for evaluating their style. Evolutionary design is a generative method
that has been used for many years to synthesize and evaluate designed objects during the
design process [29].

In the Darwinian Theory, a phenotype is an individual’s observable traits, while
a genotype means the genetic contribution to the phenotype. At the design level, the
phenotype will be understood as a description of the designed object with the possibility
of visualization, while the genotype will be its representation enabling structural and
attribute changes. The fitness function in designs uses the evolutionary theory of the
improvement of the organism’s performance by striving for excellence in creating artifacts.
This is performed by improving the designed object at the genotype level and outside
of the designers without too much effort on their part. The design process simulates the
evolutionary process of crossover and mutation at the genotype level [30].

In our approach, a genotype of the building will be represented by a sequence of
CP-graph rules used for the derivation of its CP-graph structure, while a phenotype will be
the visualization of the three-dimensional structured building, i.e., the configuration of its
3D components.

3.1. Initial Population and Genetic Operators

The process of evolutionary design starts with an initial population of individuals with
the required design characteristics represented by a sequence of genotypes corresponding
to the individuals. Most evolutionary design systems generate new artifacts based on
random initial populations. It is recommended that the population size be less than ten
because then there is a rapid evaluation in each generation [31].

In this paper, the initial population contains genotypes for buildings for which their
structures are generated by CP-graph rules from the set of rules of the derivation of CP-
graph representing the design structure of the 3D prototype model. Additionally, it is
assumed that for each rule from this set of CP-graph rules, there exists at least one genotype
in the initial population in which this rule is applied to derive this genotype.

Since the evolutionary design process takes place at the genotype level, where geno-
types are represented by CP-graph rule sequences, genetic operators for such representation

Buildings 2022, 12, 899 11 of 19

should be defined. A mutation operator defined on one genotype is used to introduce
new properties to the population, both at the structural and visual levels. In this paper,
the mutation operator can modify the structure of the building by removing or adding a
CP-graph rule or changing the value of node attributes. The crossover is performed on two
selected sequences of CP-graph rules representing the genotypes. The crossover operator
requires establishing one rule from each sequence that would be exchanged during the
evolution process.

Examples of the use of genetic operators in creating new forms of buildings will be
illustrated with the 3D prototype model and its CP-graph shown in Figures 2b and 3b,
respectively. The initial population will be the four building forms shown in Figure 8, their
phenotypes, and four sequences of CP-graph rules numbers representing their genotypes.
All these CP-graph rules are presented in Figure 5.

Consider the mutation operator applied to the building genotype shown in Figure 8c
as a CP-graph rule sequence. The operator will add a new CP-graph rule to the rule
sequence from which the structure of this building is generated. Only the primitives shown
in Figure 2a are used to create new CP-graph rules, while new connections can be defined
between the free bonds of object nodes appearing in the CP-graph in Figure 3b, which
defines the structure of the prototype model shown in Figure 2b. As it has been considered,
the free bonds of a CP-graph represent its potential connections. In that case, it is a natural
extension of the CP-graph structure of the prototype model. This type of CP-graph rule
will be called a structurally admissible rule.

Figure 10 shows the considered building at the phenotype and genotype levels, the
addition of a structurally admissible rule, and the result of applying the mutation operator.

Buildings 2022, 12, 899 11 of 19

3.1. Initial Population and Genetic Operators

The process of evolutionary design starts with an initial population of individuals

with the required design characteristics represented by a sequence of genotypes corre-

sponding to the individuals. Most evolutionary design systems generate new artifacts

based on random initial populations. It is recommended that the population size be less

than ten because then there is a rapid evaluation in each generation [31].

In this paper, the initial population contains genotypes for buildings for which their

structures are generated by CP-graph rules from the set of rules of the derivation of CP-

graph representing the design structure of the 3D prototype model. Additionally, it is as-

sumed that for each rule from this set of CP-graph rules, there exists at least one genotype

in the initial population in which this rule is applied to derive this genotype.

Since the evolutionary design process takes place at the genotype level, where geno-

types are represented by CP-graph rule sequences, genetic operators for such representa-

tion should be defined. A mutation operator defined on one genotype is used to introduce

new properties to the population, both at the structural and visual levels. In this paper,

the mutation operator can modify the structure of the building by removing or adding a

CP-graph rule or changing the value of node attributes. The crossover is performed on

two selected sequences of CP-graph rules representing the genotypes. The crossover op-

erator requires establishing one rule from each sequence that would be exchanged during

the evolution process.

Examples of the use of genetic operators in creating new forms of buildings will be

illustrated with the 3D prototype model and its CP-graph shown in Figure 2b and Figure

3b, respectively. The initial population will be the four building forms shown in Figure 8,

their phenotypes, and four sequences of CP-graph rules numbers representing their gen-

otypes. All these CP-graph rules are presented in Figure 5.

Consider the mutation operator applied to the building genotype shown in Figure 8c

as a CP-graph rule sequence. The operator will add a new CP-graph rule to the rule se-

quence from which the structure of this building is generated. Only the primitives shown

in Figure 2a are used to create new CP-graph rules, while new connections can be defined

between the free bonds of object nodes appearing in the CP-graph in Figure 3b, which

defines the structure of the prototype model shown in Figure 2b. As it has been consid-

ered, the free bonds of a CP-graph represent its potential connections. In that case, it is a

natural extension of the CP-graph structure of the prototype model. This type of CP-graph

rule will be called a structurally admissible rule.

Figure 10 shows the considered building at the phenotype and genotype levels, the

addition of a structurally admissible rule, and the result of applying the mutation opera-

tor.

Figure 10. An example of the use of the mutation operator by adding a structurally admissible rule

at phenotype and genotype levels.

Figure 11 shows another example of applying the mutation operator to the genotype

of the building in Figure 8d. This time, the CP-graph rule is removed.

Figure 10. An example of the use of the mutation operator by adding a structurally admissible rule
at phenotype and genotype levels.

Figure 11 shows another example of applying the mutation operator to the genotype
of the building in Figure 8d. This time, the CP-graph rule is removed.

Buildings 2022, 12, 899 12 of 19

Figure 11. Another example of applying the mutation operator at phenotype and genotype levels.

Let us consider a crossover operator for which its two arguments are sequences of

CP-graph rules representing genotypes. Let us select the two buildings as arguments after

applying operator mutations in Figure 10 and Figure 11. In this case, new offspring are

first generated by mutating the parent copies. Figure 12a shows the arguments of the

crossover operator and rules p2 and p5 (see: Figure 5) at the genotype level for changing

the building genotypes. Figure 12b presents the results of the crossover operator.

The following condition must be satisfied to use the crossover operator. After cross-

over is applied, the design structures of the operator’s results at the phenotype level must

be connected to CP-graphs in a topological sense; i.e., in each of these CP-graphs, there is

a path from any object node to any other object node.

Figure 12. An example of applying the crossover operator at the phenotype and genotype levels: (a)

arguments of the crossover operator; (b) the results of applying this operator.

Enabling the addition of structurally admissible CP-graph rules shown in Figure 13

by the use of mutation and crossing operators for the presented structures can lead to

interesting results presented in Figures 14 and 15.

Figure 11. Another example of applying the mutation operator at phenotype and genotype levels.

Let us consider a crossover operator for which its two arguments are sequences of
CP-graph rules representing genotypes. Let us select the two buildings as arguments after
applying operator mutations in Figures 10 and 11. In this case, new offspring are first
generated by mutating the parent copies. Figure 12a shows the arguments of the crossover
operator and rules p2 and p5 (see: Figure 5) at the genotype level for changing the building
genotypes. Figure 12b presents the results of the crossover operator.

Buildings 2022, 12, 899 12 of 19

Buildings 2022, 12, 899 12 of 19

Figure 11. Another example of applying the mutation operator at phenotype and genotype levels.

Let us consider a crossover operator for which its two arguments are sequences of

CP-graph rules representing genotypes. Let us select the two buildings as arguments after

applying operator mutations in Figure 10 and Figure 11. In this case, new offspring are

first generated by mutating the parent copies. Figure 12a shows the arguments of the

crossover operator and rules p2 and p5 (see: Figure 5) at the genotype level for changing

the building genotypes. Figure 12b presents the results of the crossover operator.

The following condition must be satisfied to use the crossover operator. After cross-

over is applied, the design structures of the operator’s results at the phenotype level must

be connected to CP-graphs in a topological sense; i.e., in each of these CP-graphs, there is

a path from any object node to any other object node.

Figure 12. An example of applying the crossover operator at the phenotype and genotype levels: (a)

arguments of the crossover operator; (b) the results of applying this operator.

Enabling the addition of structurally admissible CP-graph rules shown in Figure 13

by the use of mutation and crossing operators for the presented structures can lead to

interesting results presented in Figures 14 and 15.

Figure 12. An example of applying the crossover operator at the phenotype and genotype levels:
(a) arguments of the crossover operator; (b) the results of applying this operator.

The following condition must be satisfied to use the crossover operator. After cross-
over is applied, the design structures of the operator’s results at the phenotype level must
be connected to CP-graphs in a topological sense; i.e., in each of these CP-graphs, there is a
path from any object node to any other object node.

Enabling the addition of structurally admissible CP-graph rules shown in Figure 13
by the use of mutation and crossing operators for the presented structures can lead to
interesting results presented in Figures 14 and 15.

Buildings 2022, 12, 899 13 of 19

Figure 13. Examples of structural admissible CP-graph rules for the CP-graph in Figure 3b.

Figure 14. Examples of stylized buildings.

Figure 15. Other examples of stylized buildings with admissible relations.

3.2. Evaluation

Figure 13. Examples of structural admissible CP-graph rules for the CP-graph in Figure 3b.

Buildings 2022, 12, 899 13 of 19

Buildings 2022, 12, 899 13 of 19

Figure 13. Examples of structural admissible CP-graph rules for the CP-graph in Figure 3b.

Figure 14. Examples of stylized buildings.

Figure 15. Other examples of stylized buildings with admissible relations.

3.2. Evaluation

Figure 14. Examples of stylized buildings.

Buildings 2022, 12, 899 13 of 19

Figure 13. Examples of structural admissible CP-graph rules for the CP-graph in Figure 3b.

Figure 14. Examples of stylized buildings.

Figure 15. Other examples of stylized buildings with admissible relations.

3.2. Evaluation

Figure 15. Other examples of stylized buildings with admissible relations.

3.2. Evaluation

In evolutionary designs, the fitness function plays a fundamental role in the selection
process for reproduction, i.e., in selecting the best individuals as arguments for mutation
and crossover operators. In the subject under investigation, which buildings will be selected
as the best fit depends on what architectural aspects are included in the definition of the
fitness function.

The computational aesthetic evaluation for a given class of objects utilizes software
applications of aesthetic measurements. The previously proposed methods of aesthetic
evaluation for buildings were based on Birkhoff’s aesthetic measure adapted for 3D solids
and on the Biederman visual perception model [32,33]. There exist examples where the
fitness function is determined by fuzzy evaluation of designs, which determines to what
degree each phenotype fulfills the aesthetic criteria [9].

In our approach, a two-stage fitness function needs to be developed. An interesting
example of such an approach is presented in the DARCI system by simulating a virtual
image artist [15]. In the presented method, the first step should be a function that determines
the degree of structural similarity between the generated buildings and the structure of the
prototypical 3D form. In the assessment of character similarity between two buildings, the
factors such as the number of building components and number of component types are
provided by the graph rewriting rules for the derivation of the CP-graph, which represents
the design structure of the 3D prototype model. This fitness feature evaluates the degree of
the style’s structural similarity. In the second step, some aesthetic qualities of the generated
buildings should be considered. Since visual perception is a decisive factor in the aesthetic

Buildings 2022, 12, 899 14 of 19

evaluation of building forms, this evaluation usually uses the human visual perception
model. Buildings are seen as configurations of some basic solids, which are based on the
Recognition-By-Components (RBC) theory developed by Biederman. The analysis of the
properties of components of the generated buildings and the relationships between them is
a basis for evaluating the elements of beauty, such as, for example, order, harmony, and
rhythm [34].

After many attempts at the esthetic evaluation of architectural objects with the use of
a computer, there is also the opinion that the aesthetic value of artifacts is related to their
ability to provide recipients with stimuli enriching their aesthetic experiences. Research
on a model capable of reproducing the mind’s reaction is much more challenging than
generating artifacts [35]. In the presented approach, one of the most important factors of
the automatic aesthetic evaluation based on the prototype model created by a designer is
the use of the aesthetic assessment of the representativeness of each generated building in
the category meeting the designer’s preferences [36]. Therefore, during the evolutionary
process, the fitness function to evaluate aesthetics should be performed not only by the
software but also by the designer [37,38].

4. Discussion

Contemporary research into the way designers work suggests that while the initial
idea may be a cognitive act, the main work of creative design is through a kind of dialogue
with a computer interface often supported by computational creativity. In this section, we
will discuss how computational creativity using the proposed generative and evolutionary
techniques allows the designer to modify the design space during the process of designing
new artifacts based on aesthetic criteria.

The mechanism of computational creativity is known to exist regardless of any partic-
ular field. We examine this mechanism using non-numerical calculations based on visual
perception in the field of creating stylized buildings. From this, we attempt to characterize
computational creativity with the use of some concepts of the computational ontology. From a
computer science point of view, the basic definition of ontology is as follows: “An ontology
is an explicit specification of a conceptualization”. In other words, ontology is an analysis of
relevant entities and an organization of them into concepts and relations [39].

In the first step of the conceptual design process, we are dealing with the creativity
of a designer who uses visual tools to propose aesthetic experiences into style, expressing
them through a 3D prototype model. It is an externalization of the conceptualization from
the mind of the designer. During this process, the designer selects the 3D primitives that
are components of the prototype model and decides how to connect them. In this way, the
designer determines a visual language for which its vocabulary is a finite set of primitives,
and a finite set of rules specifies the possible configurations of these primitives. We say in
this case that the visual language is committed to the designer’s conceptualization in the
interactive environment.

From the ontological point of view, representing knowledge formally is based on
the designer’s conceptualization: the attributed objects that are assumed to exist in some
area of interest and relations among them. Apart from the externalization of the designer
conceptualization, we need its specification explicitly as input data for the system. In
the proposed approach, the conceptualization is specified on the basis of the designer’s
externalization that can be automatically transformed into an appropriate attributed CP-
graph. There exists an ontological commitment between attributed CP-graph language as
data for the system and the externalization of the designer’s conceptualization in the form
of the visual language. It is worth noting that the CP-graph representing the prototype
model, due to its free bonds, provides the potential to introduce structural admissible
rules, i.e., CP-graph rules with new possible relations between components, which means
CP-graphs represent an extensional type structure. The phases of obtaining the specification
of conceptualization explicitly with the use of a visual environment and using it in the
evolutionary design process are presented in Figure 16.

Buildings 2022, 12, 899 15 of 19

Buildings 2022, 12, 899 15 of 19

In the first step of the conceptual design process, we are dealing with the creativity

of a designer who uses visual tools to propose aesthetic experiences into style, expressing

them through a 3D prototype model. It is an externalization of the conceptualization from

the mind of the designer. During this process, the designer selects the 3D primitives that

are components of the prototype model and decides how to connect them. In this way, the

designer determines a visual language for which its vocabulary is a finite set of primitives,

and a finite set of rules specifies the possible configurations of these primitives. We say in

this case that the visual language is committed to the designer’s conceptualization in the

interactive environment.

From the ontological point of view, representing knowledge formally is based on the

designer’s conceptualization: the attributed objects that are assumed to exist in some area

of interest and relations among them. Apart from the externalization of the designer con-

ceptualization, we need its specification explicitly as input data for the system. In the pro-

posed approach, the conceptualization is specified on the basis of the designer’s external-

ization that can be automatically transformed into an appropriate attributed CP-graph.

There exists an ontological commitment between attributed CP-graph language as data

for the system and the externalization of the designer’s conceptualization in the form of

the visual language. It is worth noting that the CP-graph representing the prototype

model, due to its free bonds, provides the potential to introduce structural admissible

rules, i.e., CP-graph rules with new possible relations between components, which means

CP-graphs represent an extensional type structure. The phases of obtaining the specifica-

tion of conceptualization explicitly with the use of a visual environment and using it in

the evolutionary design process are presented in Figure 16.

The rule rewriting system based on a CP-graph allows the reflection of the designer’s

actions in the computational creativity system.

Figure 16. Transformation of designer’s conceptualization into its specification.

To discuss the creative evolutionary mechanism, we will use an abstract mental

schema that acts as a basic structure for arranging ideas about computational creativity.

The scheme consists of the following seven elements:

1. Procedure selection;

2. Ingredient selection;

3. Lower bound definition;

4. Upper bound definition;

5. Construction;

Figure 16. Transformation of designer’s conceptualization into its specification.

The rule rewriting system based on a CP-graph allows the reflection of the designer’s
actions in the computational creativity system.

To discuss the creative evolutionary mechanism, we will use an abstract mental schema
that acts as a basic structure for arranging ideas about computational creativity.

The scheme consists of the following seven elements:

1. Procedure selection;
2. Ingredient selection;
3. Lower bound definition;
4. Upper bound definition;
5. Construction;
6. Selection;
7. Reflection.

From a procedural point of view, the proposed conceptual concept scheme can apply
to most computer-supported artifacts generating processes as well as to those created by
humans [35]. We start with the selection of a constructive procedure, and then we select the
elements that ensure the operation of the constructive procedure. In the proposed approach,
the mutation and crossover operators make up a constructive procedure. Mutation and
crossover operators are developed to increase the structural diversity of buildings. Initial
elements to feed the procedure are presented in Figure 17c,d.

Buildings 2022, 12, 899 16 of 19

6. Selection;

7. Reflection.

From a procedural point of view, the proposed conceptual concept scheme can apply

to most computer-supported artifacts generating processes as well as to those created by

humans [35]. We start with the selection of a constructive procedure, and then we select

the elements that ensure the operation of the constructive procedure. In the proposed ap-

proach, the mutation and crossover operators make up a constructive procedure. Muta-

tion and crossover operators are developed to increase the structural diversity of build-

ings. Initial elements to feed the procedure are presented in Figure 17c,d.

Figure 17. Elements to feed the constructive procedure obtained on the base of the 3D prototype

model and its CP-graph in (a) and (b), respectively; (c) the initial population; (d) principles specify-

ing connections between primitives.

The initial visual language for the constructive procedure at the phenotype level is

included in the initial population. The language consists of the three-element vocabulary

of primitives and a finite set of principles specifying connections between these primi-

tives. These principles are contained in CP-graph rules (Figure 17d). It is assumed that

each CP-graph rewriting rule in the derivation of the CP-graph for the prototype model

will appear at least once in the representation of some genotype of the initial population.

The CP-graph rewriting rules presented in Figure 17d implicitly define the structures of

buildings that meet the stylistic criteria determined by the designer.

From a computational creativity point of view, we are looking for similarities be-

tween the actions of the designer during the design process and the operations undertaken

in the creative system. There are four types of actions that a designer performs: physical

actions such as drawing and erasing design elements, conceptual actions where new de-

sign goals and requirements are defined, perceptual actions, and functional actions, e.g.,

design evaluation. A mutation operator reflects the physical actions by adding and re-

moving CP-graph rules. However, a crossover operator recreates the two types of the de-

signer’s actions applied to the earlier conceptions of solutions: first perceptual actions and

then the physical actions aimed at crossover a pair of CP-graph rules in these solutions. A

designer’s conceptual actions, in which new design goals and requirements are set, can

have a significant impact on modifying the original design space. In the considered evo-

lutionary constructive procedure, the reflection of conceptual actions of the designer will

be the application of structurally admissible CP-graph rules in genetic operators (see Fig-

ures 10 and 13).

The third and fourth elements of the conceptual scheme, the lower bound definition,

and the upper bound definition refer to the determination establishing the candidate re-

jection criteria and the candidate success criteria, respectively. In the former case, the goal

of the fitness function is to prevent a complete change of the designer-defined style with

the 3D prototype model. In the considered method, the fitness function can enumerate the

degree of compliance with the design requirements by a phenotype about the 3D proto-

type model at the genotype level, e.g., assuming that the ratio of the number of applying

structurally admissible CP-graph rules to the number of applying all the CP-graph rules

Figure 17. Elements to feed the constructive procedure obtained on the base of the 3D prototype
model and its CP-graph in (a,b), respectively; (c) the initial population; (d) principles specifying
connections between primitives.

Buildings 2022, 12, 899 16 of 19

The initial visual language for the constructive procedure at the phenotype level is
included in the initial population. The language consists of the three-element vocabulary
of primitives and a finite set of principles specifying connections between these primitives.
These principles are contained in CP-graph rules (Figure 17d). It is assumed that each CP-
graph rewriting rule in the derivation of the CP-graph for the prototype model will appear
at least once in the representation of some genotype of the initial population. The CP-graph
rewriting rules presented in Figure 17d implicitly define the structures of buildings that
meet the stylistic criteria determined by the designer.

From a computational creativity point of view, we are looking for similarities between
the actions of the designer during the design process and the operations undertaken in
the creative system. There are four types of actions that a designer performs: physical
actions such as drawing and erasing design elements, conceptual actions where new
design goals and requirements are defined, perceptual actions, and functional actions,
e.g., design evaluation. A mutation operator reflects the physical actions by adding and
removing CP-graph rules. However, a crossover operator recreates the two types of the
designer’s actions applied to the earlier conceptions of solutions: first perceptual actions
and then the physical actions aimed at crossover a pair of CP-graph rules in these solutions.
A designer’s conceptual actions, in which new design goals and requirements are set,
can have a significant impact on modifying the original design space. In the considered
evolutionary constructive procedure, the reflection of conceptual actions of the designer
will be the application of structurally admissible CP-graph rules in genetic operators (see
Figures 10 and 13).

The third and fourth elements of the conceptual scheme, the lower bound definition,
and the upper bound definition refer to the determination establishing the candidate
rejection criteria and the candidate success criteria, respectively. In the former case, the goal
of the fitness function is to prevent a complete change of the designer-defined style with
the 3D prototype model. In the considered method, the fitness function can enumerate the
degree of compliance with the design requirements by a phenotype about the 3D prototype
model at the genotype level, e.g., assuming that the ratio of the number of applying
structurally admissible CP-graph rules to the number of applying all the CP-graph rules in
the derivation of the genotype must be less than 0.5. In the latter case, taking into account
that the style of the building is determined by the designer, first of all, the aesthetic criteria
included in the prototype of the three-dimensional model based on the Biederman model
should be recommended. Examples of such aesthetic measures are presented in [9,32]. The
calculation of the fitness function values reflects the functional action taken by the designer.

Summarizing the first five elements of the abstract mental scheme in the considered
scheme evolutionary constructive procedure, we can find a reflection of all four types
of designer actions, i.e., physical, perceptual, conceptual, and functional. The proposed
non-numerical graph computations with an evolutionary mechanism, together with the
visual environment, constitute adequate mechanisms for the development of computational
creativity.

Selection, the sixth element of the scheme, is the application of the rejection and success
criteria to the results of the constructive procedure. It is a process for determining the
selected phenotypes according to their fitness. The selection schema may force a process
toward divergence or convergence [12]. To retain a balance between the designer’s creativity
in defining a style of buildings and new forms of buildings proposed by computational
creativity, a visual environment should be designed to help the designer in evaluating
building fitness and select them for the next cycle of the processor to terminate the system.

5. Conclusions

In the presented approach, the designer provides information about a dedicated
visual language, when creating a prototypical 3D form using a graphics editor, which
is an introduction to the search for a design space for stylized buildings consistent with
aesthetic preferences. Elements of this language transformed into CP-graphs with free

Buildings 2022, 12, 899 17 of 19

bonds provide extensional structures for the system of the graph rewriting rules that enable
the generation of elements of the design space. Some of these elements are input data
relative to a constructive evolutionary mechanism, the results of which can modify the
design space during the design process. This possibility gives the architectural designer
greater freedom to create design alternatives that extend beyond the original design space.

It should be noted that in the case of more stylistically complex forms of buildings,
the proposed graphics editor will need to be modified. We are planning a possibility to
create a 3D prototype model from several of its prototype sub-models, also consisting of
attached 3D solids, with each sub-model reflecting different aspects of the style defined by
the designer. The CP-graph structure of such a 3D prototype model will be generated by a
system consisting of rewriting systems of its sub-models. The complex system of CP-graph
generation based on CP-graph subsystems has been developed and implemented for the
finite element method [40].

It is assumed that the designer creates his 3D-prototype model by adding one three-
dimensional shape at a time. The designer’s synthesis process consists of a sequence of
actions determined by micro-evaluations of a defined style. The designer evaluates both
the types of components and how they are connected. The case will be simplified when the
configuration of several components is repeated in the prototype model. Components of
such a configuration will be aesthetically analyzed by the designer only during the first
time and then the configuration will be treated in the same manner as the other single
components; i.e., it will be added to the visual language vocabulary. Consequently, the
system of the CP-graph rewriting rules for the 3D prototype model with the repeating
configuration of components will have to include two new rules, one replacing the con-
figuration with a single CP-graph node and another reverse. The formalism of CP-graphs
provides such a transformation. The CP-graph corresponding to the configuration can be
seen as a CP-graph node if only its external bonds are defined.

Our approach proposes the theory and developing methods of communicating with a
computer for non-numerical computations on applications such as information retrieval,
design generation, and design evolution. We would like to inspire designers, especially
architects, to search for interesting computer-aided research opportunities that are not only
closely related to engineering numerical computations.

In the future, a framework for unsupervised CP-graph representation learning will be
explored to classify and detect the degree to which a building is representative of a building
class [41]. Unsupervised artificial intelligence techniques can be useful in determining the
typological and topological features of architectural solutions and we hope that they will
also be helpful in aesthetic evaluations.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Knight, T.W. Transformations in Design: A Formal Approach to Stylistic Change and Innovation in the Visual Arts; Cambridge University

Press: Cambridge, UK, 1994.
2. Mars, A.; Grabska, E.; Bielański, J.; Mogiła, P.; Mogiła, M. Reference Architectural Model of Buildings for Virtual City Creator.

In Proceedings of the EG-ICE 2021 Workshop on Intelligent Computing in Engineering, Berlin, Germany, 30 June–2 July 2021;
Abualdenien, J., Borrmann, A., Ungureanu, L.C., Hartmann, T., Eds.; Technical University of Berlin: Berlin, Germany, 2021;
pp. 291–300.

3. Cagan, J.; Campbell, M.I.; Finger, S.; Tomiyama, T. A Framework for Computational Design Synthesis: Model and Applications. J.
Comput. Inf. Sci. Eng. 2005, 5, 171–181. [CrossRef]

http://doi.org/10.1115/1.2013289

Buildings 2022, 12, 899 18 of 19

4. Grabska, E.; Strug, B.; Ślusarczyk, G. A Visual Interactive Environment for Engineering Knowledge Modelling. In Advanced
Computing Strategies for Engineering, Proceedings of the 25th EG-ICE International Workshop 2018, Lausanne, Switzerland, 10–13 June
2018; Smith, I.F.C., Domer, B., Eds.; Springer: Cham, Switzerland, 2018; Volume 10863, pp. 219–230.

5. Rozenberg, G. (Ed.) Handbook on Graph Grammars and Computing by Graph Transformation; World Scientific: River Edge, NJ,
USA, 1997.

6. Vilgertshofer, S.; Borrmann, A. Using Graph Rewriting Methods for the Semi-automatic Generation of Parametric Infrastructure
Models. Adv. Eng. Inform. 2017, 33, 502–515. [CrossRef]

7. Frazer, J.; Frazer, J.; Liu, X.; Tang, M.; Janssen, P. Generative and evolutionary techniques for building envelope design. In
Proceedings of the 5th International Conference GA2002, Milan, Italy, 11–13 December 2002; pp. 301–316.

8. Luerssenm, M.H.; Powers, D.M.W. Graph Design by Graph Grammar Evolution. In Proceedings of the IEEE Congress on
Evolutionary Computation, Singapore, 25–28 September 2007.

9. Mars, A.; Grabska, E.; Ślusarczyk, G.; Strug, B. Design Characteristics and Aesthetics in Evolutionary Design of Architectural Forms
Directed by Fuzzy Evaluation. AI EDAM; Cambridge University Press: Cambridge, UK, 2020; Volume 34, pp. 147–159.

10. Mastandrea, S.; Bartoli, G.; Carrus, G. The Automatic Aesthetic Evaluation of Different Art and Architectural Styles. Psychology of
Aesthetics Creativity, and the Arts 2010; American Psychological Association: Washington, DC, USA, 2011; Volume 5, pp. 126–134.

11. Hekkert, P.; van Wieringen, P.C.W. Beauty in the eye of expert and nonexpert beholders: A study in the appraisal of art. Am. J.
Psychol. 1996, 109, 389–407. [CrossRef]

12. Winkielman, P.; Halberstadt, J.; Fazendeiro, T.; Catty, S. Prototypes are attractive because they are easy on the mind. Psychol. Sci.
2006, 17, 799–806. [CrossRef] [PubMed]

13. Wannarumon, S.; Bohez, E.L.J. A New Aesthetic Evolutionary Approach for Jewelry Design. Comput. Aided Des. Appl. 2006, 3,
385–394. [CrossRef]

14. Biederman, I. Recognition-by-Components: A Theory of Human Image Understanding. Psychol. Rev. 1987, 94, 115–147. [CrossRef]
[PubMed]

15. Ventura, D. The Computational Creativity Complex. In Computational Creativity Research: Towards Creative Machines, Atlantis
Thinking Machines; Besold, T.R., Schorlemmer, M., Smaill, A., Eds.; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 65–92.

16. Csikzentmihalyi, M.; Robinson, R.E. The Art of Seeing; The J Paul Getty Trust Office of Publications: Los Angeles, CA, USA, 1990.
17. Wilde, W.; Wilde, R. Visual Literacy: A Conceptual Approach to Graphic Problem Solving; Watson-Guptill Publications: New York, NY,

USA, 1991.
18. Grabska, E. Graph and Designing. In Proceedings of the International Workshop on Graph Transformations in Computer Science,

Dagstuhl Castle, Germany, 4–8 January 1993; Schneider, H.J., Ehrig, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1993;
Volume 776, pp. 188–202.

19. Szuba, J.; Borkowski, A. Graph transformations in architectural design. Comput. Assist. Mech. Eng. Sci. 2003, 10, 93–109.
20. Paszyński, M.; Schaefer, R. Graph Grammar-Driven Parallel Partial Differential Equation Solver. In Concurrency and Computation:

Practice and Experience; Wiley Online Library: Hoboken, NJ, USA, 2010; pp. 1063–1097.
21. Kelly, G.; McCabe, H. A Survey of Procedural Techniques for City Generation. ITB J. 2006, 7, 87–130.
22. Pauwels, P.; Strobbe, T.; Eloy, S.; De Meyer, R. Shape Grammars for Architectural Design: The Need for Reframing. Communications in

Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 527, pp. 507–526.
23. Gero, J.S. Recent Developments in Evolutionary Systems for Design. In Artificial Intelligence in Structural Engineering, Proceedings

of the 6th EG-SEA-AI Workshop 1999, Wierzba, Poland, June 1999; Borkowski, A., Ed.; WNT: Warszawa, Poland, 1999; pp. 23–37.
24. Ware, C. Visual Thinking for Design. In The Morgan Kaufmann Series in Interactive Technologies; Elsevier Inc.: London, UK, 2008;

pp. 110–112.
25. Goldschmidt, G. Creative architectural design: Reference versus precedence. J. Archit. Plan. Res. 1998, 15, 258–270.
26. Szuba, J.; Grabska, E.; Borkowski, A. Graph Visualisation in ArchiCAD. In Applications of Graph Transformations with Industrial

Relevance. AGTIVE 1999. Lecture Notes in Computer Science; Nagl, M., Schürr, A., Münch, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2000; Volume 1779, pp. 241–246. [CrossRef]

27. Jupp, J.; Gero, J. Let’s Look at Style: Visual and Spatial Representation and Reasoning in Design; Argamon, S., Burns, K., Dubnov, S.,
Eds.; Springer: Cham, Switzerland, 2010; pp. 159–195.

28. Boden, M.A. Foreword. In Computational Creativity Research: Towards Creative Machines; Besold, T.R., Schorlemmer, M., Smaill, A.,
Eds.; Atlantis Press: Amsterdam, The Netherlands, 2015.

29. Marin, P.; Bignon, J.C.; Lequay, H. A Genetic Algorithm for use in Creative Design Processes; Annual Conference of the Association
for Computer-Aided Design in Architecture (ACADIA): Minneapolis, MN, USA, 2008.

30. Strug, B.; Grabska, E.; Ślusarczyk, G. Supporting the design process with hypergraph genetic operators. Adv. Eng. Inform. 2014,
28, 11–27. [CrossRef]

31. Bentley, P. Evolutionary Design by Computers; Morgan Kaufmann Publishers: San Francisco, CA, USA, 1999.
32. Tarko, J.; Grabska, E. Aesthetic Measure for Three-dimensional Objects. Mach. Graph. Vis. 2011, 20, 439–454.
33. Mars, A.; Grabska, E. Towards an Implementable Aesthetic Measure for Collaborative Architecture Design; Springer: Cham, Switzerland,

2015; Volume 9320, pp. 72–75.
34. Gardner, B.; Krishnamurti, R. Ordering the Aesthetic (A+) in Architecture: Advancing a Theory of Modular Computation; Nexus: Telford,

UK, 2008.

http://doi.org/10.1016/j.aei.2017.07.003
http://doi.org/10.2307/1423013
http://doi.org/10.1111/j.1467-9280.2006.01785.x
http://www.ncbi.nlm.nih.gov/pubmed/16984298
http://doi.org/10.1080/16864360.2006.10738477
http://doi.org/10.1037/0033-295X.94.2.115
http://www.ncbi.nlm.nih.gov/pubmed/3575582
http://doi.org/10.1007/3-540-45104-8_18
http://doi.org/10.1016/j.aei.2013.10.002

Buildings 2022, 12, 899 19 of 19

35. Gervas, P. A Personal Perspective into the Future for Computational Creativity. In Computational Creativity Research: Towards
Creative Machines, Atlantis Thinking Machines; Besold, T.R., Schorlemmer, M., Smaill, A., Eds.; Atlantis Press: Amsterdam,
The Netherlands, 2015; pp. 393–406.

36. Whitfield, T.W.A.; Slatter, P.E. The effects of categorization and prototypicality on aesthetic choice in a furniture selection task. Br.
J. Psychol. 1979, 70, 65–75. [CrossRef]

37. Todd, S.; Latham, W. Evolutionary Art and Computers; Academic Press: London, UK, 1992.
38. Gero, J. Creativity, emergence and evolution in design: Concepts and framework. Knowl. Based Syst. 1996, 9, 435–448. [CrossRef]
39. Guarino, N.; Oberle, D.; Staab, S. What Is an Ontology. In Handbook on Ontologies; Springer: Berlin/Heidelberg, Germany, 2009;

pp. 1–17.
40. Strug, B.; Paszyńska, A.; Paszynski, M.; Grabska, E. Using a Graph Grammar System in the Finite Element Method. Int. J. Appl.

Math. Comput. Sci. 2013, 23, 839–853. [CrossRef]
41. Sun, F.-Y.; Hoffmann, J.; Verma, V.; Tang, J. Infograph: Unsupervised and semi-supervised Graph-level representation learning

via mutual information maximization. arXiv 2019, arXiv:1908.01000.

http://doi.org/10.1111/j.2044-8295.1979.tb02144.x
http://doi.org/10.1016/S0950-7051(96)01054-4
http://doi.org/10.2478/amcs-2013-0063

	Introduction
	Innovative Designing and Composition Graphs (CP-Graphs)
	Visualization and Graph Representation of Building Forms
	Design Process and CP-Graph Rewriting System

	Evolutionary Design and Computational Creativity
	Initial Population and Genetic Operators
	Evaluation

	Discussion
	Conclusions
	References

