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Abstract: Onsite systematic monitoring benefits hazard prevention immensely. Hazard identification
is usually limited due to the semantic gap. Previous studies that integrate computer vision and
ontology can address the semantic gap and detect the onsite hazards. However, extracting and
encoding regulatory documents in a computer-processable format often requires manual work which
is costly and time-consuming. A novel and universally applicable framework is proposed that
integrates computer vision, ontology, and natural language processing to improve systematic safety
management, capable of hazard prevention and elimination. Visual relationship detection based on
computer vision is used to detect and predict multiple interactions between objects in images, whose
relationships are then coded in a three-tuple format because it has abundant expressiveness and is
computer-accessible. Subsequently, the concepts of construction safety ontology are presented to
address the semantic gap. The results are subsequently recorded into the SWI Prolog, a commonly
used tool to run Prolog (programming of logic), as facts and compared with triplet rules extracted
from using natural language processing to indicate the potential risks in the ongoing work. The
high-performance results of Recall@100 demonstrated that the chosen method can precisely predict
the interactions between objects and help to improve onsite hazard identification.

Keywords: hazard identification; ontology; safety management; visual relationship detection

1. Introduction

Construction is a high-risk industry accompanied by frequent accidents. Onsite risk
sources include hazardous chemicals, unsafe behaviors of workers, the unsafe state of
materials, and a harmful environment. The hazards are often fatal, causing serious physical
injuries, pecuniary losses, and schedule delays. Statistically, China had 734 accidents in
housing and municipal projects and 840 workers died in 2018 [1].

Onsite systematic monitoring has a pivotal role in hazards prevention. Traditional
supervision of onsite activities often requires manual work. Field observations are a com-
monly used approach to evaluate potential hazards [2–4]. However, manual supervision
can be costly, time-consuming, and error-prone. Hence, it is difficult to satisfy the efficiency
requirement of safety management.

Recent developments in the field of computer vision have led to an interest in apply-
ing computer vision to identify hazards. The application of computer vision in hazards
identification can be majorly divided into two categories, i.e., hand-crafted features-based
identification and deep learning-based identification.

Hand-crafted features-based identification using machine learning has been exten-
sively used due to its impressive object detection and classification capacity [5–9]. De-
velopments in the field of machine learning enable computers to better understand what
they see [10]. However, the performance of the approaches is often limited due to the
complex design process, poor generalization ability, and the fact that this kind of approach
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can only process natural data in their raw form [11] and choose features artificially with a
strong subjectivity.

With the rapid development of deep learning, the above limitations have been sig-
nificantly addressed. Deep learning-based identification methods extract complicated
features end to end, by learning from multiple data to simplify the detection process [10].
In this sense, instead of being designed artificially, complicated features can be extracted
automatically from images obtained using computer vision [10]. Extensive studies [12–18]
have shown remarkable results, impressive accuracy, and the expeditious speed of deep
learning-based methods.

However, the hazards identification using object detection based on the method can
only identify the category and the locations of the objects. Moreover, the detection method
cannot represent the content of visual scenes sufficiently involving various objects that
interact with each other [10]. Recently, the visual relationship detection methods based
on deep learning can capture multiple interactions between objects in images, greatly
enriching the semantic understanding of visual scenes [19–22]. Nevertheless, the method
fails to assess the visual information and compare the information with safety rules or
regulations to identify hazardous operations and conditions in the workplace. It is also
limited to making managers aware, visually and intuitively, of the existence of incorrect
and unsafe construction. Besides that, there is a semantic gap between visual information
extracted from the images by computer vision methods and the textual information in
safety rules [23]. Therefore, it is unable to satisfy the requirement of safety management
only using computer vision-based methods.

Currently, some visual relationship detection methods based on deep learning have
been developed in order to detect the relationships of objects. The method is much more
consistent with the practice of safety management. However, there is a shortage of combina-
tions of computer vision and ontology methods to address the semantic gap [24]. Ontology
is the formal representation of specific domain knowledge that explicitly defines classes,
relationships, functions, axioms, and instances [25]. It expresses knowledge with clear and
abundant semantics and prepares for knowledge query and reasoning [26]. Hence, the
establishment of ontology is a significant problem.

Recently, some previous studies have used ontology in the construction domain [27–29],
but few have combined computer vision and ontology in the construction domain to detect
dangerous objects, and unsafe operations, address the semantic gap, and prepare for logical
reasoning in the case of data shortage. One remarkable study was done by Xiong et al. [24],
who developed an automated hazards identification system to detect hazards from site
videos against safety guidelines that combines computer vision and ontology. The system
was tested successfully on two separate onsite video clips. Fang et al. [30] proposed a
knowledge graph including an ontological model for knowledge extraction and inference
for hazard identification. This method also integrates computer vision algorithms with
ontology models and can effectively detect falls from height from images. Both methods
use visual relationships but with different strategies. The first method considers limited
types of onsite visual relationships and requires manual effort, which is labor-consuming,
to extract semantic information. While the second one uses distance and coordinate in-
formation from 2D images to extract relationships between objects, more information,
such as temporal and spatial information, as well as more types of images such as images
from stereo cameras that include more data and depth information, were suggested to
improve the research. Most of the construction ontologies were manually developed, which
is time-consuming and error-prone. The stakeholders such as occupants, owners, and
contractors have different views and understandings about the terms and relationships of
onsite entities [30]. These challenges need to be addressed for the development of ontology.

There has been a limited number of studies in this aspect due to the scarcity of data. As
such, most studies are focused on promoting the accuracy of the object detection methods
using computer vision. At an early stage, due to the superiority of ontology in information
and knowledge management, ontology was applied to project management. With the rapid
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development of Building Information Model (BIM), ontology is combined with BIM to
address the problem in the construction industry. Given the massive rise of computer vision,
it is believed that the combination of computer vision and ontology used for systematic
safety and health monitoring will be boosting topics.

Therefore, we proposed a framework that integrates computer vision, ontology, and
natural language processing to improve systematic safety management in the construction
domain. In the framework, visual relation detection algorithm can detect the interaction
between entities and extract the visual information of construction site. Constructing the
construction safety ontology model can reuse and share the safety management knowledge
in construction domain and fill the semantic gap. Then, the entity relation extraction
technology based on natural language processing is used to extract the entity relation from
the construction safety regulation text by dependency analysis, and the construction safety
rule information is output in triplet mode. Finally, combined with semantic reasoning
based on SWI Prolog, the extracted visual information, safety management knowledge in
the construction domain and rule information are evaluated to deduce the safety risk of the
construction site, and realize the intelligent safety management of the construction site.

In the paper, we mainly realize the combination of visual relationship detection and
ontology in the construction domain to improve onsite safety management and enhance
automated systematic hazards identification. The visual relationship detection algorithm
can detect the visual relationships between all the entities, and we use the safety ontology in
the construction domain as an instance to illustrate our proposed method. We use a visual
relationship detection model visual translation embedding network (VTransE) to detect all
the categories and locations of objects in images and their interaction relationships with
each other. The objects and the relationships in the newly detected images will be encoded
in the form of triplets, which is object 1, relation predicate, object 2. Then, we establish
the construction safety ontology model and take the detected object at the construction
site as an example to address the semantic gap between visual information extracted from
images and textual information in safety regulations and prepare for knowledge query
and reasoning. The previous research is limited in that extracting regulatory documents
and encoding them in a computer-processable format often requires manual work which
can be costly and time-consuming. In this research, we will improve the framework by
providing the natural language processing method and a more precise visual relationship
detection model. The method can provide an opportunity to enhance safety management
and improve automated hazards identification.

The paper begins by providing the method of the visual relationship detection model
VTransE in Section 2. It will then go on to the description of the construction safety ontology
in Section 3. Section 4 presents the experimental results of the study. Section 5 discusses
the limitations of the study. Finally, we conclude our work in Section 6.

2. Visual Relationship Detection

Visual relationship detection methods can detect multiple interactions between objects
such as “worker wear helmet” and “worker ride truck” and offer a comprehensive scene
understanding of onsite images. The methods have demonstrated a marvelous ability to
connect computer vision and natural language. A considerable amount of literature has
been published on visual relationship detection [31–34]. In the paper, we use a state-of-art
method VtransE [35] to detect visual relationships and lay a foundation for the construction
safety ontology model and improve safety management.

The method dubbed Visual Translation Embedding network (VtransE) is chosen be-
cause it is the first end-to-end relation detection network that can detect objects and relations
simultaneously, and it is competitive among the state-of-art visual relationship detection
methods. The authors integrated translation embedding and knowledge transfer to propose
an original visual relation learning model for VTransE. The method demonstrated great
performance on two large-scale datasets: Visual Relationship [31] and Visual Genome [36].
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The VTransE method involves two parts: an object detection module and a relation
module. As illustrated in Figure 1, the VTransE network first builds an object detection
module which is a convolutional localization network and then builds a relation module
that integrates feature extraction and visual translation embedding. An image is input into
the object detection module and a group of detected objects is the output. Then, objects
are fed into the relation module. In the end, the detected images with objects and the
relationships between objects in the form of the subject–predicate–object triplet will be
output.
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Figure 1. The VTransE Network (modified from [35]).

The VTransE method refers to the visual relationship as the subject–predicate–object
triplet, where the predicate can be a verb, spatial (under), preposition (with), and com-
parative (higher). Inspired by Translation Embedding (TransE) [37], the authors map the
features of objects and predicates in a low-dimensional space, in which the relation triplet
is explained as a vector translation, e.g., person + wear ≈ helmet. For knowledge transfer
in relation, the authors present a unique feature extraction layer that extracts three kinds of
object features: classeme (i.e., class probabilities), locations (i.e., bounding boxes coordi-
nates and scales), and RoI visual features. Especially, the bilinear feature interpolation is
utilized rather than RoI pooling for differentiable coordinates.

Visual Translation Embedding. TransE depicts subject–predicate–object in low-dimensional
vectors s, p, and o accordingly. The relation is represented as s + p ≈ o when the relation
is established. Suppose xs, xo∈RM are the M-dimensional features of subject and object.
VTransE learns the relation translation vector tp ∈ Rr (r � M) as in TransE and two
projection matrices WS, WO ∈ Rr×M from the feature space to the relation space. Therefore,
the visual relation is expressed as:

Wsxs + tp ≈Woxo (1)

A simple softmax is used for prediction loss:

L = Lobj + 0.4Lrel (2)
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Lrel = ∑
(s,p,o)∈R

−log so f tmax
(

tT
p (Woxo −Wsxs)

)
(3)

The ultimate result for relation detection is the summation of object detection score
and predicate prediction score: Ss,p,o = Ss + Sp + So.

Feature Extraction. The VTransE method proposed a feature extraction layer to extract
xs and xo. Three types of features are used to represent the multiple aspects of objects
in relations:

Classeme. The classme is a vector which means object classification probabilities.
The dimension of the vector is (N + 1), (i.e., N classes and 1 background) from the object
detection network. In relation detection, it is used to reject impossible relations such as
horse–drive–person.

Location. The dimension of the vector location is 4,
(
tx, ty, tw, th

)
.
(
tx, ty

)
represents

the scale-invariant translation and (tw, th) represents the log-space height/width transfor-
mation relative to the subject or object. Take subject as an instance:

tx =
x− x′

w′
, ty =

y− y′

h′
, tw = log

w
w′

, th = log
h
h′

(4)

where (x, y, w, h) and (x′, y′, w′, h′) are the box coordinates of subject and object.
Visual Feature. It is a D− d vector converted from a convolutional feature of the shape

X × Y × C. The features are bilinearly interpolated from the last convolution feature map.
Thus, end-to-end training with knowledge transfer function can be realized.

The overall feature xs or xo is a weighted join of the above three features (M = N + D + 5),
where the weights are scaling layers that can be learned since the feature contribution
changes from one relation to another. As shown in Figure 1, the presented feature extraction
layer couples the two modules.

Architecture details. The object detection network of VTransE uses the VGG-16 archi-
tecture [38] from the Faster-RCNN. Then, the final pooling layer of VGG-16 is removed
and the last convolutional feature map F of the shape W ′ × H′ × C is used. C = 512, the
number of channels. W ′ = [W/16], and H′ = [H/16], where W and H represent the
width and height of the input image. F represents the visual appearance of the image. The
relation error is back-propagated to the object detection network to polish the objects for
object-relation knowledge transfer. Thus, the ROI pooling layer is replaced by bilinear
interpolation. As for optimization, the VTransE network is trained end-to-end by stochastic
gradient descent.

3. Construction Safety Ontology

Although there is no uniform definition of ontology at present, a commonly used
definition of ontology is “an explicit and formal specification of a conceptualization” [39],
“a particular system of categories accounting for a certain vision of the world” [40]. It can
describe varieties of concepts and the relationships among the concepts which belong to
a certain domain. It is an integration of certain domain knowledge in the form of formal
conceptualization with an immense expressive capacity [41]. It contributes to representing,
sharing, and reusing domain knowledge semantically and provides an opportunity to
transform human knowledge into a format that computers can understand and process
explicitly and easily. By this means, the interactions between humans and computers can
be expedited. The ontology construction can play a vital role in knowledge query and
reasoning and can address the problem of the semantic gap between visual information
obtained from using computer vision and textual information in safety regulations.

Ontology usually describes five concepts: classes, relationships, functions, axioms,
and instances in a specific domain. Concepts that represent things in the special domain
will be defined as classes. The interactions or connections between existing classes and
instances will be defined as relationships. The function is a special kind of relationship.
Axioms are constraints on the attribute’s value of a concept and the attribute’s value of a
relationship, or on the relationship between concept objects that represent a statement that
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is always true. The instances are particular individuals in the classes. However, in practical
applications, it is not necessary to strictly follow the above five modeling primitives to
create an ontology. It can be constructed according to the actual situation.

Although there is no clearly established, united, and completed method to build the
construction safety ontology, some current methods that are researched and concluded
from specific ontology construction programs by scholars are as follows: IDEF-5 method-
ology [42], Skeletal Methodology [43], TOVE methodology [44], Methontology method-
ology [45], and seven-steps methodology [46]. However, there still exist some problems
in ontology construction of specific domains. Ontology construction is too subjective,
relatively arbitrary, and lacks a scientific management and evaluation mechanism when
manually constructing ontology by using the methods above. When reusing existing on-
tologies, there are problems such as: (1) there are few existing ontologies that can be reused
without being modified; (2) there are many domains where ontology resources are not
available; (3) it takes a lot of investment to transform some ontology resources and it needs
to be studied whether the transformation is worthwhile.

In the paper, we choose to manually build the construction safety ontology because
there is no available existing ontology to reuse. Through the horizontal comparison of
common ontology construction methods, the seven-steps methodology is more complete
and mature among the methods above. Hence, the construction safety ontology is built
according to the characteristics of the program and mainly based on the seven-steps
methodology proposed by Stanford University School of Medicine. The knowledge sources
used to construct the safety ontology include Safety Handbook for Construction Site
Workers [47] and the previous experience of the scholars.

The first step is to determine the domain and scope of the ontology. Considering
that no available and suitable existing ontology has been found, step two, “Consider
reusing existing ontologies”, is omitted. Then, transform step three, “Enumerate important
terms in the ontology”, into “Enumerate terms that are commonly used in construction
safety domains” and transform step four, “Define the classes and the class hierarchy”,
into “Categorize these terms and their class hierarchy relationships”. Then, step five,
“Define the properties of classes—slots”, and step six, “Define the facets of the slots”, are
retained, because in the research the slots are important and will be discussed. The class
hierarchy relationships are what we need to address the semantic gap. The last step, “Create
instances”, is retained because in the research it requires individual instances of classes
to conduct semantic reasoning. Therefore, in this paper, we build the construction safety
ontology using the following steps:

• Determine the domain and scope.
• Enumerate terms that are most commonly used in construction safety domains.
• Categorize these terms and their class hierarchy relationships.
• Define the properties of classes and the facets of the slots.
• Create instances.

The ontology is in the construction domain and is used for construction safety man-
agement. The ontology can address the semantic gap between visual information extracted
from the images by computer vision methods and the textual information in safety rules.
For example, the entity at the construction site detected by deep learning object model
is “helmet”, while what is identified by humans from the construction site and found
in safety rules is “personal protective equipment”. Thus, the representation of entities
at the construction site is the domain of the ontology. The concepts describing different
construction entities and their hierarchical relationships will figure into the ontology.

The terms or the entities are the particular onsite entities in the regulations which
can be a “thing” (e.g., equipment, building structure) or “personnel” (e.g., worker). The
terms emphasize the construction onsite objects including construction material, excavat-
ing machinery, load shifting machinery, protective personal equipment, suspended load,
transport vehicle, and construction workers. Then, a top-down approach is adopted to
start from the top concepts and gradually refine them. The subclass is the lower hierarchy
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entity of the top concept. For instance, the subclasses of Personal Protective Equipment
include ear protectors, eye protectors, gloves, helmets, etc., and the top terms are disjointed
from each other. According to the characteristics of the program, the properties of the
classes and the facets of the slots will be added accordingly. The entities detected at the
construction site using the visual relationship detection model will be created as instances
in the construction safety ontology model.

The construction safety ontology is developed by using Protégé, which is commonly
used as a free and open-source ontology editor to build a domain ontology. The ontology
will be represented in Web Ontology Language (OWL), which can explicitly define the terms
and the relationships between and express the hierarchical ontology structure. Figure 2
shows the mind map of construction safety ontology model built in Protégé.
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4. Experiment

The visual relationship detection dataset we used is the benchmark dataset: VRD [31].
VRD is the Visual Relationships Dataset which includes 5000 images with 100 object
categories and 70 predicates. In the aggregate, it includes 37,993 relationships with 6672
relationship types and 24.25 predicates per object category. A total of 4000 images are
divided into the training set and the remaining 1000 images are divided into the test set [31].
The evaluation metric is the benchmark metric: Recall@100. Recall@x computes the fraction
of times that true positive relationship is predicted in the top x confident relationship
predictions in images.

The algorithms we used in the paper are all written in Python [35], and we implemented
the algorithms using Tensorflow framework. We experimented on the computer with a
high-performance computing server equipped with Nvidia Quadro series professional GPU
card and 640 tensor kernels, which can meet the deep learning training requirement.

The VTransE algorithm is trained with the 4000 images in the training set and the
remaining 1000 images are used to evaluate the ability of the model. The training set and
the test set are trained and tested respectively. The accuracy of the trained results using
the implemented method is 49.91%, which calculates whether the prediction result of the
predicate and the ground truth are equal and whether the maximum number in top-1 in
the prediction results of each sample contains the real label in prediction. The predicate
recall@100 to evaluate the implemented method is 49.13%. The recall@100 computes the
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proportion that the correct predicate is predicted in the top-100 confident predictions. The
high-performance results of the accuracy and the recall@100 demonstrate that the VTransE
algorithm is competitive among the various visual relationship detection methods and can
predict precisely the interactions between objects, thus contributing to automatic onsite
hazard identification.

The detected images demonstrate the detected objects, the predicted labels, and the
triplets (object 1, relation predicate, object 2). There are five typical detection results shown
in Figure 3.
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As shown in Figure 3a, seven visual relationships are detected, such as “sky above
person”, “person wear helmet”, “person on street”, “person on the right of person”, “cone
next to street”. The relationships present the major relationships between the objects
onsite, such as actions (e.g., hold, wear, carry), geometry (e.g., beneath, in front of, on,
in). The detected objects are mainly person, street, cone, helmet, jacket, and pants. In
Figure 3a,e, all the objects, predicates and relationships are detected and predicted precisely,
which suggests the feasibility of the method. In Figure 3b, there are three detected objects:
hydrant, building, and bush. The interactions between the three objects in the image are
predicted accurately such as “bush behind hydrant”, “building behind bush”. Despite the
success of the detection and prediction results, the predicted relationships between the
same two objects are multiple because the relationships are interactional. “Building behind
bush” and “bush in front of building” are both right. Nevertheless, the interaction and
relationship between such objects in safety rules are explicitly stipulated in advance. Hence,
although the detection results are correct, the difference in triplet expression can cause
problems in the comparison between visual information extracted from the images and
the textual information in safety rules. In Figure 3c, the relationships between the detected
objects cat, car, and road are predicted precisely. However, the predicates between the
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cars are “next to” and “behind”. The two interactions can both describe the relationships
between the two cars but can also be problematic in our framework. Similar to the problem
in Figure 3c, the relationships between the objects boat and building in Figure 3d are
different but will not influence the understanding of humans. However, it is perplexing for
computer-understanding tasks.

There also exist some errors in visual relationship detection. As shown in Figure 4, the
detected triplets are “people wear phone” in (a), “sky in sky” in (b), “coat wear hat” in (c),
“jacket wear hat” in (d) and “dog wear glasses” in (e). In the five examples, all the objects
are detected correctly, but it went wrong in the relationship matching. The relationships
are impossible in real life. The locations of the objects in the images are very close and it
may cause false relationship detections. The below unlikely relations should be rejected
through classeme features in relation detection module. It indicates that the knowledge
transfer part needs to be improved.
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In thousands of detection results, although some relationships and predicates between
subject and object are predicted improperly, all the objects in the images are detected
correctly. It indicates that the object detection module of the method is effective and
potent, and the relation prediction module is feasible but not perfect. In general, the
VTransE method is practicable and feasible for visual relationship detection tasks and
can contribute to improving construction site safety management and enhancing onsite
automated identification detection.

To prepare for logical reasoning, the relationships extracted from using computer
vision and the three tuple formats generated from visual relationship detection (object 1,
relation, object 2) will be represented as “Relation (object 1, object 2)” which meets the syntax
requirements in SWI Prolog. For example, the (person, wear, helmet) will be represented
as “wear (person, helmet)”. The logic representation Relation (object 1, object 2) will be
presented as the facts in SWI Prolog to conduct logic queries and reasoning. To address the
semantic gap, the unary predicates are used to assign the element instances in the ontology.
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For example, the “helmet” will be represented as the “personal_protective_equipment
(helmet)”. The results of the visual relationship detection and the ontology model will
be both used as the facts and input into the SWI Prolog which is a logic programming
language. When facts and rules are given, it analyzes the logic relation automatically and
allows users to perform complex logic operations by querying.

5. Discussion
5.1. Limitations of the Proposed Method

The VTransE algorithm is trained with the 4000 images in the training set and the
remaining 1000 images are used to evaluate the ability of the model. The accuracy of
the trained results using the implemented method is 49.91%. The predicate recall@100 to
evaluate the implemented method is 49.13%. The high-performance results of the accuracy
and the recall@100 demonstrate that the VTransE algorithm is competitive among the
various visual relationship detection methods and can predict precisely the interactions
between objects, thus contributing to automatic onsite hazard identification.

The visual relationship detection method can detect multiple interactions between
objects such as “worker wear helmet” and “worker ride truck” and connect computer vision
and natural language. The images are detected and the predicted triplet relationships (object
1, relation predicate, object 2) will be presented as “Relation (object 1, object 2)”. The high
predicate detection results and the visual results of the methods suggest the feasibility and
effectiveness of the methods.

However, there exist some limitations and challenges. First, since it is expensive and
time-consuming to construct a dataset in the construction domain that includes objects at
the construction site and onsite interactions between objects, the dataset we used in visual
relationship detection is the public benchmark dataset VRD. The domain-specific dataset
can concentrate on construction safety management and helps to improve the accuracy of
onsite detection tasks.

Secondly, in the research, we consider the visual relationship detection which detects
multiple interactions between objects. However, some relationships and interactions such
as “in the front of, on the right of” are hard to describe and interpret in the ontology model.
Thus, the relationships cannot be checked in later rule-checking tasks. Therefore, a better
and more exact way needs to be found to define the relationship between entities. An
intersection over union can be used to identify the spatial relationships between objects (i.e.,
within, or overlap) by using geometric and spatial features. Additionally, in further studies,
ergonomic analysis can also be considered and added to onsite systematic monitoring. The
visual triplet representations can include posture detections such as (worker, body_part,
location) to detect and predict the workers’ motion.

5.2. Future Research

In this paper, we proposed a framework that integrates computer vision, ontology,
and natural language processing to improve systematic safety management. We realized
the combination of the visual relation detection algorithm and the construction safety
ontology. The visual relation detection algorithm can detect the interaction between entities
and extract the visual information of construction site. The construction safety ontology
model can reuse the safety management knowledge in the construction domain and fill the
semantic gap.

In our ongoing studies, we are working on the triplet extraction from regulatory infor-
mation using natural language process methods and logic reasoning using SWI Prolog. The
entity relation extraction technology based on natural language processing is used to extract
the entity relation from the construction safety regulation text by dependency analysis, and
the construction safety rule information is output in triplet form. The triplet form (object 1,
relation predicate, object 2) will be extracted from regulations such as Safety Handbook for
Construction Site Workers [47] and will then be presented as Relation (object 1, object 2).
The results will be used as the rules and be input into the SWI Prolog. The element instances
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in the construction safety ontology will be presented as Class (subclass) through semantic
mapping to address the semantic gap. The results of the visual relationship detection and
the semantic representation of ontology will be input into the SWI Prolog as facts. Finally,
the extracted visual information and rule information are evaluated to deduce the safety
risk of the construction site by semantic reasoning based on SWI Prolog. Thus, whether the
onsite activities violate the regulations will be reasoned out.

6. Conclusions

In this paper, we proposed a framework to improve construction safety management.
In the framework, the visual relationship detection methods based on deep learning are
used to detect multiple interactions between objects in images. The accuracy of the trained
results using the implemented method is 49.91%. The predicate recall@100 to evaluate
the implemented method is 49.13%. The high-performance results of the accuracy and
the recall@100 demonstrate that the VTransE algorithm is competitive among the various
visual relationship detection methods and can predict precisely the interactions between
objects. The results suggest the effectiveness and feasibility of the method. The presented
method offers an effective solution to detect the onsite activities and identify the hazard at
the construction site automatically.
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