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Abstract: Highway bridges play an important role in traffic construction; however, accidents caused
by bridge construction occur frequently, resulting in significant loss of life and property. The identifi-
cation of bridge construction scenes not only keeps track of the construction progress, but also enables
real-time monitoring of the construction process and the timely detection of safety hazards. This paper
proposes a deep learning method in artificial intelligence (AI) for identifying key construction scenes
of highway bridges based on visual relationships. First, based on the analysis of bridge construction
characteristics and construction process, five key construction scenes are selected. Then, by studying
the underlying features of the five scenes, a construction scene identification feature information
table is built, and construction scene identification rules are formulated. Afterward, a bridge key
construction scene identification model (CSIN) is built; this model comprises target detection, visual
relationship extraction, semantic conversion, scene information fusion, and identification results
output. Finally, the effectiveness of the proposed method is verified experimentally. The results show
that the proposed method can effectively identify key construction scenes for highway bridges with
an accuracy rate of 94%, and enable the remote intelligent monitoring of highway bridge construction
processes to ensure that projects are carried out safely.

Keywords: construction scene identification; visual relationship detection; scene rules; deep learning;
neural networks; highway bridges

1. Introduction

Highway bridge construction is an important element of road transport, and plays
an increasingly significant role in the development of the transportation sector. In the
actual bridge construction process, the complex operating on-site environments, large
numbers of construction personnel, and irregular operation of equipment often lead to
major safety accidents [1], resulting in significant life and economic losses to societies
and families [2]. Therefore, the identification of workers, equipment, and the behavioral
relationship between workers and equipment at bridge construction sites, and thus, the
inference of the current construction scene, has important application value for construction
safety prevention.

The earliest methods used for construction safety monitoring relied primarily on
manual monitoring during construction and safety assessment after completion [3]. How-
ever, owing to factors such as a wide working area, the large number of people on the
construction site, and the complexity of the equipment used, a reliance only on manual
point-to-point monitoring is often time-consuming and labor-intensive, and the monitoring
results are prone to error.

Most current researchers use deep learning methods in artificial intelligence (AI) for
safety monitoring during construction processes [4], with a focus on target detection of
construction workers wearing helmets and holding equipment [5]. However, this method
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ignores the interrelationship between workers and construction objects, leading to a lack
of early warning capability for safety monitoring when workers perform non-compliant
construction operations.

In recent years, more researchers have focused on visual relationship detection in
deep learning, which aims to determine the topological relationship between targets in a
scene [6,7] and generate the triplet form of subject–predicate–object. This approach can
more accurately represent and describe construction scene information and contextual
relationships. R-CNN [8] was used by VDR [9] to obtain the target candidate frame,
and the relationship likelihood score of the triplet was obtained by a visual model and
a semantic model for relationship prediction. Different from VRD, VTransE [10] was an
end-to-end model that maps the visual features of targets into a low-dimensional relational
space, using transfer vectors to represent the relationships between targets. The textual
representation of subject/object was used by CAI [11] as contextual information to establish
a visual relationship detection model. Features are the basis of target identification, so more
features are incorporated into the DR-Net model to count the occurrence probability of
subjects, predicates, and objects by visual features, spatial structure features, and relational
features [12]. In order to better understand the relationship between targets, ViP-CNN [13]
was used to establish the association between subjects, predicates, and objects on visual
features by passing information between different models at the same layer. Zoom-net [14]
was used for deep information transfer between local target features and global predicate
relation features to the achieve deep integration of subjects and predicates. At present,
visual relationship detection has been applied to a variety of image understanding tasks,
such as image understanding in construction scenes. Wu et al. [5] performed relationship
detection between workers and equipment by obtaining the head pose and body orientation
of the worker. Kim et al. [15] reconstructed individual behaviors using object types of
interactions between workers and equipment to improve construction scene identification.
Xiong et al. [16] applied visual relationship detection in construction to a video surveillance
system, enabling further improvement with respect to the immediate effectiveness of
construction safety warnings. The above methods are able to identify specific targets and
interrelationships between targets in construction scenes, but fail to further realize scene
identification and understanding on this basis, and thus cannot achieve automation and
intelligence in safety monitoring during construction. In addition, owing to the relatively
high complexity of construction scenes, it is easy to encounter the problem of missing and
incorrect detection of targets.

Visual relationship detection fully presents all information in an image and solves the
problem of object relationship fragmentation caused by using target detection algorithms
alone. However, there are only a few applications of visual relationship detection in
highway bridge construction. In order to achieve intelligent safety monitoring of the bridge
construction process and to complete construction scene identification and understanding,
this paper proposes a visual relationship-based method for construction scene identification
on highway bridges. The method combined the construction characteristics of highway
bridges, and is based on the idea of deep learning. In this method, scene identification rules
are formulated according to the target features and interrelationships in the construction
scenes, and a scene identification model is then built based on the rules to complete the
textual output of key scene information. The main work of this paper is as follows:

(1) Selection of key construction scenes on bridges. There are numerous bridge con-
struction processes. Therefore, in this study, five key construction scenes of a bridge were
selected based on an analysis of its construction characteristics and construction process.

(2) Formulation of identification rules for key construction scenes on bridges. A
feature is the basis of scene identification. This study examines the underlying features
that can distinguish the categories of key construction scenes, and establishes a feature
information table and a tree diagram for the identification of key construction scenes on
highway bridges. On this basis, the identification rules under different construction scenes
are formulated.
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(3) Building an identification model for key construction scenarios on bridges. In
the target detection module, a feature pyramid network (FPN) and color moments are
introduced to perform the multiscale detection of targets and obtain construction personnel
identity information, while reducing the rate of missing and incorrect detection of targets.
In the visual relationship extraction module, feature vectors are introduced to connect
subjects, objects, and predicates in construction scenes in order to determine the interaction
relationship between targets. In the semantic conversion module, frequency baselines are
introduced to count the number of predicates in the construction scene, and the probability
distribution of construction personnel actions is then obtained. In the scene information
fusion module, an image–text encoder is introduced to combine the image results with the
detection results to obtain the correspondence between the images and text. In the scene
identification results output module, a rule consistency matching strategy is introduced to
match the detected feature results with the formulated rules, and the category information
of key construction scenes of highway bridges is then obtained.

(4) Validation of scene identification method. Experimental validation was performed
using a homemade key construction scene identification dataset on a highway bridge.
In addition, the accuracy, precision, recall, and other evaluation indexes were used to
evaluate the accuracy of the proposed scene identification method. Moreover, we performed
a comparative analysis with other visual relationship-detection methods to prove the
effectiveness of the proposed method.

2. Proposed Method
2.1. Selection of Key Construction Scenes on Bridges
2.1.1. Analysis of Bridge Construction Characteristics

In highway bridge engineering, there is a degree of difference between its production
and general industrial production, which includes the following three perspectives.

(1) Large span of engineering structures. Highway bridge projects are often used to
connect two distant areas; therefore, the bridge body has a long span. Furthermore, gantry
cranes are essential types of equipment for the transport and installation of bridge bodies,
but are more dangerous.

(2) More open-air and high-altitude operations. The fixed nature of highway bridge
locations makes construction workers often face open-air work and to work from heights.
As the distance of construction workers from the ground increases, the risk factor also
increases layer-by-layer.

(3) High periodicity and repetitiveness. Bridge projects involve the use of similar types
of structures, the same part of the sub-section construction, as well as other factors during
the construction process. Therefore, they need to be carried out in a step-by-step manner,
such as embedding steel casing, fixed formwork installation, concrete pouring, etc., which
gives the bridge construction a certain periodicity and repetitiveness.

Owing to the aforementioned characteristics of highway bridge construction, there
are a number of difficulties and safety hazards. To reduce the occurrence of accidents, it
is necessary to monitor the bridge construction scene in real time. However, the bridge
construction process is complex and varied; therefore, five key scenes were selected for
this study.

2.1.2. Key Construction Scenes on Bridges

The construction process of a highway bridge consists mainly of in situ construction
and assembly construction. That is, the formwork and stand are set up at the location
of the entire bridge, followed by the welding of the reinforcement and concrete pouring.
After the concrete reaches its target strength, the formwork and stand are removed. Finally,
prefabrication of the beams and bridge deck construction is carried out near the bridge site.
The flow of the construction process is illustrated in Figure 1.
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Figure 1. Schematic diagram of the bridge construction process.

Bridge construction is divided into three main stages: pile foundation construction,
abutment pier construction, and bridge span structure construction, each of which is a
complex and tedious construction process. In this study, five key construction scenes
(indicated by bold underlining in Figure 1) were selected for analysis and identification.

(1) Construction surveying and proofing. Before the construction of the bridge project,
the technicist should first carry out measurement lofting and data calculation on-site to
provide the construction direction for the entire project. This is the premise and foundation
for ensuring the quality of bridge projects.

(2) Embedding of steel casing. During bridge construction, to achieve the required
load-bearing capacity, the steel casing needs to be embedded to ensure the verticality of the
bridge and prevent collapse caused by the falling of debris around it. This directly affects
the stability of the bridge pile foundations.

(3) Erection of formwork and stand. When pouring the superstructure of the bridge
on-site, the first step is to erect a stand at the location of the bridge hole to support the
formwork and poured reinforced concrete. This is an important construction step in
bridge engineering.

(4) Steel bar welding and binding. Steel processing is an extremely important step
in bridge construction, and the welding and binding of steel bars are basic links in steel
processing to ensure the stability of steel installation. This, in turn, affects the structural
safety of the entire bridge.

(5) Beam transportation and assembly. The weight and volume of the equipment
involved in the beam transportation and assembly stages are large, such as gantry cranes
and bridge erectors, which are prone to accidents if not operated carefully. This is a major
source of danger during the bridge construction process.

To ensure the stability and safety of bridge structures, it is necessary to strengthen
the management of the construction process, particularly during the key construction
scenes. The first step in management is to accurately identify the current scene in-
formation and monitor hazards according to the interrelationship between workers
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and equipment. Based on this idea, this study proposes identification rules for key
construction scenes on bridges.

2.2. Formulation of Identification Rules for Key Construction Scenes on Bridges

Scene identification can be achieved by extracting the underlying features of different
instances in an image and the spatial location relationship between them, and by inferring
the relationship to output, the current scene information of that image. Based on this
idea, this study designed identification rules for key construction scenes on highway
bridges. Table 1 presents the information of bridge key construction scenes identification
features: Table 1 A presents the key-scene construction equipment information, and Table 1
B presents the key-scene construction personnel and construction material information. In
both tables, the underlying features required to identify the five key scenes are marked
as “
√

”. Where, 1©– 5© denote five key construction scenes on the bridge. 1© denotes
construction surveying and proofing, 2© denotes embedding steel casing, 3© denotes erect
formwork and stand, 4© denotes steel bar welding and binding, and 5© denotes beam
transportation and assembly.

Figure 2 shows the rules of bridge key construction scene identification. It describes
the logical relationship of the underlying features of construction personnel (blue), con-
struction equipment (green), and construction materials (orange). The left shows the five
key construction scenes and the corresponding construction equipment for each scene.
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Figure 2. Identification rules tree diagram of bridge key construction scenes.

(1) Construction personnel include three underlying features: posture, identity, and lo-
cation. 1© Posture features include seven kinds: observe, command, stand, etc.; 2© Identity
features include construction stuff (yellow helmet), supervisor (blue helmet), etc.; and
3© Location features include four types of location information such as on the ground, on

the stand, etc.
(2) Construction equipment includes three underlying characteristics of shape, color,

and working principle. 1© Shape characteristics include cylindrical, round, etc.; 2© Color
characteristics include red, yellow, etc.; 3©Working principles include arm, hook, etc.

(3) Construction materials include rebar, concrete, etc.
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Table 1. (A) Construction equipment in five scenes; (B) Construction personnel and construction materials in five scenes.

(A)

Scenes

Construction Equipment

Name Shape Color Principle

Total
Station Crane Drilling

Rig Scaffold Welding
Machine Beam Carrier Gantry Crane Column Circle Rectangle Red Yellow Gray Transporter Crane

Arm
Load
Hook

1©
√ √

2©
√ √ √

3©
√ √

4©
√ √ √

5©
√ √ √ √

(B)

Scenes

Construction Personnel
Construction Materials

Posture Identity Location

Observe Command Stand Install Weld Transport Yellow Helmet Blue
Helmet

Red
Helmet

White
Helmet

On the
Ground

In the
Trans-
porter

On the
Stand

On
the

Steel
Rebar Stand Beam Concrete

1©
√ √ √ √

2©
√ √ √

3©
√ √ √ √ √

4©
√ √ √ √

5©
√ √ √ √
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For example, the worker wearing a blue helmet stands on the ground observing the
total station and instructing the worker wearing a yellow helmet, it can be inferred that
the current scene is “construction surveying and proofing”; the worker wearing a yellow
helmet holds a cutting machine to weld long objects, and it can be inferred that the current
scene is “steel bar welding and binding”.

2.3. Building of Identification Model for Key Construction Scenes on Bridges

The authors in [17] proposed a relationship detection model named RelDN, and this
study draws on the idea of constructing a CSIN network model with CNN (Convolu-
tional Neural Network) [18] and DCR (Deep Convolutional Relationship) [19] as the basic
framework for bridge construction scene identification. The structure of CSIN is shown
in Figure 3. There are four parts. The first part is image input and feature extraction part,
which is composed of the convolutional neural network CNN to extract the underlying
features of construction images. The second part is the feature processing part, which
mainly includes the target detection module, visual relationship extraction module, and
semantic conversion module to obtain different feature score charts. The third part is the
feature fusion part, which is composed of the scene information fusion module to fuse
image features and text features. The fourth part is the result output part, which is com-
posed of the scene identification result output module to obtain the current construction
scene information.
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of the identifiable image in Figure 3 is shown in the Supplementary Materials).

2.3.1. FPN-Based Target Detection Module

Detecting and locating various types of targets in construction images are the basis for
achieving construction scene identification; therefore, this study first needs to extract and
capture feature information, such as the location and category of construction personnel,
using the target detection module. To address the problem of target size difference and
target miss detection in construction scene images owing to the imaging angle, a detection
method that can cope with such multi-scale variation is needed. The feature pyramid
network (FPN) [20] can feature extraction for each scale of the image, increasing the
perceptual field of the bottom layer of the feature map. So, the FPN is able to obtain
more contextual information when performing small target detection at the bottom layer,
reducing the rate of missing and incorrect detection. Therefore, this study adds an FPN
in the target detection module, which makes shallow networks focus more on detailed
information, and high-level networks focus more on semantic information.
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In addition, standardized coordinates were used to encode the bounding box
between targets to obtain position information and to complete the prediction of the
position relationship.

∆b1, b2 = (
x1 − x2

W2
,

y1 − y2
H2

, log
W1

W2
, log

H1

H2
) (1)

c(b) = (
x

Wimg
,

y
Himg

,
x + W
Wimg

,
y + H
Himg

,
WH

WimgHimg
) (2)

where b1, b2 are the bounding boxes between the two targets, ∆b1, b2 denote the increments
between the bounding box coordinates, and (x, y, W, H) is the coordinate information of the
bounding box. In addition, c(b) denotes the normalized coordinate feature of the bounding
box, and Wimg, Himg are the width and height of the input image, respectively.

To address the problem of mismatch between helmet type and construction personnel
identity, in this paper, the color characteristics of the safety helmet are extracted using the
color moment method [21]. The first-order moments describe the average color of the safety
helmet, the second-order moments describe the color variance, and the third-order moments
describe the offset of the color. Thus, the color moments can present comprehensive color
characteristics of the safety helmet to achieve the purpose of corresponding with the identity
of workers. The correspondence between helmet color and worker identity is shown in
Table 2. The formulae for calculating the first-order, second-order, and third-order moments
are as follows:

M1 =
1
N

N

∑
j=1

Pij (3)

M2 = (
1
N

N

∑
j=1

(
Pij −M1

)2
)

1
2

(4)

M3 = (
1
N

N

∑
j=1

(
Pij −M1

)3
)

1
3

(5)

Table 2. Matching relationship between safety helmet color and construction personnel identity.

Color
Classification Red Helmet Yellow Helmet Blue Helmet White Helmet

Worker status Technicist Construction staff Supervisor Safety supervisor

2.3.2. Visual Relationship Extraction Module Based on Feature Vectors

The visual relationship detection branch is used to capture deeper visual features
in construction images, including the construction scene content, interrelationships, and
logical relationships between different objects. The visual relationship extraction module
focuses on obtaining the interaction probability values between the construction action
sender (subject), construction action (predicate), and construction object (object), as shown
in Figure 2. This module generates a set of class vector logits conditioned on region-of-
interest (ROI) feature maps and passes the fused feature map information so that the
network can fully learn and perceive the visual and semantic intersection information
in the construction scene. A multilayer perceptron (MLP) is used to connect the feature
vectors of the subject, predicate, and object to obtain the probability values of the interaction
relationships between different entity targets in the construction scene. The formula is
as follows:

f(x) = G(b(2) + W(2)(s(b(1) + W(1)x))) (6)

where W is the connection weight, b is the bias, G is the softmax function, and s is a
sigmoid function.
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To improve the processing efficiency of the network for visual information and reduce
the computational cost of the network, two cross-layer connections [22] are constructed in
the visual relation extraction module. Then the subject/object ROI features extracted by the
detection module are mapped to the predicate class vector logits to facilitate the transfer
and flow of information in the network.

2.3.3. Semantic Conversion Module Based on Frequency Baseline

A construction scene graph contains not only intuitive visual information, but also
deep semantic information. Scene graphs are one of the methods used to construct the
visual relations of images [23]. The main idea is to divide the visual relations between
all objects in an image into a triadic subject–predicate–object form, which is used as a
whole learning task [24,25]. The semantic conversion module focuses on outputting the
relationship information between the subject and object. This module draws on the idea
of a scene graph to generate a set of binary relational feature maps of the ROI and passes
the semantic information extracted by the relationship detection branch to a higher level
of cyberspace. The interrelationships and attribute information between different objects
are then captured by calculating the frequency of predicates between subjects and objects.
This predicate is generally limited and regular; for example, the relationship between
construction workers and scaffolding is generally workers “install” scaffolding or workers
“stand” on scaffolding, but not other predicates such as “wear”. Therefore, to improve the
processing and learning efficiency of the semantic conversion model, a frequency baseline
was set based on the number of occurrences of the predicate [26]. For any pair of training
images, the prediction probability distribution was obtained by counting the number of
occurrences of subject s and object o in the real box with the set frequency baseline.

ω(s, o) = 1− p(pred = ∅|s, o) (7)

where p(pred|s, o) denotes the probability of predicate distribution between subject s and
object o, and p(pred = ∅|s, o) denotes that there is no interrelationship between subject s
and object o.

To prevent the network from incorrectly inferring two targets that are close but not
interrelated, a loss function L is designed when subject s and object o are interrelated to
maximize the bounding box distance between the two targets determined by the predicate.

L = 1
N

N
∑

i=1

1
|P(O+

i )|
∑

p∈P(O+
i )

max(0,α−ms(i, p))

+ 1
N

N
∑

j=1

1∣∣∣P(O+
j

)∣∣∣ ∑
p∈P(O+

j )

max(0,α−mo(j, p))
(8)

where P() is the specific set of predicates associated with the input, p represents the predicate
class, and O+

i , O+
j denote the set of targets whose relationship is p. In addition, α is the

threshold value, ms, mo denotes the confidence of the subject and object, and i, j denotes
the index of the subject and object.

2.3.4. Scene Information Fusion Module Based on Image-Text Encoder

After the target detection module and visual relationship extraction module, the image
information of the construction personnel and the image information of the subject and
object in the scene were obtained. Moreover, the text information of the predicate in the
scene was obtained after the semantic conversion module. The key step in realizing scene
identification is to combine image information with text information. In this study, the
scene information fusion module was formulated by referring to the method of correlation
description between images and text in the literature [27].
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First, the detection, visual, and semantic scores obtained by the three modules are
softmax normalized to obtain the target relationship probability Ppre.

Ppre = softmax(fDet + fVis + fSem) (9)

where fDet, fVis, and fSem denote the output relationship probabilities of the target detection
module, visual relationship extraction module, and semantic conversion module, respectively.

After obtaining the target relationship probabilities, the output image results and
detection results are encoded to the same dimension by the image encoder φ through
convolutional neural networks (CNNs) [28], and the text encoder ϕ through the long
short-term memory network (LSTM) [29]. Then, the cosine similarity between the paired
image results and the detection results was calculated to construct the ranking loss function.
The ranking loss function of encoder Lrank is as shown in Equation (10).

Lrank = min
θ ∑

x
∑
k

max{0,α− s(φ(x),ϕ(t)) + s(φ(x),ϕ(tk))}

+∑
t

∑
k

max{0,α− s(φ(x),ϕ(t)) + s(φ(xk),ϕ(t))}
(10)

where θ denotes all parameters in the image encoder and text encoder, α is the boundary
value, and s is used to calculate the cosine similarity between the image embedding vector
φ(x) and the detection result embedding vector ϕ(t); xk, tk denote the mismatched images
and texts, respectively.

2.3.5. Scene Identification Results Output Module Based on Rule Consistency Matching

The four modules above are all intermediate results, which can be expressed as
“features,” while the final goal of this study is to output a textual expression that is consistent
with the scene image to be detected. The textual output of scene identification is obtained
by matching the integration features acquired from the scene information fusion module
with scene identification rules (Figure 2). In this paper, the method of reference [30] is
referred to, and the loss function Lcon is used to calculate the consistency between the
integration features and the rules. Lcon is calculated as shown in Equation (11).

Lcon = (
1
a

a

∑
i

uT
i xt

i∣∣∣∣ui||·||xt
i

∣∣∣∣ +
1
b

b

∑
j

vT
i yt

i∣∣∣∣vi||·||yt
i

∣∣∣∣ +
1
c

c

∑
j

wT
i zt

i∣∣∣∣wi||·||zt
i

∣∣∣∣ )
2

(11)

where (ui,xt
i), (vi,yt

i), and (wi,zt
i) appear in pairs and denote subject-construction person-

nel matching, object-construction equipment matching, and predicate-posture matching,
respectively; and a, b, and c represent the number of instances of the three construction
elements (mentioned in Figure 2).

In the training process, given a dataset D =
{
(Ik, Sk)

N
k=1

}
containing N image-text,

a batch of images is sampled from the dataset for training, and the final loss function is a
weighted sum L of the ranking loss and the consistency loss.

L =
Nb

∑
k

Lrank(Ik, Sk) + λcon

Nb

∑
k

Lcon(Ik, Sk) (12)

where I denotes the image, S denotes the text, and λcon is a hyperparameter with an
adjustable balance.

2.3.6. Method Flow-Chart

The overall method flow-chart is shown in Figure 4. Firstly, the bridge construction
scene images are input into the convolutional neural network, then the geometric features
and color features in the shallow layer of the image are extracted by the operations of
convolution, pooling, and full connection to form the feature maps. Then the extracted
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feature maps are fed into the target detection module, the visual relationship extraction
module, and the semantic conversion module through the target detection branch and
the relation detection branch, respectively, to obtain information on parameters such as
location, category, probability values, and attributes of image targets to form a detection
score chart, visual score chart, and semantic score chart. Afterward, the three score charts
are fed into the convolutional neural network and the long short-term memory network,
respectively, for image coding and text coding to obtain the integration features. Finally,
the integration features are matched with the scene identification rules for consistency, and
the current scene information is obtained and output in the text form.
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3. Experiment
3.1. Experimental Configuration
3.1.1. Dataset

To fully learn the target features, semantic features, and visual features in different
construction scenes, and to identify key construction scenes on bridges, a large amount of
data is required for training. Because there is no dataset for construction scene identification
that satisfies the needs of this study, a scene-based construction identification dataset for
highway bridges is built in this study. For the five key scenes mentioned in Section 2.1.2,
the construction scene images are intercepted by online bridge construction monitoring
videos considering various factors such as the target size variation, location distribution,
and similar color interference. In addition, LabelImg is used to label visual information
such as the location and category of targets, as well as the semantic information of the
interrelationship between targets in the images. So, the model can fully learn and under-
stand the logical relationships embedded in the images. The specific information of the
bridge key construction scene identification dataset constructed in this study is presented
in Table 3, containing a total of 465 images. This dataset was constructed from three aspects:
subject, object, and predicate. Furthermore, 60% of the images were selected as the training
set and the remaining 40% were selected as the test set, including 37 images for each of the
five key construction scenes.
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Table 3. Number and interrelationship of images in each construction scene.

Bridge Construction Scene
Number of

Images
Visual Relationship

Subject Predicate Object

Construction surveying
and proofing 95 Worker Observe Total station

Embedding steel casing 90 Crane Conduct Steel case
Erect formwork and stand 90 Worker Install Scaffold

Steel bar welding and binding 100 Worker Weld Rebar
Beam transportation and assembly 90 Beam carrier Transport Beam

3.1.2. Evaluation Indicators

To verify the accuracy of the proposed bridge key construction scene identification
method, indicators such as accuracy (Acc), precision (P), and recall @K (R@K) were used to
evaluate the results of the experiments. The main formulae are shown in Equations (13)–(15).

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Precision =
TP

TP + FP
(14)

Recall@K =
TP@K

(TP@K) + (FN@K)
(15)

Among them, true positive (TP) and true negative (TN) are correct detection results,
false positive (FP) is wrong detection, and false negative (FN) is missed detection.

3.1.3. Implementation Details

The configuration of this experimental platform is the Windows 10 operating system
and CUDA 10.1 computing platform; the algorithm framework is TensorFlow-GPU1.12.0
and Keras2.13; the programming language is Python 3.6.13. To obtain a better training
effect, the size of the image input network was set to 800 pixels in the training phase. Then,
the batch was set to 1, the number of iterations was 10,000, and the initial learning rate
was 0.001.

3.2. Identification Results and Accuracy Analysis for Key Construction Scenes on Bridges

To verify the effectiveness of the bridge key construction scene identification method
proposed in this study, two parameters, namely the identification effect and identification
accuracy, were evaluated and analyzed.

3.2.1. Scene Identification Results and Analysis

To verify the scene identification effect of the proposed method, experiments were
conducted on the test set. Figure 5 shows some of the data in the test set, including five key
construction scenes: (a) shows three technicists wearing red helmets to operate the total
station and recording; (b) shows that the steel case is controlled by the crane arm, and
the crane is operated by two construction workers wearing yellow helmets; (c) shows
three construction personnel in yellow helmets welding steel bars with electric welders;
(d) shows two construction workers in yellow helmets standing on the support to install
the scaffold; and (e) shows a construction worker in a yellow helmet directing the beam
transporter to transport the beam.
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The scene identification method proposed in this paper was applied to the test set for
the experiment. Figure 6 and Table 4 show the scene identification results.

By analyzing the identification results in Figure 6 and the information in Table 4, it
was found that the proposed scene identification method can correctly output the final
scene category information (black box in the upper left corner in Figure 6). The informa-
tion is derived from the intermediate results by reasoning through the formulated scene
identification rules. The intermediate results consisted of two parts: the target detection
result (green) and the visual relationship detection result (yellow for the subject, purple for
the object, and pink for the predicate).

From the target detection results, we can see that the proposed method can distinguish
different identity types according to the color of the helmet worn by workers, such as
the detection result for workers wearing helmets in Figure 6; (a) is a “technicist”, while
the workers wearing yellow helmets in (b–e) are detected as “construction staff”. In
particular, the method proposed in this paper can still accurately detect the type and location
information of the relatively small-sized workers appearing on the left side of (e) (this
result will be analyzed in Comparison Results and Analysis of Target Detection Module).
The visual relationship detection results show that the proposed method can correctly
identify the subject, predicate, and object, and can connect the above three through the red
line segment to reflect the correlation between them. Finally, the final scene identification
results were obtained from the above two intermediate results using inference rules.
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Table 4. Information table showing identification results for key construction scenes on bridges.

Intermediate Results Final Results

Figure Target Detection
Results

Visual Relationship Detection Results Construction Scene Category
InformationSubject Predicate Object

A Technicist Worker Observe Total station Construction surveying and proofing
B Construction staff Crane Conduct Steel case Embedding steel casing
C Construction staff Worker Weld Rebar Erect formwork and stand
D Construction staff Worker Install Stand Steel bar welding and binding
E Construction staff Beam carrier Transport Beam Beam transportation and assembly

3.2.2. Scene Identification Accuracy and Analysis

To verify the scene identification accuracy of the method in this study, it was evaluated
using a confusion matrix, as shown in Table 5. Each scene category contains 37 test images.
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Table 5. Table of identification accuracy results for key construction scenes on bridges, where:
1© denotes construction surveying and proofing, 2© denotes embedding steel casing, 3© denotes

erection of formwork and stand, 4© denotes steel bar welding and binding, and 5© denotes beam
transportation and assembly.

True Value
Precision (%)

Predicted Value

1© 2© 3© 4© 5©
1© 37 100
2© 35 100
3© 31 3 91.2
4© 6 34 85.0
5© 2 37 94.9

Recall (%) 100 94.6 83.8 91.9 100
Accuracy (%) = 94

Comparing the data in the table, it can be seen that the identification accuracy and
recall in the “construction surveying and proofing” are the highest, and 100% recognition
can be achieved. The identification accuracy and recall in the “erection of formwork
and stand” and “steel bar welding and binding” were lower, with accuracies of 91.2%
and 85.0%, and recall values of 83.8% and 91.9%, respectively. From an analysis of the
reasons, we found that the processes of “erect formwork and stand” and “steel bar welding
and binding” have high similarity. It is obvious from (c,d) of Figure 5 that the above
two scenes have confusing targets, so the identification accuracy is slightly lower than that
of the other scenes. The identification accuracy of “beam transportation and assembly” is
higher because the size of the beam transporter is larger than the targets in other scenes,
which is easy to identify. The identification accuracy of the “construction surveying and
proofing” is the highest because the target in this scene is clear and the background is
simple, which is not easily disturbed by other information. However, in general, the scene
identification accuracy of this study reached 94%, which can complete the identification of
key construction scenes on bridges.

Based on the experimental results obtained, it can be concluded that the key construc-
tion scene identification method proposed in this paper has a good scene understanding
ability. This method can fully learn the semantic and visual information in the graph,
perform target localization and relationship detection, and accurately output the category
information of the scene.

3.3. Experimental Results and Analysis of Identification Model CSIN for Key Construction Scenes
on Bridges

The CSIN model proposed in this study plays an important role in the scene identi-
fication process. To verify its effectiveness, two aspects of the model, namely the overall
performance and internal modules, were evaluated and analyzed.

3.3.1. Experimental Results and Analysis of the Performance for the Scene
Identification Model

The PR curves were plotted using precision and recall, which can visually describe the
model performance. Figure 7 shows the PR curves generated when the IoU threshold is
set to 0.5, 0.6, and 0.7, where the horizontal and vertical coordinates represent recall and
precision, respectively. From an analysis of the three curves in the figure, it can be seen
that when the IoU threshold is set to 0.5, the PR curve is closer to the upper right; that is,
the precision and recall are both higher. The area formed by the PR curve and coordinate
axis gradually decreased as the IoU threshold increased. When the IoU is 0.6 and 0.5, the
two PR curves start to decrease significantly at recall >0.7, and when the IoU is 0.7, the PR
curves start to decrease around recall =0.5. This indicates that the proposed CSIN model
had the best detection effect when the IoU threshold was 0.5.
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3.3.2. Comparative Experimental Results and Analysis of Specific Modules

The CSIN model proposed in this study includes two important modules: target
detection and visual relationship extraction. To verify the effectiveness of the proposed
algorithms in these two modules, comparative experiments were conducted separately.

Comparison Results and Analysis of Target Detection Module

The basis of achieving scene identification is to correctly detect the classification and
location information of targets in construction scenes; therefore, the effect of adding FPN in
the detection module was tested in this study.

As shown in Figure 8, the second column is the true value, which is the feature map
obtained from the original image after the grayscale comparison operation, and it is used
to highlight specific regions of the foreground targets of the image. Further, the green box
is the target with a smaller size. The third column is the convolutional heat map, which is
used to delineate the target regions. The last two columns are the feature visualizations
obtained by the two methods after channel-dimension averaging. Based on the results, the
images (e,j) obtained by our method are generally clearer than the images (d,i) without FPN.
In addition, both sets of feature maps contain targets of smaller size (red and yellow boxes),
where the red boxes are marked by the multi-scale target detection without an FPN, and
their response value is low when compared with the real value of the green boxes; that
is, there is a missed detection. It is evident from the yellow boxes that the response value
of the features is higher after the FPN is applied, and the human shape can be roughly
detected. It can be concluded that the CSIN model proposed in this study, which applies
an FPN for multi-scale target detection, is effective.
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(The sources of the identifiable images in Figure 5 are shown in the Supplementary Materials.)
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Comparison Results and Analysis of the Visual Relationship Detection Module

Visual relationship detection is a prerequisite for achieving deep perception and
understanding of construction scenes, and the degree of detection accuracy determines the
merit of the CSIN. Therefore, in this paper, four mainstream algorithms are selected for
visual relationship detection in the visual relationship extraction module for comparison
experiments. Among them, VRD [9] is one of the earliest algorithms used for visual
relationship detection and often appears as a comparison model; both Large-Scale [31] and
the proposed method adopt the semantic module and visual module for feature extraction
in model design; Motifs [26], Graph R-CNN [32], and the proposed method are all based on
the basic model of scene graph for visual relationship detection. So, these four algorithms
are selected for comprehensive comparison experiments. Their effectiveness can be assessed
based on two aspects: subject/object localization accuracy and predicate detection accuracy,
where subject/object localization focuses more on the target detection ability of the model,
whereas predicate detection focuses more on the relationships.

Table 6 lists the visual relation detection results of the different algorithms. In general,
the CSIN model in this study has better performance for the target detection of subjects
and objects; for predicate detection, the CSIN model is not significantly different from other
algorithms. Almost all of the models had the highest detection results for Recall@100.

Table 6. Comparison results with other visual relationship detection algorithms.

Subject Detection Object Detection Predicate Detection

Recall at (%) 20 50 100 20 50 100 20 50 100

Large-Scale 20.7 27.9 32.5 36.0 36.7 36.7 66.8 68.4 68.4

Motifs 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1

VRD - 0.3 0.5 - 11.8 14.1 - 27.9 35.0

Graph R-CNN - 28.5 35.9 - 29.6 31.6 - 54.2 59.1

CSIN (ours) 35.9 37.8 42.4 36.1 36.7 37.0 65.3 67.9 69.3

Specifically, the subject detection accuracy in Recall@100 reached 42.4%, which is at
least 6.5% or so higher than that of other algorithms. The object detection accuracy in
Recall@100 reached 37.0%, which was also slightly higher than those of the other detection
algorithms. However, the relationship detection was slightly lower than those of the other
algorithms. Specifically, the predicate detection accuracies of Recall@20 and Recall@50
are 65.3% and 67.9%, respectively, which are lower than the predicate detection accuracy
of the large-scale algorithm. This is because the large-scale algorithm is for the location
and relationship detection of larger size targets. What is more, the predicate detection in
this study does not show obvious superiority; this may be because bridge constructions
are characterized by complex scenes and ambiguous relationships between workers and
equipment, and it is relatively difficult to distinguish relationships. Subsequent experiments
could be further improved to address this problem.

In summary, the localization accuracy results for the subject and object show that
the use of an FPN can improve the detection accuracy of the target. The CSIN model
proposed in this study works well for relationship detection and can effectively infer scene
information during the construction process.

4. Discussion

In this part, we discuss three main points: robustness of scene identification rules,
stability of the CSIN model detection frame, and generalization capabilities of the
CSIN model.
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4.1. Robustness of Bridge Construction Scene Identification Rules

The bridge construction scene identification rules developed in this paper adopt the
idea of consistency matching. The logical relationship between construction personnel,
construction equipment, and construction materials in the construction scenes is considered,
which satisfies the needs of this paper to a certain extent. However, the lack of some
reasoning strategies, such as inductive reasoning [33] and deductive reasoning [34], makes
the constraint relationships among construction activities unable to be further refined
into rules. BIM technology is used to obtain construction information [35,36] and obtain
the constraint relationship between construction activities, so as to deduce the logical
sequence between construction activities, which can improve the robustness of the scene
identification rules to a certain extent.

4.2. Stability of the CSIN Model Detection Frame

In this paper, the CSIN model applies FPN for the target detection of construction per-
sonnel with high detection accuracy. The identity and location information of construction
personnel can be obtained accurately in many cases. However, when shadows appear in
the construction image, the accuracy of the CSIN model detection frame is affected to some
extent. As shown in Figure 6d, the worker identification frame in the lower-left corner only
detected the worker’s head and hands, which may be due to the fact that the worker’s legs
blended into the shadow. Since FPN cannot distinguish shadows and targets better, it will
affect the stability of the detection frame to a certain extent when shadows appear in the
construction image. To solve this problem, generative adversarial networks (GAN) [37] or
texture features of shadows in HSV space [38] for shadow suppression can be considered
to eliminate the interference of shadows on image targets.

4.3. Generalization Capabilities of the CSIN Model

The CSIN model proposed in this paper was experimented on with self-made datasets.
It has been verified that the model can complete target detection, visual relationship
detection, and output construction scene information as text, realizing the automation
and intelligence of identification in the key construction scenes on bridges. In the CSIN
model, CNN and DCR are used as the base networks for target detection and relationship
detection, respectively, which have been proved to have certain generalization abilities in
related literature [39,40]. In addition, the underlying features of scene identification rules in
this paper, such as color features, geometric features, and posture features, will not change
greatly with different scenes, so they are portable. Therefore, the CSIN model can be applied
to other types of construction and infrastructure projects, such as housing construction,
road construction, etc. However, in port and tunnel construction, its generalization ability
needs to be further verified due to the influence of datasets.

5. Conclusions

The construction process of highway bridges is tedious, and site environments are
complex; thus, the realization of bridge construction scene identification helps relevant
departments to carry out safety control. Therefore, based on the idea of visual relation-
ships, this paper proposes the identification method of key construction scenes on highway
bridges. This method can provide automated intelligent monitoring during the construc-
tion process and provide more applications for visual relationship detection in bridge
construction. Firstly, the characteristics of bridge construction are analyzed and five key
construction scenes are selected as research objects. Then, the scene identification rules are
formulated from the three aspects of construction personnel, construction equipment, and
construction materials. Following this, the CSIN model is built: FPN and color moments
are first introduced to obtain the image features of construction workers, and solve the
problem of missing and incorrect detection of target; then, through the division of subject–
predicate–object triplet and image-text coding, the semantic features and visual features of
construction scene can be obtained; finally, the integration features are matched with the
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scene identification rules for consistency, and the category information of the construction
scene is further obtained. Finally, the method in this paper is verified; the experimental
results show that compared with other algorithms, the CSIN model obtained better results,
especially on Recall@100.

Although the method in this paper has addressed the above problems, there are
still two limitations. One is that the method is only experimentally validated in five
key construction scenes, and research on other bridge construction scenes has not been
carried out. The other is that the method involves fewer large equipment and construction
materials, such as the lack of detection of large cranes, pile-driving machines, concrete,
long bars, and other targets. Therefore, for the construction monitoring of different bridge
types, such as girder bridges, arch bridges, rigid bridges, suspension bridges, cable-stayed
bridges, and combined system bridges, it is necessary to further increase the identifiable
elements in the construction scenes to enrich the bridge construction scene categories.

In our study, we found that the production of the dataset was time-consuming and
laborious. In future work, we will combine efficient methods such as crowdsourcing
labeling technology to produce targeted visual relationship detection datasets, so as to
improve work efficiency. In addition, we will further optimize the CSIN model, combined
with the relevant construction safety standards to realize the safety monitoring and safety
assessment of bridge construction based on the existing methods. Thus, we will form
a complete set of methods for intelligent monitoring and safety assessment of bridge
construction, and extend it to other construction scenes.
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