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Abstract: This research work is devoted to the experimental investigation of both rheological and
mechanical properties of self-compacting concrete (SCC) produced with waste galvanized copper
wire fiber and rice husk ash (RHA). In the study, three different volume fractions of 0.5 p to
0.75 percent, 1 percent of scrap copper wire fiber as reinforcing material, and 2 percent RHA as cement
replacement were used. To evaluate the fresh characteristics of SCC, the slump flow, J-ring, and
V-funnel experiments were conducted for this investigation. Compressive strength, splitting tensile
strength, and flexural strength of the concrete were conducted to assess the hardened properties. The
test was carried out to compare each characteristic of plain SCC with this modified SCC mixture,
containing RHA as pozzolanic materials and copper fiber as reinforcing material. Incorporating
copper fiber in the SCC leads to a drop in fresh properties compared to plain SCC but remains within
an acceptable range. On the other hand, the inclusion of 2% RHA makes the SCC more viscous.
Although adding 2% RHA and 1% copper wire in SCC provide the highest strength, this mix has
an unacceptable passing ability. The SCC mix prepared with 2% RHA and 0.75% copper fiber is
suggested to be optimum in terms of the overall performance. According to this study, adding
metallic fiber reinforcement like copper wire and mineral admixture like RHA can improve the
mechanical properties of SCC up to a certain level.

Keywords: self-compacting concrete (SCC); rice husk ash (RHA); flowability; copper wire fiber;
compressive strength

1. Introduction

Self-compacting concrete (SCC) is unique from traditional concrete because it can be
laid and compacted due to its own weight without causing any vibration or with minimal
vibration. In addition, SCC has the tendency to segregate and bleed due to its enough
cohesive nature. The most influential characteristics of SCC are good passing ability, high
flowability, and high segregation resistance [1]. There are many advantages of utilizing SCC,
such as the reduction of labor cost and time of construction, elimination of the requirement
for vibration, noise pollution reduction, enhancing the filling capacity of narrow spacing of
structural members, and obtaining good structural performance. A stabilizer (viscosity-
changing admixture) was utilized to strengthen the segregation resistance of SCC in order
to achieve the desired paste content [2]. Chemical admixtures, on the other hand, are costly,
and their usage may raise the material cost. Labor cost savings may be enough to cover
the higher admixture cost. Alternatively, the utilization of mineral additives like marble
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powder (MP), limestone powder, fly ash, natural pozzolan, slag, and rice husk ash (RHA)
can reduce the cost of SCC [3]. Previous studies showed that incorporating RHA into the
SCC mixture positively affected flowability and plastic viscosity, as well as significantly
reduced bleeding [1,4].

Since 1938, scientists have known that rice husk ash contains silica [5]. RHA can
provide similar benefits to silica fume in terms of better-hardened characteristics and
concrete durability if treated and applied appropriately [6–8]. Rice husk accounts for
about one-fifth of the total weight of dry rice [9]. Recent estimates have the annual global
output of rice at roughly 742 million tons, whereas the amount of rice husk produced is
approximately 148 million tons [10]. By utilizing RHA in concrete manufacturing, the
environmental effect of this waste can be minimized. Utilizing RHA decreases the need for
cement in the construction industry, reducing the cost of concrete production and reducing
the pollution caused by CO2 emissions from cement factories.

The RHA content substantially impacted fresh concrete characteristics, reducing the
SCC workability. According to Chopra and Siddique [11], the lowest workability was ob-
tained by the mix containing 20% RHA as cement replacement. On another side, the slump
flow for SCC by incorporating RHA content of 5% and 10% and content of superplasticizer
3.5–4.5%, was found within the EFNARC [12] range (650–800 mm); in contrast, the majority
of the V funnel test values were less than 6 s [13], showing that the increase of RHA (10%)
enhances the viscosity of SCC mix.

The pozzolanic and micro-filling effects of RHA on concrete’s microstructure and
pore structure increased its hardened characteristics dramatically, resulting in a boost in
compressive strength of up to 56 days [14]. RHA substitution in the matrix has a bigger
impact on normal strength concrete compressive strength than SCC mixes [15]. Increases
of roughly 25%, 33%, and 36% in 7, 28, and 56-day tensile strength were seen when RHA
content was increased from the control mix to 15 percent cement replacement [13].

The fiber incorporation enhances the overall performance of non-structural and struc-
tural properties of concrete, such as ductility, more crack resistance, and toughness, tensile
strength, fatigue, and abrasion resistance [16]. The presence of microcracks at the inter-
face between mortar and aggregate is the source of plain concrete inherent weakness,
which may be mitigated by adding fibers to the mix. Thus, several authors have already
pointed out that incorporating fibers in concrete can dramatically enhance the toughness
of high-strength concrete [17,18]. The fibers may be considered as aggregates with an
extreme deviation in shape from the rounded smooth one. The fundamental benefit of
incorporating fibers into self-compacting concrete is to get a more uniform distribution
of fibers throughout structural elements [19–21]. Moreover, using fibers in SCC mixes
helps eliminate low tensile strength problems, which is one of the most significant concrete
disadvantages [22]. Hence, fiber-reinforced self-compacting concrete (FRSCC) is considered
an improved building material that merges the advantages of the SCC with the toughness
of fiber.

Steel fibers have been investigated in combination with SCC and have shown to be
feasible [23,24]. The increase in the fiber content adversely affected the results of fresh
concrete tests, e.g., flow time T50 and J-ring flow diameter. The flow characteristics of
the slump flow test results were reduced correspondingly with the increment of the RSF
(recycled steel fiber) content [25]. If RSF is present, this behavior could be explained by
an increase in internal friction between the aggregate particles and fibers, according to
El-Dieb and Taha [26]. Another study revealed that the workability of SCC decreased
slightly after adding fibers. The main factor influencing the workability and flowability is
the shape of long fibers rather than their strength [27]. On the other hand, the RSF material
increased the V-funnel time over time. The increase in internal friction between RSF and
aggregate particles, which results in high viscosity, is the primary cause of the V-funnel
phenomenon [16].

Steel fibers can increase the mechanical and ductility characteristics of SCC in the same
way as vibrated concrete [28]. To improve the compressive strength of SCC mixes, steel
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fiber can be incorporated. Even while the modulus of elasticity and compressive strength
enhanced with age, these properties became less impressive when the quantity of steel
fibers in the material increased from 30 kg/m3 to 45 kg/m3 [29]. In the same context, it was
noted that straight and small size steel fibers are more effective for raising the compressive
strength, whereas long fibers with hooked ends are more useful for increasing the splitting
tensile strength of SCC [30]. All mixes of SCC with steel fiber have a higher flexural strength
than plain SCC, regardless of the fiber quantity. According to the results, concrete’s tensile
strength increases significantly as fiber content increases [31]. In addition, the increase in
entrapped air voids, considered a concrete defect, could increase the porosity of concrete if
RSF is used [25].

Although many researchers developed the SCC incorporating RHA, limited studies
have been performed in producing the SCC with both RHA and a reinforcing material, such
as waste galvanized copper wire fiber. As previously mentioned, self-compacting concrete
(SCC) has a high production cost due to the use of chemical admixtures, such as viscosity
modifiers, SPs, and high cement content. For these reasons, it is worth looking into other
substitution materials that perform similarly. Rice husk ash, which is high in silica, can
be a cheap solution for the necessity of high cement content and chemical additives for
SCC preparation. The use of steel fiber is becoming popular worldwide for improving the
mechanical properties of concrete especially tensile strength, but it is a little bit expensive
from the perspective of many economically developing nations. The production of self-
compacting concrete using waste copper wire fiber has not drawn enough attention in
the past. RHA and waste copper wire is cheap as they are waste material in respective
fields. Adding metallic fiber reinforcement like copper wire and mineral admixture like
RHA to the concrete can modify the fresh and mechanical properties of SCC. Large-scale
investigation is missing in the literature to jointly assess the rheological and mechanical
properties of SCC with RHA and copper wire fiber. Thus, waste copper wire has been
used as SCC reinforcement and RHA as a binder material to replace OPC in this research
work. These waste materials can be a promising solution and alternative to steel fiber
and cement, respectively. This self-compacting concrete is economical and sustainable for
constructing structures in developing countries. The study aimed to investigate the effects
of SCC incorporating rice husk ash with waste galvanized copper wire by ignoring more
costly mineral additives and steel fibers. This study aims to investigate the fresh properties
of SCC like flowability, passing ability, and viscosity by conducting slump flow, J-ring
and V-funnel test. In contrast, the mechanical properties of SCC are evaluated by some
strength tests, e.g., compressive strength, tensile and flexural strength test. In addition, the
comparison of modified SCC with the control mix and statistical regression analysis are
determined based on the results of strength tests of SCC with ACI codes of practice.

2. Materials and Methods
2.1. Materials

Ordinary Portland cement (OPC), natural coarse aggregate, fly ash river sand, waste
copper wire, rice husk ash (RHA), super plasticizer, and potable water were used to prepare
the concrete samples. This experimental study has utilized the chemical composition
of OPC, as described in Table 1. Fly ash of the class F variety was obtained from the
nearby port. The chemical properties of the utilized Class F fly ash are also presented in
Table 1. The coarse aggregate employed in this investigation was stone chips, ranging
in size from 4.75 mm to 25 mm. This research used locally sourced river-washed sand
with a fineness modulus of 2.98 and a maximum particle size of 4.75 mm as fine aggregate.
Table 2 shows the physical characteristics of coarse and fine aggregates based on a number
of tests. Figure 1 represents the sieve analysis test data and the grading curve of fine and
coarse aggregates.
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Table 1. Chemical Composition of RHA, OPC, and Fly Ash (FA).

Constituents
Weight, %

RHA OPC FA

Silica (SiO2) 75.24 21.5 61.31
Alumina (Al2O3) 2.18 4.74 30.39

Ferric oxide (Fe2O3) 2.24 4.30 1.24
Calcium oxide (CaO) 2.42 63.49 1.31

Magnesium oxide (MgO) 2.28 1.02 0.89
Sulfur trioxide (SO3) 0.12 2.93 0.31

Sodium oxide (Na2O) 0.86 0.30 0.39
Potassium oxide (K2O) 1.72 0.78 0.42
Loss of ignition (LOI) 12.99 — 3.27

Table 2. Physical properties of aggregates.

Properties Sand Stone Chips

Moisture content 19.4% 14.7%
Specific gravity 2.43 2.65

Void ratio 44.97% 33.98%
Fineness modulus 2.98 5.56

Loose bulk density (kg/m3) 1200 1575.6
Compacted bulk density (kg/m3) 1353.5 1780.4
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Figure 1. Grading curve of fine and coarse aggregate used in this study.

Waste galvanized copper wire fiber contents of 0%, 0.5%, 0.75%, and 1% of concrete
weight were used, as depicted in Figure 2. The physical characteristics of waste galvanized
copper wire fiber are shown in Table 3. This wire fiber was collected from BRB Cable
Industries Ltd. Khulna, Bangladesh.
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Table 3. Physical properties of waste galvanized copper wire fibers.

Properties Value Obtained

Length of fiber 0.5–1.0 inch
Diameter 0.016 inch (0.40 mm)

Average aspect ratio 50
Tensile strength 400 MPa

Appearance form Brown, bright, undulated along length
Modulus of elasticity 110 GPa

Rice husk was gathered from a local seller of Teligati, Khulna, Bangladesh, as shown
in Figure 3. The rice husk ash is produced by carefully selecting, drying, burning, wet
grinding, and sieving rice husk. In this experiment, RHA samples were produced by
burning rice husk at 700◦ Celsius for 6 h and wet-grinding for about 80 min using the same
preparation method followed by Della et al. [32]. This preparation method reduced particle
size and obtained grey color due to the lower carbon amount. Tables 1 and 4 detail the
rice husk ash physical and chemical properties. In this experiment, a substance called a
superplasticizer was employed, which is also known as a high-range water reducer.
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Table 4. Physical properties of rice hush ash.

Properties Value Obtained

Mean particle size (µm) 6.27
Color Grey

Specific surface area (m2/g) 36.47
Fineness: passing 45 µm (%) 91

Specific gravity 2.08

2.2. Mix Proportion

Cement, fine aggregate, and coarse aggregate were mixed in a typical volumetric mix
ratio of 1:2:2.25 for the concrete. The ratio of cement to fly ash was 1:0.25. With the use of
super plasticizer, the water–binder ratio of 0.32 was chosen, increasing workability and
keeping constant for all concrete mixes. The concrete sample was developed by mixing
all the raw materials within their calculated proportion using the mixing machine in the
structural and materials laboratory of the BECM department, KUET, Khulna, Bangladesh.
There were four separate batches of concrete mix created for the research purposes. M0
denotes the control batch without any RHA and copper fiber. Another three mixes were
produced by adding copper fibers in three percentages: 0.5%, 0.75%, and 1% of the concrete
weight. These mixes were noted by M0.5, M0.75, and M1, respectively. In these later
three mixes, 2% RHA was added as a replacement for OPC. Table 5 details the materials
proportion of each concrete mixture.

Table 5. Mixing proportion of material.

Mix Cement
(kg/m3)

FA
(kg/m3)

Sand
(kg/m3)

CA
(kg/m3)

Wire
Fiber
(%)

Wire
Fiber

(kg/m3)

RHA
(%)

RHA
(kg/m3) W/B Water

(kg/m3)
SP
(%)

M0 400 100 800 900 0 0 0 0 0.32 160 1.63

M0.5 392 100 800 900 0.50 12 2 8 0.32 160 1.63

M0.75 392 100 800 900 0.75 18 2 8 0.32 160 1.63

M1 392 100 800 900 1.00 24 2 8 0.32 160 1.63

FA = Fly Ash, CA = Coarse aggregate, RHA = Rice husk ash, W/B = Water to binder ratio, SP = Super plasticizer
(percent to cement weight).

2.3. Specimens Preparation and Curing

Total specimens preparation included 42 number 100 mm in diameter by 200 mm
in height cylinders for compressive strength [33] and splitting tensile strength [34], and
24 number prisms of 100 × 100 × 500 mm for flexural strength tests [35] were prepared.
After finishing the fresh testes, molds were filled with concrete a single time without any
temping. A water curing period of 7 and 28 days followed. The room temperature was
28 ◦C with a relative humidity of 82%.

2.4. Test Setup and Instrumentation

In this experimental study, the fresh concrete test was conducted by the slump flow,
J-ring flow and V-funnel tests. Compressive, flexural, and splitting tensile tests were
performed to determine the hardened characteristics of SCC. All these fresh and hardened
tests were performed on the structural and materials laboratory of the BECM Department,
KUET, Khulna, Bangladesh.

2.4.1. Slump Flow Test

The slump flow test evaluated the deformability properties of SCC without obstacles,
as illustrated in Figure 4a. The British standard BS EN 12350-Part 8 was utilized to test the
slump flow [36]. A stopwatch was used to record the required time to reach the concrete
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500 mm circle and denoted as T50. When the mix completely stopped flowing, the largest
diameter of flow was measured nearest to the 10 mm (d1) and right angle (d2).
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2.4.2. J-Ring Flow Test

The J-ring test was evaluated to check both the flowability and passing ability of SCC.
As specified by BS EN 12350-Part 8, the J-ring flow test was conducted [36] in this research
work and is shown in Figure 4b. Additional blocking index BJ can be obtained from J-ring
flow test in association with the previous slump cone test parameters. There were no major
differences between this test and the slump flow test, except that a J-ring was placed around
the cone instead of the cone itself. When the SCC stops spreading, a straight rod and the
concrete surface are measured at a center point (∆h0) and at four other locations on its
perimeter. Next, the blocking index was calculated. This blocking index is a representation
of the SCC mixes’ passing ability phenomenon.

2.4.3. V-Funnel Test

To measure the fluidity and segregation resistance of SCC, V-Funnel test was per-
formed in this study. It was conducted by following the standard procedures of BS EN
12350-Part 9 [37]. A precise stopwatch was operated to record the time the concrete took to
flow from opening the funnel gate until the container was visible through the funnel. This
V-funnel time “Tv” expressed the viscosity of the SSC mixes. The graphical presentation of
V-funnel test is in Figure 4c.

2.4.4. Compressive Strength Test

Compressive strength test of concrete was performed on the cylindrical specimens,
followed by ASTM C39/C39M-18 [33]. A compression testing machine was used to provide
load rates from 0.15 to 0.35 MPa/s and is displayed in Figure 5a. After properly placing
the cylindrical specimens, a compressive axial load was applied to the specimens with
a constant rate of 0.2 MPa/s until failure. This ultimate maximum load was noted and
utilized to determine the compressive strength.



Buildings 2022, 12, 1024 8 of 23Buildings 2022, 12, x FOR PEER REVIEW 8 of 23 
 

   
(a) (b) (c) 

Figure 5. Experimental setup of the hardened concrete test, (a) compressive strength test, (b) split-
ting tensile strength test, (c) flexural strength test. 

2.4.5. Splitting Tensile Strength Test 
Splitting tensile strength test was conducted on the concrete cylinder followed by 

ASTM C496/C496M–17 [34]. The specimen was placed between two plywood strips. The 
test setup is portrayed in Figure 5b. A steady load of 0.7 to 1.4 MPa/min was applied 
without shock throughout the length of the cylindrical concrete specimen until the force 
indicator showed that the load was progressively decreasing and the specimen had a 
well-defined fracture pattern. The maximum load and strength carried by the specimen 
were recorded, and the fracture pattern was observed. 

2.4.6. Flexural Strength Test 
Flexural (modulus of rupture) strength was determined by following the standard 

test procedures ASTM C78/ C78M-18 [35]. The bottom support of the beam was placed 25 
mm far from both edges, and the distance between the loading and support was 150 mm, 
which can be observed as the sample test setup presented in Figure 5c. The load was ap-
plied to the specimen continuously at a constant loading rate of 0.86 to 1.21 MPa/min 
without any sudden shock until the failure point. The prism fracture pattern and the 
highest load handled by the prism during the test were reported. 

3. Results and Discussion 
3.1. Fresh Properties 

Three rheological parameters were tested to investigate the passing ability, filling 
ability, and viscosity in this investigation. Table 6 represents the test results of fresh 
properties of various SCC mixes. 

Table 6. Fresh properties’ results of all SCC mixes. 

Mix Slump Flow 
(650–800 mm) 

T500 
(2–5 s) 

J-Ring Slump Flow 
(600–750 mm) 

Blocking Index, 
BJ (0–10) 

V-Funnel Time, TV 
(6–12 s) 

Remarks 

M0 730 2.7 650 7.25 4.9 Low viscosity 
M0.5 700 3.1 620 8.27 6.12 Result satisfied 
M0.75 690 4.2 600 9.5 6.65 Result satisfied 

M1 685 4.5 580 12 7.25 Low passing ability 

3.1.1. Effect on Cone Slump Flow 
The results of the cone slump flow exhibited that the flow characteristics decrease 

proportionally with the increment of waste copper wire content, as represented in Figure 
6. The control mix displayed the maximum value of flow: 730 mm. The mix M1 with ad-

Figure 5. Experimental setup of the hardened concrete test, (a) compressive strength test, (b) splitting
tensile strength test, (c) flexural strength test.

2.4.5. Splitting Tensile Strength Test

Splitting tensile strength test was conducted on the concrete cylinder followed by
ASTM C496/C496M–17 [34]. The specimen was placed between two plywood strips. The
test setup is portrayed in Figure 5b. A steady load of 0.7 to 1.4 MPa/min was applied
without shock throughout the length of the cylindrical concrete specimen until the force
indicator showed that the load was progressively decreasing and the specimen had a
well-defined fracture pattern. The maximum load and strength carried by the specimen
were recorded, and the fracture pattern was observed.

2.4.6. Flexural Strength Test

Flexural (modulus of rupture) strength was determined by following the standard test
procedures ASTM C78/ C78M-18 [35]. The bottom support of the beam was placed 25 mm
far from both edges, and the distance between the loading and support was 150 mm, which
can be observed as the sample test setup presented in Figure 5c. The load was applied
to the specimen continuously at a constant loading rate of 0.86 to 1.21 MPa/min without
any sudden shock until the failure point. The prism fracture pattern and the highest load
handled by the prism during the test were reported.

3. Results and Discussion
3.1. Fresh Properties

Three rheological parameters were tested to investigate the passing ability, filling
ability, and viscosity in this investigation. Table 6 represents the test results of fresh
properties of various SCC mixes.

Table 6. Fresh properties’ results of all SCC mixes.

Mix Slump Flow
(650–800 mm)

T500
(2–5 s)

J-Ring Slump Flow
(600–750 mm)

Blocking Index,
BJ (0–10)

V-Funnel Time, TV
(6–12 s) Remarks

M0 730 2.7 650 7.25 4.9 Low viscosity

M0.5 700 3.1 620 8.27 6.12 Result satisfied

M0.75 690 4.2 600 9.5 6.65 Result satisfied

M1 685 4.5 580 12 7.25 Low passing ability

3.1.1. Effect on Cone Slump Flow

The results of the cone slump flow exhibited that the flow characteristics decrease
proportionally with the increment of waste copper wire content, as represented in Figure 6.
The control mix displayed the maximum value of flow: 730 mm. The mix M1 with
additional 1% waste copper wire displayed the minimum flow value of 685 mm. This
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indicates the decreasing workability with changes in concrete composition, but the flow
is within the acceptable limit of 650–800 mm [12]. Previous researchers have discovered a
similar loss in workability properties with steel fibers [11,15,24,38–40]. According to the
results of the slump flow test, the incorporation of RHA into SCC led to a reduction in
the workability. This is because when the OPC is partially replaced by RHA, the surface
area and volume fraction of the binder increase. Because of the increased surface area, the
water absorption increased [14,41,42]. More superplasticizer was used to obtain acceptable
workability. Slump flow value decreases approximately 4%, 5%, and 6% from the control
mix as the copper wire added 0.5%, 0.75%, and 1%, respectively. These percentage changes
in slump values are illustrated in Figure 8.
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On another side, the required time for the slump for reaching the 500 mm diameter
“T50” increases with the increase of the RHA and waste copper wire added. These conse-
quences of the cone test are illustrated in Figure 6. The value of the flow time will generally
display the opposite result of slum flow because as the workability of concrete decreases
it will take more time to flow. The “T50” flow time was obtained between 2.7 s to 4.5 s
from 0% to 1% of fiber addition, which satisfies the EFNARC [12] range of 2–5 s. A similar
observation was found by Raisi et al. [42], and their findings concluded that the “T50” time
was between 2.3 and 5.2 s for varying content of RHA. The percentage change in flow time
“T50” is also illustrated in Figure 10, which represents an increment of the flow time of
about 15%, 56%, and 67%, respectively, for mix M0.5, M0.75, and M1 from control mix M0.
Akcay and Tasdemir [27] also discovered that time of flow has risen with increasing fiber
volume. They also highlighted that adding 0.75% fibers had no noticeable effect on the
“T50” values of the reference SCC, while adding 1.5% significantly raised the “T50” values.
According to our observations, the SCC flow rate decreased as the fiber content increased.

3.1.2. Effect on J-Ring Flow

It is found that the J-ring slump values a decreasing tendency similar to the cone test
with the incorporation of waste copper wire. The reduction in J-ring flow indicates the
low filling ability, low passing ability, and high viscosity. These results of J-ring flow for
different SCC mixes are presented in Figure 7. The mix obtained the lowest J-ring slump
value, e.g., 580 mm with RHA and 1% copper fiber, and the maximum from the mix without
RHA and copper fiber e.g., 650 mm. Mix M1 have shown a lower passing ability than the
standard value. This occurred due to the absorptive properties of RHA, which makes the
SCC more viscous, and the copper wire length obstructed the mix’s flow and pass via the
ring. The percentage changes in J-ring flow value compared to the control mix M0 are
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represented in Figure 8. The J-ring flow value decreased approximately 5%, 8%, and 11%
for the addition of 0.5%, 0.75%, and 1% waste copper wire, respectively. The J-ring flow
value was also found to be decreased with fiber addition by Ackay and Tasdemir [27], who
found that the geometry of fibers, rather than their strength, has the greatest influence on
flowability. Their observation also noted that, in alignment with the results of this study,
the J-ring flow radius for each concrete mix obtained a lower flow radius from the slump
flow test (see Table 6).
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Another term that represents the passing ability of the SCC mixes is blocking index
“BJ”, which is also calculated from J-ring test parameters. This property is interpreted
oppositely to the J-ring flow value, as the greater the “BJ” value, the lesser the passing
ability. Figure 7 shows the blocking index “BJ” for different SCC mixes. It was found that
the maximum index, e.g., 12 obtained for the mix M1 and the lowest index, e.g., 7.25, for
the mix M0. SCC mix with RHA and 1% copper fiber obtained a blocking index value
beyond the standard. Hence, the passing ability of the SCC mixes decreases as the blocking
index “BJ” value increases, but the SCC mixes except M1 are able to gain acceptable passing
ability according to EFNARC [12]. In brief, the results of these tests show a decrease in
filling ability and passing ability of the SCC with the increase in the copper fiber content.
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3.1.3. Effect on V-Funnel Flow

It was found that with the increase of waste copper wire content, the flow time of
V-funnel, “Tv”, tends to increase. As previously indicated, this could be due to increased
internal friction between aggregate particles and copper wire, resulting in high viscosity
and prolonged flow durations via the V-funnel. In addition, the RHA turns the SCC mix
more viscous due to the absorptive properties. Copper fibers raise the “Tv” of V-funnel
flow by preventing the aggregate particle from moving freely. Therefore, the maximum
V-funnel flow time, e.g., 7.25 s obtained by the SCC mix M1 with RHA and 1% of copper
fiber. The other mixes with RHA and 0.5% and 0.75% fiber obtained a “Tv” of 6.12 s and
6.65 s, respectively. This result is quite similar to the experimental outcomes by other
researchers [27,40,43], who found that V-funnel flow times increase as the RHA and steel
fiber are incorporated. According to them, EFNARC’s specifications for fresh properties,
including V-funnel flow duration and slump flow diameter, have been reached. [12]. We
expected the control mix and other concrete mixes to obtain satisfactory viscosity prescribed
for SCC by EFNARC [12]. A standard limit of EFNARC [12] for different SCC mixtures
is depicted in Figure 9. The value of “Tv” increased by about 25%, 36%, and 48% for the
addition of 0.5%, 0.75%, and 1% of waste copper wire compared to the control mix (see
Figure 10). This behavior is quite similar to the observation by Akcay and Tasdemir [27],
who reported that at low fiber content, the V-funnel time did not change, but the addition
of 1.5% fibers dramatically enhanced the flow time.
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3.2. Hardened Concrete Test
3.2.1. Effect of Fiber on Compressive Strength Test

Table 7 shows the compressive strength behavior of all SCC mixes with respect to
mean compressive strength, coefficient of variation, standard deviation, standard error,
and 95% confidence interval.

Table 7. Compressive strength test results summary.

Mix Day
Mean

Strength
(MPa)

Standard
Deviation

Coefficient
of Variation

Standard
Error

95% Confidence
Interval

Lower limit
(MPa)

Upper limit
(MPa)

M0
7 15.47 1.20 0.077 0.69 12.50 18.44

28 22.62 4.30 0.19 2.48 12.00 33.29

M0.5
7 9.13 0.35 0.038 0.20 8.27 10.00

28 17.99 2.00 0.11 1.15 13.04 23.00

M0.75
7 9.70 0.215 0.0217 0.12 9.40 10.40

28 18.09 2.10 0.12 1.20 12.92 23.25

M1
7 10.80 0.255 0.025 0.15 9.45 11.70

28 19.70 0.951 0.048 0.55 17.33 22.07

It can be stated from Table 7 that the compressive strength value for the SCC with
RHA and waste copper wire ranges from 9.13 MPa to 22.62 MPa, with a standard error
range from 0.124 to 2.48. The strength among the three specimens deviated from one to
another, ranging from 0.22 MPa to 4.3 MPa with a relative coefficient of variation 0.022 to
0.19. At 7 days, the final lowest compressive strength for the mix with RHA and 0.5 percent
copper wire was 9.13 MPa, with a 95 percent confidence interval of 8.27 MPa to 10 MPa. In
contrast, the extreme compressive strength for this experimental study was recorded for
the control mix SCC, which is 22.62 MPa with a 95% confidence interval between 12 MPa
to 33.29 MPa.

Tests on the compressive strength of the SCC combination revealed that as the amount
of waste copper wire increased, the compressive strength increased but did not surpass the
strength of the control mix. This phenomenon can be described by the improper mixing of
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aggregates, the friction between plates by copper wire, and the high absorption capacity
of RHA.

Figure 11 shows the 7- and 28-day compressive strength data for all SCC mixes in a
line diagram. The acceptable compressive strength at 28 days will be in the specified range
of 17–31 MPa based on the guideline ACI [44]. Figure 12 illustrates the changing percentage
of compressive strength with varying copper wire addition, showing that the compressive
strength for mix M0.5, M0.75, and M1 decreased 40.98%, 37.30%, and 30.19%, respectively,
at 7 days, whereas these rates at 28 days are 20.47%, 20.23%, and 12.91%, respectively.
According to Raisi et al. [42], RHA compressive strength rose by 8 percent and 2.6 percent
at a water–binder ratio of 0.50 at 28 days, respectively, with regard to the control concrete
when RHA was added from 5% to 20%. According to Ali et al., the compressive strength
increases up to 10 percent of RHA and starts to decrease at 12.5 percent [45]. Chopra and
Siddique [11] stated that the hydrated cement reduced compressive strength was caused by
a reaction between the calcium hydroxide generated and the high concentration of available
silica [13]. Other researchers like Rahman et al. [46] and Suaiam and Makul [47] found that
the compressive strength of SCC mixes containing RHA reduced with the increment of
the RHA concentration at 3 and 28 days. The strength of composite mixes increase after
60 days due to increasing the pozzolanic reactions rate of RHA in the matrix and a denser
internal structure. Due to fibers’ capability to prevent the spread and development of
microcracks, concrete failure is delayed. The specimens show columnar fracture failure
due to the internal friction between coarse aggregate and copper wire fibers. Figure 17a
shows a crack on the specimen.
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3.2.2. Effect of Fiber on Splitting Tensile Strength Test

Splitting tensile strength was used to quantify the tensile properties of the SCC mix-
tures. It is shown in Table 8 with the mean, standard deviation, standard error, covariance
coefficient of variation, and 95 percent confidence interval.

Table 8. Tensile strength test results summary.

Mix Day
Mean

Strength
(MPa)

Standard
Deviation

Coefficient
of Variation

Standard
Error

95% Confidence Interval

Lower Limit
(MPa)

Upper Limit
(MPa)

M0
7 2.81 0.17 0.06 0.098 2.40 3.23

28 3.63 0.30 0.083 0.17 2.90 4.36

M0.5
7 2.41 0.17 0.07 0.098 1.98 2.83

28 2.61 0.05 0.02 0.03 2.38 2.64

M0.75
7 2.57 0.11 0.044 0.06 2.24 2.76

28 2.76 0.20 0.072 0.11 2.30 3.23

M1
7 2.62 0.14 0.053 0.08 2.30 2.96

28 2.83 0.16 0.05 0.092 2.43 3.22

Table 8 represents the splitting strength of SCC with RHA and waste copper wire
ranging from 2.41 MPa to 3.63 MPa, with the standard error percentage ranging from
0.03 to 0.17. The 95% confidence interval for the least tensile strength was between
1.98 MPa to 2.83 MPa, and the extreme tensile strength was recorded at 2.9 MPa to 4.36 MPa.
The mean strength is calculated by taking the average of three specimens, and the value
deviated from one another ranges between 0.05 MPa to 0.30 MPa, with the respective coef-
ficient of variation 0.02 to 0.083. The uppermost tensile strength for 28 days was recorded
3.63 MPa for the control mix with no RHA and copper wire, and the lowermost strength
was recorded for the mix M0.5 incorporating RHA and 0.5% copper wire, which
is 2.61 MPa.

After analyzing the splitting strength results of the different categories of SCC mixes, it
was observed that the tensile strength of the SCC mixes tended to increase with the addition
of waste copper wire but is not greater than the control mix. The test results show that
1% replacement gives the highest tensile strength, which is 2.83 MPa at 28 days and below
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the control mix strength of 3.63 MPa. For 0.5% and 0.75% replacement, the splitting strength
was 2.61 and 2.76 MPa, respectively, at 28 days. This phenomenon can be described due
to improper mixing of aggregates, friction between plates by copper wire, w/c ratio,
and high absorption capacity of RHA. The acceptable splitting strength at 28 days will
be in the range of 2–5 MPa according to ACI [44], and the outcomes for all conditions
satisfied this margin. Figure 13 depicts the values of splitting strength for different SCC
types in the linear graph for both 7 and 28 days. Chopra and Siddique [13] found that
the splitting tensile strengths of SCC containing 0%, 10%, 15%, and 20% RHA at 7 and
28 days were in the ranges of 2–2.8 and 2.5–3.7 MPa, respectively. In this experiment, the
splitting tensile strength reduces a maximum of 14.23% with respect to the control mix
by incorporating RHA and waste copper wire in SCC at 7 days and 28.1% at 28 days.
Figure 14 illustrates the percentage change of tensile strength values compared to the
percent of fiber added. To compare with plain concrete, Raisi et al. [42] observed comparable
results—that adding RHA at concentrations ranging from 5% to 20% enhanced the splitting
tensile strength of water–binder ratios of 0.50 at 28 days by 4.8%, 4.2%, and 2.5%, before
lowering it by 16.9%. Ali et al. [45] reported that split tensile strength results increase up to
10 percent of RHA and start to decrease at 12.5 percent. Similar results were also reported by
Rahman et al. [46], who discovered a drop in split tensile strength as RHA % increased,
which is consistent with our findings. The cylinder crack from the splitting tensile strength
test was carefully checked and inspected. This crack is a columnar fracture. The specimens
show failure due to the internal friction between coarse aggregate and copper wire fibers.
Both primary and secondary cracks were observed. Figure 17b shows the failure pattern of
the concrete specimens.
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3.2.3. Effect of Fiber on Flexural Strength Test

The third point loading test technique was used in the lab to measure the flexural
strength of scrap copper wire SCC. These findings are described in Table 9, which includes
mean flexure strength and 95% confidence intervals for these variables as well as other
key statistics.

Table 9. Flexural strength test results summary.

Mix Day
Mean

Strength
(MPa)

Standard
Deviation

Coefficient
of Variation

Standard
Error

95% Confidence Interval

Lower Limit
(MPa)

Upper Limit
(MPa)

M0
7 5.08 0.42 0.08 0.24 4.04 6.11

28 5.73 0.30 0.052 0.17 5.00 6.46

M0.5
7 4.08 0.15 0.04 0.09 3.70 4.47

28 4.72 0.20 0.042 0.12 4.20 5.23

M0.75
7 4.81 0.15 0.03 0.09 4.40 5.19

28 5.21 0.022 0.0043 0.012 5.00 5.96

M1
7 5.00 0.35 0.07 0.20 4.10 5.86

28 5.40 0.25 0.05 0.14 4.79 6.10

The Table 9 shows that the flexural strength for the SCC with RHA and waste copper
wire ranges from 4.08 MPa to 5.73 MPa, with the standard error percentage from 1.2%
to 24%. The mean flexural strength is determined by averaging the values of the three
specimens, and the values deviated from one to another from 0.022 MPa to 0.42 MPa
with the relative coefficient of variation 0.0043 to 0.08. The extreme flexural strength was
recorded for the control mix M0 at 28 days, which was equal to 5.73 MPa with a confidence
interval between 5 MPa to 6.46 MPa. In contrast, the least flexural strength was evaluated
for the mix with RHA and the 0.5% copper wire at 7 days which is 4.08 MPa, having the
confidence band between 3.7 MPa to 4.47 MPa.

By performing the flexural strength test on the different SCC mixtures, it was discov-
ered that with the increment of waste copper wire, the flexural strength tends to increase
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but is not greater than the control mix. After replacement, the test results show that
1% replacement gives the highest tensile strength, which is 5.4 MPa at 28 days than 0.5%
and 0.75% replacement (4.72 MPa and 5.21 MPa), which is below the control mix strength
5.73 MPa. This phenomenon can be explained, as previously mentioned by tensile strength.
A similar observation was made by Ali et al., who reported that flexural strength results
increase up to 10 percent of RHA and start to decrease at 12.5 percent. The minimum
acceptable flexural strength at 28 days will be in the range of 3–5 MPa followed by the ACI
code [44], which completely satisfied all compositions of SCC tested in this experiment.
Figure 15 illustrates the flexural strength values of all the SCC mixes for the curing 7 and
28 days. At 7 days curing, flexural strength reduces by a maximum 19.68% to a minimum
1.57% from the control mix M0 with the addition of RHA and waste copper wire in self-
compacting concrete. On the other hand, the strengths decreased by a maximum of 17.63%
for 2% RHA and 0.5% copper wire addition and a minimum of 5.76% for 2% RHA and
1% wire addition at 28 days. Figure 16 depicts the changing percentage of flexural strength
with respect to wire addition. Atan and Awang [48] concluded that the incorporation of
mineral admixtures (FA and SF) in SCC mixing RHA led to lower flexural strengths than
the control mix. Pai et al. [49] also found that a considerable quantity of RHA in SCC
significantly influenced the concrete flexural strength. Different type of cracking on the
specimens were noted, and the distance of the fracture was measured. The observed failure
modes in the beam are inclined flexural shear crack. The main reason for this type of crack
is the inadequate flexural capacity of the beam and the insufficient cross section. It was a
single crack. The maximum width of the crack was observed at the bottom of the beam
(see Figure 17c).
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3.2.4. Relation between Mechanical Properties

The mechanical properties of waste copper wire SCC, such as compressive strength,
tensile strength, and flexural strength, all behave and alter in a similar way. For comparison
of various mechanical properties, all the results of tested properties are placed in a single
graph presented in Figure 18. The graph shows clearly that as the RHA is added and
the copper wire percentage increases, all the strength properties increase to curing days.
Nevertheless, none of the strength values of waste copper SCC are greater than the control
SCC mix. From Figure 18, it is also clear that the compressive strengths of concrete mixtures
at 28 days become almost double from 7 days. Compressive strength values at 28 days
increased about 82–97% from 7 days for different mixes with RHA and copper fiber. While
the tensile strength and flexural strength of SCC mixed with RHA and copper fiber, at
28 days it had increased 7–15% from the strength at 7 days.
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The correlation between compressive and tensile strength developed by regression
analysis is presented in Figure 19. The proposed model displayed a linear relationship
between these two parameters where the coefficient of determination value R2 is 0.60. This
resulting relation could be used to quantify the splitting tensile or compressive strength
from each other point without laboratory experimentation for the SCC with RHA and
copper fiber. The established linear equation proposed an above-average relation with
60% of reliability. The equation to get splitting tensile strength, ƒst for any value of com-
pressive strength, f ′c is presented in Equation (1)

fst = 0.06 f ′c + 1.90 (1)
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The 95% confidence interval band presented in Tables 7 and 8 is also plotted in the
relation graph. This experimental relation of the SCC values also satisfied the ACI 318 [44]
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code recommended relation, ƒst = 0.5
√

f ′c to 0.6
√

f ′c and the experimental values lie above
the highest code suggested range (see Figure 19).

Figure 20 illustrates the relationship between compressive and flexural strength de-
rived from an experimental regression analysis. The projected model exhibited a linear
behavior between these influencing parameters where the coefficient of determination
value R2 is 0.62. This outcome ensures an average relation between these two parameters
with 62% dependability. The developed relation could be used to quantify the flexural
strength or compressive strength from each other point without the need to perform any
experimentation in the laboratory for the waste copper wire self-compacting concrete. The
equation to get flexural strength, ƒr for any compressive strength value, f ′c is presented
in Equation (2).

fr = 0.08 f ′c + 3.81 (2)
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4. Conclusions

The following conclusions can be drawn from the test results and discussion of this
experimental study:

1. Waste copper fiber makes SCC less workable as the control mix obtains the highest
slump 730 mm and the least time to flow 2.7 s.

2. The shape and texture of waste copper fiber slightly increase the chance of blockage.
The maximum blocking index, 12 was obtained for mix M1, indicating unacceptable
passing criteria for SCC.

3. The addition of 2% rice husk ash as a substitution for cement makes the SCC
more viscous.

4. The compressive, flexural, and splitting strength increases among themselves with
increasing the percentage of waste copper fiber, but they remain below the control
SCC mix.
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5. The compressive strength decreased 12.91% at 28 days from the control mix due to a
maximum 1% of waste copper fiber addition. This decreasing rate for splitting and
flexural strength obtained 22.04% and 5.76%, respectively, for the same condition.

6. The test results show that 2% RHA as a substitution of OPC and adding 1% copper
wire gives the highest strength but has an unacceptable passing ability. Therefore,
the SCC mix M0.75 with 2% RHA and 0.75% copper fiber is said to be optimum for
this study.

7. According to the above study, adding waste copper fiber reinforcement and mineral
admixture like RHA to the SCC can achieve adequate rheological and mechanical
properties to use in real life construction.

5. Future Recommendations

From the literature review, it can be found that RHA significantly influences me-
chanical characteristics at delayed age of concrete. Therefore, the authors would like to
recommend continuing this experiment for more curing days, e.g., 56 days and 90 days, to
assess the behavior of SCC with RHA and waste copper fiber.
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