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Abstract: Convective heat transfer on the exterior surface of the building envelope is an important
component for building energy consumption. The calculation of energy consumption depends on
the convective heat transfer coefficient (CHTC) of the exterior surface of the envelope. The existing
research does not fully consider the effects of the airflow field around the building on the CHTC
of different envelope exterior surfaces. In this paper, the relationships between the CHTC and
influence factors were investigated for the isolated building. Response surface methodology (RSM)
and support vector machine (SVM) algorithms were integrated with the single building simulation
to build the fitting formulas. Then, the fitting correlation between CHTC and different influencing
factors was validated by the heating building simulation. The results showed that the CHTC of
the building exterior surface was related to the wind velocity, wind direction and temperature
difference. Additionally, the fitting formulas had good accuracy in calculating the CHTC under
different conditions. The SVM algorithm (averaged error: 3.34%) performed slightly better than the
RSM algorithm (averaged error: 4.84%).

Keywords: energy consumption; CFD; fitting correlation; SVM; wind environment simulation

1. Introduction

The energy load on the outer surface of a building envelope is related to the overall
energy demand of the building. Research related to this subject is of great significance
because it is relevant to energy savings and environmental protection [1,2]. On the outer
surface of a building envelope, heat transfer occurs through convection and radiation
processes. The radiant heat transfer is a function of surface temperature and emissivity
and can be calculated directly. While the convective heat transfer is a function of many
variables, such as temperature, wind velocity and direction of the wind, which makes it
difficult to accurately determine the heat exchange properties of a building [3–5]. More
study of the CHTC of the outer surface is necessary.

At present, the methods used to research CHTC of exterior surfaces of building en-
velopes mainly include laboratory-scale experiments and field full-size experiments in
field trials. The formula used for the calculation of CHTC was obtained from a statisti-
cal study of experimental data. First, the studies which determined the formula of the
CHTC based on wind tunnel experimental data are introduced. The formula proposed
by McAdams was based on the results of a wind tunnel experiment reported by Jurges:

h = 5.678
[

m + n
( Vf

0.3048

)p
]

[6,7], where Vf is the wind velocity away from an object or

physical boundary. The formula proposed in the Chartered Institute of Building Services
(CIBS) Guide was also based on the results of the wind tunnel experiment reported by
Jurges: h = 4.1Vloc + 5.8 [7], where Vloc is the wind velocity measured at a certain distance
D from the front of the building and a certain height H from the ground. The Building
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Loads Analysis and System Thermodynamics (BLAST) calculation formula was based
on the results of a wind tunnel experiment conducted by Sparrow et al. [8]. It clearly
distinguished forced convection from natural convection and modeled the total CHTC as
the sum of natural and forced components of convection: hc = hc, nat + hc, f or.

Second, a calculation formula was introduced for the CHTC based on full-size ex-
perimental data was introduced. The formula proposed by Jayamaha et al. [9]. was
derived from field measurements using a freestanding aluminum plate (1.8 m × 1.2 m)
mounted in the center of a large plywood sheet and shielded from direct solar radiation
by an opaque shield: h = 1.444V + 4.955. The formula proposed by Sturrock was based
on field measurements using a Ni-Cr strip on a 26 m high building [10]. The formula
for an exposed surface was h = 6.1VR + 11.4, and the formula for a normal surface was
h = 6VR + 5.7, where VR is the wind velocity measured from the height of the roof surface.
The ASHRAE task group’s formula was based on the results of Ito et al. [11], who con-
ducted an experiment on the front of an L-shaped building in Tokyo: h = 18.6V0.605

loc , where
Vloc is the wind velocity measured at a certain distance D from the front of the building
and a certain height H from the ground. The formula proposed by Nicol was based on
measurements in the field at night for an outer window in the Canadian Arctic region:
h = 7.55V + 4.35, 0 < V < 5 m/s [12], where V is the roof wind velocity. The formula

proposed by Yazdanian and Klems was: h =

√(
Ct(Ts − Ta)

1
3
)2

+
(
aVb

)2 [13], where V is

the wind velocity measured 10 m above the ground. The formula proposed by Loveday
and Taki was based on measurements of a full-size building with eight stories and a total
height of 28 m in a semiurban environment [14]. The formulas were h = 16.15V0.397

loc , for
the leeward sides and the h = 16.25V0.503

loc , for the leeward sides where Vloc is the wind
velocity measured at a certain distance D from the front of the building and a certain height
H from the ground. The formula proposed by Hagishima and Tanimoto was based on
a test conducted on a two-story building [15]. The formula for the horizontal plane was
h = 2.28VR + 8.18, and that for the vertical plane was h = 10.21Vloc + 4.47, where VR is
the wind velocity measured at the height of the roof surface, and Vloc is the wind velocity
measured at a certain distance D from the front of the building and a certain height H from
the ground. Most of the formulas used in current studies for the calculation of the CHTC
mentioned above are based on the statistical analysis of experimental data, which are very
limited for this application and do not comprehensively consider factors such as wind
velocity, wind direction and temperature difference.

More recently, computational fluid dynamics has also been used to predict convective
heat transfer on building surfaces because of its ability to analyze complex built environ-
ments and obtain high-resolution data [16]. Defraeye et al. evaluated the CHTC on the
exterior surfaces for an incidence angle of 0◦ (wind direction perpendicular to one of the
surfaces) and found the accurate CHTC could be obtained with low-Reynolds number
modelling (LRNM) simulation [17]. Fakhim et al. investigated the impact of multiple
parameters [18], namely temperature difference, wind speed, and wind direction on CHTC,
all the correlations used in EnergyPlus software for the exterior surface of the building
were compared with simulated data. Although wind direction was considered in above
two studies, the first study required an incidence angle of 0◦, and the second study only
considered the windward and top sides. In addition, Chen et al. conducted continuous
measurements of CO2, TVOC and HCHO in five rooms [19], and analyzed the data correla-
tion by four methods including support vector machine (SVM), Gaussian processes, M5P
and backpropagation. Overall, SVM scored the highest. Yi et al., quantitatively investigated
the relationship between the air change rate of naturally ventilated dairy buildings by RSM
and CFD simulation [20]. The above research reported that RSM and SVM algorithms have
good performance in data fitting.

In this study, CFD simulations combined with response surface method (RSM) and
support vector machine (SVM) algorithms were used to research the relationship between
the CHTC of the building envelop and the influence factors such as wind velocity, wind
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direction and temperature difference. Additionally, the fitting formulas for the CHTC of
different envelope exterior surfaces under different airflow field conditions were deter-
mined. The specific steps were as follows: first, CFD simulations were carried out for a
single building and a heating building to verify the numerical model; second, the verified
CFD model was used to conduct the single building simulations for cases under different
conditions to obtain the necessary data for the fitting formulas; third, these simulation data
were combined with RSM and SVM algorithms to obtain the fitting formulas of the CHTC
on different envelope exterior surfaces; and finally, the fitting results of RSM and SVM
algorithms were compared.

2. Methodology

The single building simulation was first used to establish the fitting formulas. In
the simulation cases, the wind velocity and heat flux data on different envelope exterior
surfaces were exported directly, and these data were used to fit the parameters of the
dimensionless equation. Then, the heating building simulation was used to validate the
fitting formulas.

2.1. Numerical Analysis
2.1.1. Single Building Simulation

The case study used in this research was the wind tunnel experiment of Tominaga
et al. [21]. The experiment was well equipped and completed, and the experimental data
obtained from the experiment were relatively complete. In addition, CFD simulation could
be used for reference, and there was a good consistency between the data from experiment
and simulation.

The details of the model of the experimental wind tunnel were as follows. First, a
cubic model with a height of 0.2 m was set in the turbulent boundary layer, as shown
in Figure 1. The external dimensions of the model building were 0.2 m (length) × 0.2 m
(width) × 0.2 m (height) [22]. Second, the outlet for pollutants was a square, and the side
length of the outlet was set as 0.005 m; it was located on the ground in the recirculation
area behind the cube and 0.1 m away from the leeward wall of the building. The release
velocity of the outlet gas was half of the inflow velocity on the inflow boundary.
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Figure 1. Single building model (Tominaga et al. [21]).

Numerical Method

As shown in Figure 2, the computational domain was sufficiently large to ensure
that the calculation results were independent of the domain inlet boundary. The lateral
boundary and the top boundary were set at 5 H from the building, and the flow boundary
was set at 15 H from the building [22], where H was the height of the single building.
Therefore, the length, width, and height of the computational domain were set to 21 times,
11 times and 6 times the building height, respectively. The length, width, and height of the
computational domain were set to 4.2 m, 2.2 m, and 1.2 m.
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For this case, the standard k-ε model [22], which performed well in simulation of
flow structures and was typically used to simulate turbulent flows, and the enhanced wall
function were used in this study. This turbulence model could provide reasonable solutions
to a wide range of flow, heat, and pollutant transport problems while requiring relatively
low computational costs. The buoyancy caused by the thermal effect was also considered
in this work. We use a uniform formula to generalize the standard k-εmodel:

∂(ρØ)

∂t
+ div

(
ρ
⇀
u Ø
)
= div

(
ΓØ,e f f ·gradØ

)
+ SØ (1)

where Ø presents the variables (velocity, enthalpy, turbulence parameters and concentra-
tion), ΓØ,e f f the effective diffusion coefficient, SØ the source term, and

⇀
u the Reynolds-

averaged velocity vector. Details about the terms and coefficients for the different variable
can be found in the Ansys theory guide (Ansys, 2019) [23].

The Prandtl number (Pr) of the wall was set to 0.1. The vertical velocity profile of
the inflow boundary was modeled by a power law, the index α was set as 0.25, and the
boundary velocity assignment equation was:

Uz = Ur

(
z
zr

)α

(2)

where Ur (m/s) is the velocity at the reference height zr (m). The pollutant release velocity
was set as 0.2 m/s. The turbulent kinetic energy was set to 0.002 m2/s2, and the turbu-
lent dissipation rate was set to 0.042 m2/s3. The reference height was set to 0.2 m, and
the reference velocity was set to 0.4 m/s. The computational domain’s grid was set to
183 (x) × 121 (y) × 61 (z) (approximately 1.35 million) [21].

Validation of the Numerical Method

Figures 3 and 4 show the comparison results of the CFD model of the single building.
The two graphs compare the simulated and experimental data for normalized velocity
and normalized pollutant concentration, respectively. H is the building height, UH is the
reference wind velocity, x and z are the horizontal and vertical coordinates, and c0 is the
reference concentration:

c0 =
Qe

H2UH
(3)

where Qe is the pollutant release velocity. The simulation results are in good agreement
with the data from the wind tunnel experiment. From the figures, the predicted values
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agree well with the experimental data. Therefore, the numerical calculation model can
be used to calculate the numerical cases which were required for the fitting formulas of
the CHTC.
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CFD Simulation Cases for Building the Fitting Formulas

Based on the validated numerical method, more cases were conducted to analyze the
fitting the relationship between the CHTC and influencing factors. Boundary conditions
were set to meet the new case requirement, such as different velocities, temperature dif-
ferences and wind directions. In addition, the selection range of different wind velocities
needed to cover the airflow conditions from natural convection to forced convection. As
preferred, most of the wind velocities were in the range of the mixed convection state. The
evaluation of the mixed convection state was based on the comparison of buoyancy and
inertial forces. The specific mathematical expression was as follows:

Gr
Re2 =

gαv∆tl3

v2
v2

u2l2 =
gαv∆tl

u2 (4)
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It was generally believed that when Gr
Re2 < 0.1, the flow field was mainly in a forced

convection state; when Gr
Re2 ≥ 10, the flow field was mainly a natural convection state.

When 0.1 ≤ Gr
Re2 ≤ 10, the flow field was mainly mixed convection. For the relevant

values in the above formula, g = 9.8 m/s and αv = 3.676× 10−3 K−1 were calculated
when Gr

Re2 was 0.1 and 10, respectively. The calculated u values were 0.6
√

∆tl and 0.06
√

∆tl.
Therefore, when u > 0.6

√
∆tl, the flow state of the flow field was mainly forced convection;

when u ≤ 0.06
√

∆tl, the flow state of the flow field was mainly natural convection. When
0.06
√

∆tl ≤ u ≤ 0.6
√

∆tl, the flow state of the flow field was mainly mixed convection.
Table 1 shows the wind velocity range corresponding to the three flow states of the flow
field.

Table 1. Wind velocity ranges and flow regimes.

Wind Velocity Range u≤0.06
√

∆tl 0.06
√

∆tl≤u≤0.6
√

∆tl u>0.6
√

∆tl

Flow regime Natural
convection

Mixed
convection

Forced
convection

This study selected six different wind velocities, three different wind directions and
three different temperature differences between the outer surface of the building envelope
and the surrounding environment. The specific settings of all different boundary conditions
are shown in Table 2. As shown in the table, there were 54 cases. The relevant setting was
the same as the isolated building case in Section Numerical Method. In these cases, the
Boussinesq approximation was used for air thermal buoyancy due to the temperature dif-
ference. Finally, 234 sets of simulation data were used to fit the formulas for the calculation
of the CHTC on the exterior surface of the building envelope.

Table 2. Boundary conditions.

Wind Velocity/m/s Wind Direction Angle/◦ Temperature Difference/K

0.2
0 10.4

0.6
30 20.8

1
45 31.2

2.1.2. Heating Building Simulation

A CFD simulation of the flow and temperature fields of another building heated on
the leeward side and near the ground was carried out. The predicted data were used to
verify the fitting formulas of CHTC obtained from Section 2.1.1.

The wind tunnel experiment of Huang et al. [24] was selected. In their study, the wind
tunnel model was composed of a cuboid building of L (length)× L (width)× 3L/2 (height),
where L = 0.2 m. A cylindrical chimney with an internal diameter of 0.007 m and a height
of L/6 was in the center of the building. The entrance velocity vector was perpendicular to
the windward side of the building. The leeward side and adjacent ground were heated to
simulate solar radiation.

Numerical Method

As shown in Figure 5, this study used the symmetry computational domain, and
the scale of numerical model was only half of the wind tunnel experimental model. The
entrance, lateral and top boundaries were set at 15L/2 away from the building, and the
outflow boundary was set at 45L/2 behind the building. This computational domain was
large enough and ensured the computational results were independent of the domain
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size. The computational grid was set to 320 (x) × 144 (y) × 80 (z) [24] (approximately
3.69 million).
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For this case, we also used the standard k-εmodel and the standard wall function [22].
The vertical velocity profile at the inflow boundary was modeled as a power law, and the
index α was set to 0.25, the reference height was set to 0.3 m, and the reference velocity
was set to 3 m/s. The turbulent kinetic energy was set to 0.002 m2/s3, and the turbulent
dissipation rate was set to 0.042 m2/s3. The temperature on the leeward side of the
building and adjacent ground was set to 423 K, and the air temperature was set to 303 K.
The governing equations for the turbulence models were the same as those described in
Section Numerical Method. The solution settings were the same as those described in
Section Numerical Method. In addition, the relative residual of energy equation was set to
less than 10−7.

Validation of the Numerical Method

Figures 6 and 7 show the verification results of the heating building simulation case.
These three graphs compare the simulated and experimental data for normalized velocity
and normalized temperature. H is the building height (H = 3L/2), T0 is the operating tem-
perature, UH is the reference wind velocity. The simulation results are in good agreement
with the wind tunnel experimental data. The data from this case can be used to verify the
fitting formulas of the CHTC.
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Validation Cases for the Fitting Formulas

The setting of different boundary conditions is needed to cover different velocities
and different temperature differences. In addition, to meet the requirements of Reynolds
independence and ensure the similarity of the flow field structure, the Reynolds number
should be greater than 11,000. When the wind velocity is 1.5 m/s, 3 m/s or 4.5 m/s,
the Reynolds numbers of the cases are greater than 11,000 and met the requirements of
Reynolds independence and structural similarity of the flow field. Therefore, three different
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wind velocities and temperature differences between the building surface and air were
selected in this study. As shown in Table 3, there were 9 validation cases used to verify the
fitting formulas of the CHTC on the exterior surface of the building envelope. The relevant
numerical settings were the same as Section Numerical Method.
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Table 3. Sets of different boundary conditions.

Inflow Wind Velocity/m/s Temperature Difference/K

1.5 40
3 80

4.5 120

2.2. Response Surface Methodology

RSM is a data fitting method. When a certain amount of relevant experimental data
through several groups of actual experiments are obtained, multiple quadratic regression
equations are used to fit the numerical relationship (also called the functional relationship)
between the impact factors and the response values. RSM approximates the implicit
limit state function with polynomial functions, and the optimal fitting parameters can
be determined to solve the mathematical problems of multiple influencing factors. To
ensure that the polynomial function converges, the reasonable selection of test points and
iterative correlation strategies are important. When the actual limit state function is linear,
the linear response surface method has higher approximate accuracy than other methods.
The mathematical model y = f (x1, x2, ···, xn) + e is used to determine the relationship
between y and its influencing factors (x1, x2, ···, xn) [24], where the error value of the model
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is represented by e. In this study, the above model is expressed as a quadratic Taylor series
polynomial function, as shown in Equation (8).

y = β0 +
n

∑
i=1

βixi +
n

∑
i=1

βiix2
i +

n−1

∑
i=1

n

∑
j>i

βijxixj + e (5)

where y is the dependent variable; xi and xj are independent variables; n is the number
of independent variables; β0, βi, βii and βij are regression coefficients; and e is the error
value. The general procedure for developing polynomial approximations using the RSM is
as follows:

(1) Experimental design. The relationship between dependent variables and independent
variables is clarified according to the research purpose. The range of independent
variables was determined. Then, appropriate methods are used to determine the
permutations and combinations of the values of a series of independent variables.

(2) Acquisition of response data. Response data are obtained through experiment or
simulation.

(3) Establishment of response surface model. The experimental or simulation results are
used to fit to a suitable mathematical model, and the correlation coefficient of the
model is determined by regression analysis.

In this study, the CFD simulation of the flow and temperature fields was conducted to
produce relevant response data. The response data were then grouped and numbered. The
fitting toolbox in MATLAB was used to fit the response data of different groups, and the
response surface models were obtained for Nu (Nusselt number), Gr (Grashkov number)
and Re (Reynolds number). Finally, the fitting formulas of the CHTC were obtained.

2.3. Support Vector Machine

SVM [25] is a generalized linear classifier that classifies binary data through super-
vised learning, and it follows the principle of minimizing structural risk. To optimize the
structural risk, a regularization term is added to the solution system. Based on the limited
sample information, SVM method can identify random samples correctly and have optimal
generalization ability. It uses the hinge loss function to calculate empirical risk. The basic
idea of SVM is to map the original training sample xi to a higher dimensional space through
a nonlinear mapping function φ. Then, a linear classification hyperplane with the largest
boundary is found in the high-dimension space. Given a set of training samples (xi, yi),
including xi ∈ Rn, yi ∈ {1,−1}l , and i = 1, ···, l, the basic functions of SVM are as follows:

minw,b,ξ
1
2 wTw + C

l
∑

i=1
ξi

subject to yi
(
wTφ(xi) + b

)
≥ 1− ξi

ξi ≥ 0

(6)

where C is the penalty parameter (greater than 0), w is the normal vector of the hyperplane,
b is the intercept of the hyperplane, and ξi is the relaxation variable. Because SVM applies
the kernel expansion theorem, it is not necessary for it to know the exact expression for
the nonlinear mapping φ. In addition, because SVM applies the method of linear learning
to the feature space of high dimensions through a kernel function, compared with linear
models, it avoids the adverse effects of high-dimensional calculations to some extent. The
most commonly used kernel function of SVM is the radial basis function (RBF), and its
specific form is as follows:

K
(

xi, xj
)
= γ

(
xT

i xj + r
)d

, γ > 0 (7)

where r, d, and γ are kernel parameters. For RBF, the prediction accuracy depends on the
optimization setting of penalty parameter C and kernel parameter γ, and the choice of
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optimal values for these two parameters requires careful consideration. The method of
cross validation [26] is always chosen to obtain the optimal values of C and γ.

3. Results
3.1. Correlation of the Convective Heat Transfer Coefficients

In the CFD simulation cases, the heat flux on different envelope exterior surfaces were
exported to calculate their corresponding convective heat transfer coefficients, the wind
velocity outside the top boundary layer of the building was employed, and characteristics
length was set as the building height. Based on these data, we obtained 234 sets of Nu,
Gr, and Re values. Nusselt Number was calculated for each target surface. These data
were used to fit the parameters of the dimensionless equations associated with the CHTC
as follows:

Nu = cRemGrnPro (8)

For RSM, the polynomial fitting method was adopted in this study, and the relationship
between simulated data was logarithmic as follows:

lnNu = lnC + mlnGr + nlnRe (9)

The fitting formulas for calculating the CHTC on the exterior surface of the building
envelope at different wind angles could be divided into several categories. For the 0◦

wind direction condition, the CHTC of the side and top surfaces the building could be
grouped together. While the convective heat transfer coefficients on the windward and
leeward sides should be treated separately. Based on the fitting calculation, the CHTC of
the windward side under 30 and 45◦ wind direction conditions could be grouped in one
category. However, the coefficients of different leeward sides should be treated separately.
In addition, the CHTC under the 60◦ wind direction condition could be calculated by
referring to the results under the 30◦ wind direction. The results are shown in Tables 4 and 5.

Table 4. RSM fitting formulas under the 0◦ wind direction condition.

Surface Response Surface Model R-Square Predicted
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Top side

lnNu
= 7.463− 0.5098lnRe
+ 0.008807lnGr
+ 0.03375(lnRe)2

− 0.001067lnRelnGr

0.9619
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= 6.222− 0.3110lnRe
+ 0.00007340lnGr
+ 0.02304(lnRe)2

− 0.000007894lnRelnGr
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+ 0.0004581lnRelnGr
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+ 0.03020lnGr
+ 0.07366(lnRe)2

− 0.003685lnRelnGrr
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For SVM, the CFD simulation data were divided into six groups and converted into
libsvm data format [26]. Then, the six groups of sample data were scaled to obtain six
groups of training sample sets, and the scaling interval was set as [−1, +1]. This study
chose the RBF kernel as the kernel function. Six different penalty parameter C and kernel
parameter γ were obtained by cross-validation based on six groups of test sample data.
Finally, the SVM predictions for the six groups of sample datasets were obtained as shown
in Tables 6 and 7.

Table 6. SVM fitting models under the 0◦ wind direction condition.

Surface Accuracy Best C, Gamma Surface

Top side 100% 2, 2
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Table 7. SVM fitting models under the 30◦ and 45◦ wind direction condition.

Surface Accuracy Best C, Gamma Surface

Lee side 1 91.67% 32, 0.5
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direction is as follows:                                        𝑙𝑛𝑁𝑢 = 13.52 − 2.102𝑙𝑛𝑅𝑒 − 0.003229𝑙𝑛𝐺𝑟 +0.1308(𝑙𝑛𝑅𝑒) + 0.0004581𝑙𝑛𝑅𝑒𝑙𝑛𝐺𝑟 

(10) 

The CFD predicted value of 𝑙𝑛𝑁𝑢 can be calculated as follows: 𝑙𝑛𝑁𝑢 = 𝑙𝑛 ℎ𝑙𝜆 = 𝑙𝑛 𝑞𝑙𝛥𝑡𝜆 (11) 

The calculation error e can be expressed as: 𝑒 = CFD simulation value – Fitting valueCFD simulation value × 100% (12) 

Table 8 shows the comparison of the simulated values and fitting values. From the 
table, the fitting model based on the single building simulation can predict the CHTC of 
the heating building under different airflow velocities and temperature differences. The 
calculation errors were almost below 10%, and compared with RSM (averaged error: 
4.84%), the accuracy of SVM (averaged error: 3.34%) was slightly higher. In addition, this 
study only employed the isolated building cases to build and validate the fitting model, 
and further real-world experiments are needed to test and improve the fitting model. 

Table 8. Verification results of the fitting models. 

  Error 

u2/m/s, 𝚫𝒕/K CFD Simulation Value RSM Fitted Value SVM Fitted 
Value RSM SVM 

3, 120 5.838 6.261  5.597  7.25% 4.13% 
3, 80 5.867 6.260  5.584  6.70% 4.82% 
3, 40 5.969 6.259  5.578  4.86% 6.55% 

1.5, 120 5.767 5.736  5.759  0.54% 0.14% 
1.5, 80 5.782 5.735  5.750  0.81% 0.55% 
1.5, 40 5.664 5.734  5.739  1.24% 1.32% 
4.5, 120 6.128 6.570  5.872  7.21% 4.18% 
4.5, 80 6.113 6.569  5.858  7.46% 4.17% 
4.5, 40 6.109 6.568  5.851  7.51% 4.22% 

  

3.2. Validation of the Fitting Formulas

We further validated the fitting formulas by using CFD simulation data of the flow and
temperature fields of heating building simulation in Section Validation Cases for the Fitting
Formulas. As the heating building simulation was conducted under the 0◦ wind direction,
the fitting formula for the leeward side of the building under the 0◦ wind direction was
selected for verification in this study.

The selected fitting formula for the leeward side of the building under the 0◦ wind
direction is as follows:

lnNu = 13.52− 2.102lnRe− 0.003229lnGr
+0.1308(lnRe)2 + 0.0004581lnRelnGr

(10)

The CFD predicted value of lnNu can be calculated as follows:

lnNu = ln
hl
λ

= ln
ql

∆tλ
(11)

The calculation error e can be expressed as:

e =
∣∣∣∣CFD simulation value− Fitting value

CFD simulation value

∣∣∣∣× 100% (12)

Table 8 shows the comparison of the simulated values and fitting values. From the
table, the fitting model based on the single building simulation can predict the CHTC of
the heating building under different airflow velocities and temperature differences. The
calculation errors were almost below 10%, and compared with RSM (averaged error: 4.84%),
the accuracy of SVM (averaged error: 3.34%) was slightly higher. In addition, this study
only employed the isolated building cases to build and validate the fitting model, and
further real-world experiments are needed to test and improve the fitting model.
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Table 8. Verification results of the fitting models.

Error
u2/m/s, ∆t/K CFD Simulation Value RSM Fitted Value SVM Fitted Value RSM SVM

3, 120 5.838 6.261 5.597 7.25% 4.13%
3, 80 5.867 6.260 5.584 6.70% 4.82%
3, 40 5.969 6.259 5.578 4.86% 6.55%

1.5, 120 5.767 5.736 5.759 0.54% 0.14%
1.5, 80 5.782 5.735 5.750 0.81% 0.55%
1.5, 40 5.664 5.734 5.739 1.24% 1.32%

4.5, 120 6.128 6.570 5.872 7.21% 4.18%
4.5, 80 6.113 6.569 5.858 7.46% 4.17%
4.5, 40 6.109 6.568 5.851 7.51% 4.22%

4. Conclusions

In this paper, the correlation between the CHTC and influencing factors for different
exterior surfaces of the isolated building was investigated. We used CFD simulation of a
single building to obtain 234 sets of simulation data including the values of Nu, Re and Gr,
which were used to fit the parameters of the dimensionless equations by RSM and SVM
algorithms. The results showed that the CHTC of the building exterior surface was related
to the wind velocity, wind direction and temperature difference, and the errors of RSM
and SVM were approximately 4.84 and 3.34%, respectively. It indicated that the fitting
formulas based on RSM and SVM had good performance in calculating the CHTC under
different conditions for the isolated building. However, in this study, we only investigated
the fitting formula of CHTC on isolated building surfaces. In the future, the cases in which
the building is surrounded by shelter or located in a group of buildings will be studied.
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