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Abstract: The extensive application of building information modeling (BIM) technology has brought
opportunities and challenges to safety risk management in the field of prefabricated building construc-
tion. It is of great significance to provide timely information and knowledge for safety risk decisions
in prefabricated building construction, and to display this information visually. In response, based on
the ontology theory and using the Revit software, in this study we aimed to establish a monitoring
system for the construction of prefabricated buildings, which was verified through a practical case.
The results revealed that, first, ontology technology can be applied in the Revit software through
plug-in integration, and knowledge regarding construction safety risk management in prefabricated
building construction can be shared, reused, and accumulated using this system. Second, problems
with the design and construction models of prefabricated buildings that do not meet the specification
requirements can be detected by the monitoring system in the Revit software. Third, automatic risk
identification and response methods using ontology theory and BIM technologies can effectively
promote construction safety risk management performance in relation to prefabricated buildings.
These findings examine the application of ontology to the field of prefabricated construction safety
risk management for the first time, enrich the research on ontology technology, and contribute to
safety risk management in the construction of prefabricated buildings.

Keywords: ontology technology; BIM environment; prefabricated buildings; safety risk management;
case study

1. Introduction

Prefabricated buildings are composed of materials that can be prefabricated in a
factory, transported to a site for installation, and assembled with the use of post-casting
concrete [1]. The use of prefabricated buildings is regarded as an effective approach for
improving construction processes and productivity, which can ensure better construction
quality and reduce time and cost [2]. Due to advantages such as increasing construction ef-
ficiency, improving building quality, and reducing construction waste from the source [3,4],
prefabricated buildings have been widely applied in many countries, and this has fostered
substantial changes in the development of the construction industry worldwide in recent
decades [5].

Although prefabricated buildings are a developing trend in the construction industry
in China, the industry still exhibits some gaps in many aspects compared with the industries
of many developed countries [6]. Construction safety risk management for prefabricated
buildings is an important aspect of this knowledge gap [7]. Specifically, there are some
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defects in the construction safety risk management of prefabricated buildings. First, there
has been a failure to capture the risk precursor information involved in the process of
prefabricated building construction in a timely manner [8,9]. Second, it is difficult to
integrate and excavate the body of experience and knowledge on prefabricated building
construction [10]. Third, because the dynamic nature of prefabricated building construction
projects results in changes to safety needs, it is difficult to identify the potential fall hazards
at different construction stages according to static drawings [11].

BIM technology, which has been widely used and is the mainstream technology used
in the construction industry, has the following advantages. First, it enables participants in
prefabricated building projects to communicate and obtain accurate building information.
Second, it provides a reliable information-sharing and delivery platform for prefabricated
building design, production, transportation, construction, and maintenance [12,13]. Com-
pared with the traditional model, the intervention of BIM technology can improve work
efficiency and quality, reduce errors and risks, and significantly reduce costs [14]. These
advantages of BIM make it widely discussed, especially in relation to the safety risk man-
agement of prefabricated building construction, as it combines such advanced technologies
as ontology, the Internet of things (IoT), and artificial intelligence (AI) [15–17]. However,
research on this technology is still far from sufficient. First, the applications of ontology
technologies in the construction industry have mainly taken place in traditional engineering
fields [18] such as water conservancy, municipal administration, railways, subway engineer-
ing fields [19,20], etc. Construction in these fields uses traditional technological methods,
which are less frequently involved in the field of safety management in prefabricated build-
ing projects. Second, although ontology technology has been applied to the construction
industry, the automatic creation of ontology instances has seldom been created [21,22].
Finally, there are both cost and efficiency problems when BIM applications are developed
separately, or when rules are expressed in code or in a proprietary format [23].

Therefore, the research questions are as follows: (1) What are the safety risk precursors
of prefabricated building construction? (2) How can the safety risk knowledge of prefab-
ricated buildings construction be shared and reused? (3) How can intelligent safety risk
management of prefabricated buildings by BIM technology be realized?

To bridge the above research gap, this study aims to visually display unsafe factors and
pre-control measures in Revit software. The problem of prefabricated building construction
safety management has been studied by others; however, ontology technology has never
been used in this field. Based on ontology theory, and using the secondary development
of the Revit software, a construction safety risk management system for a prefabricated
building in a BIM environment was established and then verified empirically through a real
case. The findings provide real-time and comprehensive safety risk identification results
and solutions for prefabricated building construction professionals, which can effectively
lower the difficulty of the work of managers and improve the accuracy of construction
safety risk management.

The scope of this study is limited to the safety management of prefabricated building
construction. Section 2 presents a literature review and the rationale for this research.
Section 3 describes the four steps of the research methodology. Section 4 shows a case study.
Section 5 provides the innovations and a discussion. Subsequently, Section 6 summarizes
the overall research content and the shortcomings of the study.

2. Literature Review
2.1. Safety Management in Prefabricated Building Construction

Safety management in prefabricated building construction has been studied intensively
in the past decades. Safety management is the process of controlling safety policies,
practices, and procedures on construction sites [24]. The main aim of construction safety is
to prevent accidents [25]. Without effective planning, control, and monitoring, accidents
may occur [26]. The identification of risk factors is the premise of safety risk management
in prefabricated building construction. It has been deeply studied by many scholars.
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Grounded theory (GT) has often been used to identify risk factors regarding the safety of
prefabricated building construction, and a conceptual model of the risk factors has been
established [27]. For example, Mao and Li [28] analyzed several major risks that may
affect the construction process, including risks relating to the transportation and storage of
prefabricated components, the waterproofing of prefabricated exterior walls, and the safety
of construction sites. Moreover, Jeong et al. [29] built an accident cause map to analyze
safety risk factors, and pointed out that defective materials and equipment are important
factors causing accidents in the construction stage of prefabricated buildings. In particular,
risk management, immediate supervision, and worker’s actions are considered by many
scholars to be the key causal factors [30].

Correspondingly, establishing a scientific and accurate safety evaluation system for
prefabricated building construction can enable accurate judgements of the safety level
of prefabricated building construction projects [20]. At present, knowledge from many
fields has been applied to the development of construction safety evaluation systems.
For instance, attribute mathematics theory has been applied to prefabricated building
construction safety evaluation [31]. The expert investigation method is used in the field
of prefabricated building construction safety management to screen out relevant factors
influencing the construction project [2]. Similarly, structural equation modeling (SEM)
has been applied to establish a comprehensive prevention and control system for the
component-hoisting process of prefabricated buildings [32].

In addition, the application of IoT intelligent digital technology in the safety man-
agement of prefabricated building construction can also improve the efficiency of safety
management [16]. For this reason, a model of a prefabricated building project risk man-
agement system was established based on the modified teaching–learning-based optimiza-
tion algorithm and a prediction model of a deep-learning multilayer feedforward neural
network [33]. Additionally, Tian et al. [34] adopted the BIM platform for visualization,
employed an intelligent monitoring system and manual monitoring as data sources, and
utilized the strong prediction capability of a back-propagation neural network to predict
safety risks. A digital twin hoisting safety risk coupling model was built, which integrates
the methods of IoT, BIM, and safety risk analysis, and this made it possible to complete
the fusion of information between the hoisting site and the virtual model to realize visual
management [35].

2.2. Ontology Technology in Construction Safety Management

In the field of building safety management, rule-based approaches have attracted
increasing research interest [36]. According to Studer et al., an ontology is a formal and
explicit specification of a shared conceptualization [37]. In essence, ontology formalizes
knowledge by classifying objects, attributes, and logical relationships between objects in a
particular domain to facilitate the integration, retrieval, and reuse of information [38]. It
plays an important role in the semantic representation and reuse of safety management
knowledge [39]. One of the development trends in ontology technology in the field of con-
struction engineering is the integration of ontology technology with BIM technology [20],
so that the corresponding automatic risk identification and early warning systems can be
designed and developed for risk management [40].

At present, the ontology technology research in construction safety management has
focused mainly on the knowledge and semantic reasoning in relation to traditional engi-
neering projects and subway projects. In the field of traditional engineering projects, many
scholars have conducted various studies employing ontology technology. For instance, the
ontology of specific operational steps for construction activities and the potential hazards
in job hazard analysis was established by Wang and Frank [18], and a set of ontology
reasoning mechanisms was built to manage the safety risks of related construction activities
based on safety rules. A construction safety checking (CSC) ontology was established
by Lu et al. [21], which consists of five categories: line of work, task, precursor, hazard,
and solution. As described, the method of combining a computer vision algorithm with a
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formal ontology model can be used to build a safety management system for prefabricated
building construction [41].

With the development of ontology technology, experts began to study how to obtain
information from heterogeneous data sources to automatically create ontology instances.
Semantic Web Rule Language (SWRL) rules were applied to automatically extract informa-
tion on the masonry components in BIM, forming an automatic safety planning system [11].
Furthermore, a fast regional convolution neural network was used to extract scene elements
from a construction site surveillance video, and the elements were transformed into an
ontology semantic network [42]. After successfully identifying the video or model of the
construction site automatically, the ontology technology can be used to complete the con-
struction safety monitoring. For example, an automated hazards identification system was
developed by Xiong et al. [43], which evaluated the operation descriptions generated by
means of a live video according to the security standards extracted from textual documents
with the assistance of the ontology approach. Likewise, a model using ontology-based
semantic trajectories for dynamic environments was applied by Arslan [44], and the output
of the Viterbi algorithm was visualized using a BIM model in order to identify the most
probable high-risk locations involving sharp worker movements and rotations.

2.3. BIM in the Planning Stage

BIM plays an important role in the construction-planning stage in the field of archi-
tecture. On the one hand, BIM technology can optimize the design process to create a
safer construction environment [45]. Furthermore, on the premise of safety in the design
stage, Teo et al. [46] put forward a conceptual model and certificated that BIM could be an
effective tool for improving safety performance. On the other hand, it can be concluded that
the decision-making time in the planning stage can be reduced by using BIM technology,
thus ensuring that the project is completed on schedule [47].

Typically, the attributes of objects and metadata in BIM are used to control spatial
objects. “Simulation and analysis” of a scientific collaboration platform for project partici-
pants in the planning stage can be provided by using digital construction models [48,49].
Moreover, the application of BIM in the planning stage can prevent or reduce the generation
of construction waste [50].

3. Research Design

Figure 1 presents the main research framework of this study. In the figure, the four blue
arrows indicate the different methods used in each step. The overall research framework of
this study can be divided into four steps: (1) building the safety risk management system for
prefabricated building construction, (2) establishing the prefabricated building construction
safety risk ontology library using the improved seven-step ontology modeling method,
(3) using the SWRL and the Drools Reasoning Engine to design the automatic risk reasoning
function, and (4) developing an intelligent safety risk management system through the
secondary development of the Revit software using the C# programming language.
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3.1. Building of Safety Risk Management System

Figure 2 reflects the mapping relationship among W, F, A, and M in the construction
safety risk management system for prefabricated buildings. The W set represents the work
activities of all participants in the construction stage in a certain order. The A set represents
the risk of accidents. The F set represents the influencing factors of accident risks. The
M set corresponds to the preventive and control measures for accident risks. There are
eight numbers in the figure, which represent the steps involved in the research process.
The black arrows represent the path relationships among the four processes, and the blue
arrows stand for the methods that need to be used among the four processes.
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The flow content for each number in Figure 2 is described below:

(1) A large number of case reports for prefabricated building construction accidents
are collected from relevant domestic government websites, construction logs, and
interview records.

(2) The work breakdown structure (WBS) and a literature analysis are used to clarify the
specific composition of the work activity set.

(3) By consulting accident investigation reports and construction logs, the composition
of the accident risk set is analyzed according to relevant national industrial injury
classification standards.

(4) The accident investigation reports, construction logs, and interview records are ran-
domly divided using a ratio of 7:3.

(5) The accident investigation reports and construction logs are analyzed using associa-
tion rules to clarify the mapping relationship between set W and set A.

(6) Based on grounded theory, 70% of the accident investigation reports, construction
logs, and interview records are analyzed to examine the specific composition of set F
(risk precursor event factors). The remaining 30% are used to test the saturation of the
specific components in set F.

(7) The mapping relationships between set F and set W, and between set F and set A, are
clarified by discussing 70% of the accident investigation reports and construction logs
with association rules, and the remaining 30% are used to test the correctness of the
specific components in set F.

(8) Through an analysis of the literature, targeted prevention and control measures aiming
at different risk factors are extracted.

We were able to construct a safety risk management system for prefabricated building
construction through the above methods, thus laying a foundation for the construction of
the subsequent ontology.
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3.2. Establishment of Safety Risk Ontology

With the increasing safety knowledge regarding prefabricated building construction,
the traditional seven-step method relies too much on labor, which can no longer meet the
requirements of ontology construction. Therefore, an improved seven-step method was
adopted to develop the safety risk ontology for prefabricated building construction. Figure 3
presents the four critical steps involved in building an ontology model using the improved
seven-step method. As shown in this figure, the safety risk ontology model for prefabricated
building construction was semi-automatically built on the Protégé platform based on
ontology theory and using the improved seven-step method. First, combined with the
risk-control logic for prefabricated building construction, the top-level category of ontology
was divided into engineering projects, construction activities, precursor information, risk
status, and preventive measures. Second, the expression characteristics of terms and
clauses in standards and specifications were analyzed, and the screening rules for these
characteristics were formulated. Third, according to the rules, the 226 selected terms were
extracted, clustered, and extended by the category’s central words, so that all subclasses and
hierarchical relationships of top-level ontology classes were defined. Fourth, by defining
the object-oriented attributes, data-oriented attributes, and the attribute constraints of
the classes, a complete ontology knowledge base of safety risks in prefabricated building
construction was formed.
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Figure 4 shows a hierarchical diagram of the final ontology. In Figure 4, the five terms
in blue boxes express the top five categories of the ontology. The sixteen terms in green
boxes represent the subclasses of the top-level ontology classes. The six terms in white
boxes indicate the specific contents of the factors that affect the safety risks in prefabricated
building construction, such as lifting injuries, vehicle transport injuries, mechanical injuries,
and so on.
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3.3. Reasoning for Construction Safety Risk Ontology Based on Rules

The safety risk rules for the construction of prefabricated buildings were first defined,
consisting of two parts. One part of these rules was extracted from the norms relating to the
safety risks of prefabricated building construction, and the other part was obtained by using
the concept lattice method to dig deeply into the accident cases involving prefabricated
building construction. The construction safety risk rule library for prefabricated buildings
was then obtained, including risk subjects, risk discrimination conditions, risk events, and
preventive measures, in four parts.

Furthermore, the automatic application of the risk rule base was realized. The safety
risk rules were structurally expressed in the SWRL language with the semantic reasoning
function, which can be recognized by means of a computer, and stored in the Protégé
5.5 platform through the SWRL Tab plug-in. Figure 5 shows the Protégé interface for the
input operation of the SWRL rule; its main interface path is: Windows/Views/Ontology
views/Rules.
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On the basis of ontology knowledge and the safety risk rule, the inference results were
shown in the Protégé platform by means of the Drools reasoning engine, which provides
support for the intelligent management of the construction safety risks for prefabricated
buildings. A flowchart of the ontology reasoning process based on Drools is shown in
Figure 6. There are two important tasks depicted in Figure 6. First, the ontology OWL
knowledge and SWAL rules were transformed into Drools rule language. Second, the Rete
algorithm was used to match the Drools rules to achieve reasoning, and the reasoning
results were automatically updated in the ontology knowledge base.

3.4. Integration of BIM and Ontology

Intelligent safety risk management in prefabricated building construction should
integrate BIM technology and ontology technology. Furthermore, the application points of
BIM technology in different stages of prefabricated building projects should be analyzed.
On this basis, the Revit software was selected as the bearing platform for the intelligent
safety risk identification system integrating BIM technology and ontology technology, and
the safety risks of prefabricated building construction were intelligently identified in the
design and construction stages.

Figure 7 provides a logical model of the intelligent safety risk management process
for prefabricated building construction. The logical model contains the integration of BIM
technology, prefabricated building ontology, and the ontology safety risk rule base. As
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mentioned in the figure, in order to realize the development of system functions, an intelli-
gent risk management logical model integrating BIM technology and ontology technology
was established, and the mapping mechanism between BIM technology and ontology
technology was clarified. Moreover, through the programming detection algorithm imple-
mented in the Java language, the mapping from an Industry Foundation Classes (IFC) file
containing rich data information from the BIM model to a Web Ontology Language (OWL)
file of ontology was realized. Then, the transformation from component information in the
BIM model to ontology instances and instance attributes was completed.
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A flow diagram of the risk identification mechanism is presented in Figure 8. Specifi-
cally, when the identification program is started and the risk identification object is a specific
component in the BIM model, the program matches the name of the component with the
risk subject obtained from the rule base. The related component parameter information can
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be mapped onto the risk ontology via a detection algorithm, which automatically creates
instances and matching attributes. Then, the risk state can be identified by means of SWRL
rules and an inference engine in the Protégé software. The corresponding measures are
implemented when the risk state is determined to be “unsafe”. On the contrary, when the
risk state is safe, the identification program will continue to detect the next component
name, as shown in the flow chart. The intelligent identification mechanism of safety risk
integrated with BIM technology and ontology technology is analyzed below. According to
the different attributes of risk subjects, two different types of risk subjects are discussed
in the BIM environment: the static prefabricated components in the design stage and the
dynamic work activities in the construction stage. Then, the mechanism of intelligent risk
identification is completed by combining ontology reasoning methods.
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In addition, the intelligent risk management system was established through sec-
ondary development in the Revit software using the C# programming language. Through
this system, the visual, automatic, and intelligent management in the design and construc-
tion stages of prefabricated buildings can be realized, and the safety risk management
ability in relation to prefabricated buildings can be improved. The secondary development
process implemented in the Revit software is clarified in Figure 9. With the continuous ap-
plication of Revit secondary development technology, a relatively unified process step has
been created, which includes analyzing requirements and new projects, adding interface
files, adding namespaces, adding attributes to command classes and new classes, writing
codes, compiling, loading, debugging, and other steps.

As a supplement, we provide the pseudo-code for the development of add-ins in C#,
of which the specific pseudo-code is as follows:

// first, we need to get the message from Drools and the prefabricated objects from Revit
messages = Risk inference result and measures
objects = Prefabricated objects for Revit
// next, we need to associate corresponding messages and objects
result = Map the messages and objects
// finally, we use a form to show the result
form = new Forml(result)
form.ShowDialog().
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4. Case Study
4.1. Case Description

In this section, we describe the case study we conducted to verify and demonstrate
the proposed reasoning and management system. A newly built residential community in
Jiangsu, China was selected as the studied case. This project involved a fabricated shear
wall structure, including a fabricated shear wall, fabricated stairs, steel truss composite
floor, etc. The prefabricated components and other structures, such as the frame columns
and the frame beam, were poured together using concrete. The prefabrication ratio of this
project was 31.53%.

According to the design drawings and the construction site layout plan, two models—
a design model and a construction model—were established. The design model was used to
identify the safety risks of the static prefabricated components in the design stage. Similarly,
the construction model was used to identify the safety risks of the dynamic construction
process in the construction stage.

4.1.1. Design Model

In this study, a standard layer in the case project was selected to build the design
model, and the reinforcement conditions in the prefabricated shear wall were modeled in
detail according to the design drawings. Figure 10 shows a standard layer of the project’s
design model established in the Revit software.

4.1.2. Construction Model

According to the layout drawings of the construction site, risk subjects were set in the
construction model, including tower cranes, prefabricated component yards, construction
machines, etc. Figure 11 provides the construction model diagram in Revit. The layout of
the operation buildings and the tower cranes are included in Figure 11.
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4.2. Construction Safety Risk Reasoning Based on Ontology Technology

In this study, the prefabricated shear walls, as components of the case study project,
are taken as an example to illustrate the automation and risk reasoning process of ontology
instances. The process of exporting IFC files from project files created with the Revit
software is shown in Figure 12.

After this exporting step, the IFC documents exported from the design model were
scanned by the developed detection algorithm. The express language from the IFC docu-
ment was detected through Java language analysis and automatically mapped to the OWL
language. Then, relevant parameters were extracted and transformed into a recognizable
ontology format to form ontology instances and corresponding attribute values. The results
obtained in the ontology software are shown in Figure 13. In the figure, the data attribute
values for different component examples are indicated with a red box. “YZJLQ-03”, for
example, represents the precast shear wall, and its data attribute is represented by “has _
the _ size _ of _ hole” 2200 * 1600” ˆˆ xsd: string”, and so on.
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Moreover, “SWRL + Drools” reasoning was performed after adding the instance to the
ontology automatically. The result displayed in the software is presented in Figure 14. The
following three new descriptions of knowledge reasoning were added for this example:

(1) The object attributes of “cause_risk lifting_injury” were added into the object attribute
column for the example with the component ID “YZJLQ-02”. This indicates that there
were some settings in the design parameters of the shear wall that did not comply with
the SWRL rules. “YZJLQ-02” shear wall members were subject to safety risks that may
have led to crane injury accidents. This shows that the risk ontology constructed based
on the SWRL rule base and the Drools inference engine were capable of inferring the
risk status of the components.

(2) The object attributes “has_measure improve_the_level_of_designs” and “has_measure
redesign_according_to_standards <JG1-2014> 8.2.1” were added into the object at-
tribute column for the example of the “YZJLQ-02” shear wall. This indicates that
measures should be taken to improve the professional level of designers for shear wall
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components with safety risks, and risk prevention measures should be redesigned
according to Article 8.2.1 of the Technical Standard for Prefabricated Concrete Structures
of the Standard Specification. Provided with these accurate risk prevention and con-
trol measures, designers can quickly correct design errors, which will improve the
efficiency of risk management.

(3) The expression of the generic relationship was more comprehensive after the reasoning
process. Through the reasoning process, the program changed the category of the
prefabricated shear wall from belonging only to the “precast shear wall” class to
belonging to the “component”, “object”, and “precursor” parents in the type column.
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4.3. Integrating BIM Technology with Ontology Technology

The risk status and solution measures of the risk subject inferred by ontology were
stored and displayed in the ontology editing tool interface. The results of the partial onto-
logical risk inference were imported into an Excel document by hand in the order of “risk
subject name/ID–risk status/parameter items not satisfying rules–solutions/prevention
and control measures”. Then, the Excel document was associated with the code related to
the Revit secondary development using the C# language.

4.3.1. Safety Risk Management in the Design Stage

The ontology knowledge was realized with the help of the plug-in function “safety risk
management in the design stage”. The design safety risk status of each component in the
design model was reviewed by automatically checking the design parameters of individual
fabricated members. In addition, the corresponding solutions were automatically generated.
These results were visually displayed in the BIM model by means of the Revit plug-in,
enabling designers to modify the design parameters of components and avoid the omission
and misjudgment of the design provisions in the traditional review process. Eventually, a
BIM model with parameters that met the specification requirements was obtained.

A BIM model with an accurate design stage can be applied directly to the industri-
alization of prefabricated components and the mechanization of production methods, so
as to realize the automatic production of components. In the Revit interface, we selected
all the components in the design model, and then clicked the “design safety risk manage-
ment” plug-in button. The results of the intelligent risk identification system are shown
in Figure 15. After the command was executed, the unsafe risk status and solution mea-
sures of shear wall members with the component named “YZJLQ-02” were automatically
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identified. The results of the ontology were presented in the BIM model in a visual form to
facilitate the collaborative management of multiple participants involved in prefabricated
building construction.
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4.3.2. Safety Risk Management in the Construction Stage

With the help of the “construction stage safety risk management” plug-in function, the
risk factors in the construction process were checked in a timely fashion by the managers.
By inputting the status values of risk factors into the plug-in function’s interface, the safety
status of the current construction process can be intelligently identified, and solutions
corresponding to the unsafe status can be automatically generated.

To illustrate this mechanism, an example of two tower cranes was created, and then a
value of 1.8 m for the data type property “has_working_distance_
between_tower_cranes” was added to express the interval of 1.8 m between the two
tower cranes in the BIM model. After the ontology reasoning process, the program
displayed “cause_risklifting_error”, “has_measure_improve_workers_safety_awareness”,
“has_measureworking_distance_between_tower_cranes > 2 m”, and “has_measuresafety_
supervision”. The real-time datapoint of 1.8 m in the risk subject “operation distance
between tower cranes” was inserted into the plug-in operation interface, and the risk factor
status value was inserted. The “check” button was then clicked. The operation results of
the risk intelligence system are shown in Figure 16.

After running the software, the display of the risk status and preventive measures
was consistent with the ontology reasoning results. This process realized the use of
knowledge to identify safety risk factors in the construction phase intelligently, and
provided solutions for the factors, which were displayed in the BIM software. Some risk
items were defined briefly. For example, the hoisting workers were identified as “safe”
or “unsafe”, and the component quality was identified as “qualified” or “unqualified”.
For future research, RFID technology and wireless sensor technology can be combined
with these definitions to realize the real-time acquisition and automatic input of risk
subject data in the construction process.
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5. Discussions

To date, there have been numerous studies presenting BIM-supported ontology de-
velopment for construction safety risk management, but most studies have been applied
to building cost estimation [51,52], green building evaluation [53], construction defect
information [54], and technical methods, such as expressing BIM in the semantic web
format [55]. This suggests that there are few studies related to the integration of ontology
with BIM in the field of the safety management of prefabricated building construction. In
this study, a common construction model is used to illustrate the function of integrating
ontology technology with BIM technology. The above research shows that the system
can detect and avoid design problems caused by non-compliance with the construction
specifications at the design stage, which has practical application value.

Many scholars have conducted research in the field of safety risk management, but
there are still few research results in the field of prefabricated building safety risk manage-
ment [56] because there are obvious differences between the prefabricated construction
method and the traditional cast-in-place construction approach [57]. The biggest difference
between the construction of prefabricated buildings and traditional construction meth-
ods is that in the former, a large number of additional hoisting operations are required.
Cranes are used for module hoisting because of their excellent transportation capacity in
construction [58]. Many scholars have paid attention to the optimal arrangement of tower
cranes [59,60]. In our case study, the layout of tower cranes was taken as an example in or-
der to identify the safety risk in the construction model. After identification, the unsafe risk
factors and pre-control measures were presented in the Revit program. We thus provided a
new method for safety risk management in the preparation stage of prefabricated buildings.

There is no doubt that some advanced technologies can be used to detect risk factors
in the construction process, which can reduce the probability of accidents. For example,
an intelligent early warning system was established to indicate the safety risk of a metro
tunnel, displaying this information in 3D form by means of BIM technology [34]. Ontology
and case-based reasoning technologies have been introduced into the field of building
safety accident control [61]. Moreover, IoT technologies have been used to monitor the
project implementation process in prefabricated building construction [62], which help to
optimize construction schedules and ensure the quality and safety of prefabricated building
construction projects. In this study, unlike previous research, once the risk factors were
identified and detected in the Revit software, the preventive measures were immediately
displayed, as shown in Figure 16. This allows managers to quickly adjust the design
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scheme or construction method by monitoring risk factors in the design and construction
stages, thereby reducing the occurrence of prefabricated building construction accidents.
Furthermore, it improves the level of intelligent construction safety accident control, thus
providing a means of improving accident control technology through the use of scientific
and intelligent technology.

In this study, we drew lessons from the existing research to construct a safety risk
ontology for prefabricated building construction. Through the prototype of construction
risk identification, established in the BIM environment, the automatic identification method
of security risks based on a semantic data model was tested [63]. Through an ontology-
based framework, with the aim of supporting environmental monitoring and compliance-
checking in the BIM environment among different information systems, a specific ontology
was developed to represent the relevant knowledge [64]. Furthermore, a meta-model for
a construction-safety-checking ontology has also been developed [21] to integrate new
technology into construction-safety-checking systems. In this study, a construction-safety-
checking ontology, including five primary classes (“line of work”, “task”, “precursor”,
“hazard”, and “solution”), was proposed to express safety-checking concepts. As described
above, from the set point of view, a prefabricated construction safety risk management
system including work activities, risk event factors, accident risks, and prevention and
control measures was constructed. In addition, the components of each set and the mapping
relationships between them were defined. This lays a foundation for the realization of the
knowledge-based “risk-prevention-type” management model, and avoids faults due to a
lack of mechanisms to formally assess security risks and select safety plan elements [65].

Some researchers have developed ontology methods on the basis of regulatory on-
tology and additional domain ontology [66], such as building environmental monitoring
ontology [64] and practical product ontology [67]. Such developments are relevant to
this study. For example, the integration of a modular approach with construction safety
risk management based on BIM was introduced by Darko et al., who conducted a critical
survey of BIM-based modular integrated construction risk management [68]. Furthermore,
a construction safety ontology was proposed by Zhang et al. to formalize safety manage-
ment knowledge, and a prototype application of ontology-based job hazard analysis and
visualization was implemented to further illustrate the applicability and effectiveness of
their developed ontology [22]. In this study, the ontology approach was integrated with
BIM technology. The results show that the risk factors can be intelligently identified using
the Revit software after secondary development. In particular, as expressed in Figure 1,
safety risk rules were mined from accident cases with the help of a concept lattice and trans-
formed quickly through the SWRL semantic reasoning language and the Drools reasoning
engine. In addition, the intelligent risk reasoning process and the automatic production of
reasoning results were realized in the Protégé software. The Drools reasoning engine has
good compatibility with the Protégé software. Compared with the Jena reasoning engine
and the Jess reasoning engine, the use of Drools avoids the operation of loading reasoning
engine plug-ins and configuring the corresponding reasoning environment as part of the
reasoning process. Ultimately, through the secondary development of the Revit software
with the C# language, an intelligent risk management system was established.

The Revit software was chosen as the development platform based on previous re-
search experience. The advantages and applications of the Revit software include its
comprehensive BIM information, clear content, and the ease of the collection and manage-
ment of information parameters [69]. Previously, a plug-in was developed by Lu et al. in
Autodesk Revit to connect BIM and safety risk data, which can automatically calculate
construction safety risks and help architects and structural designers to quickly choose
design schemes [70]. Furthermore, Zou et al. explored the feasibility and potential of
developing a BIM and knowledge-based risk management system. The Revit model was
also used to further develop Navisworks to realize 4D functions, such as construction plan-
ning, simulation, and real-time navigation [71]. Combined with the above experience, an
intelligent risk management system based on Revit secondary development was designed
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in this study. The software has a wide range of components and parameters, so we were
able to use it to create the corresponding prefabricated component family according to
the design information for the components of prefabricated buildings, which was suitable
for the BIM model construction. Therefore, the intelligent semantic identification of risks
involved in the process of prefabricated building construction was realized in the BIM
environment. This not only expands the application of BIM, but also provides key resources
for the evolution and upgrading of BIM technology from informatization to intelligence.

Ultimately, although the proposed management system can be successfully used for
the identification of risk factors in prefabricated building models, the system still needs to
be optimized and further developed. Ontology-based construction safety control measures
have become effective measures for building safety management in recent years, and
also represent the key development direction for safety management for the future in the
construction industry [72]. The application of ontology technology in artificial intelligence
systems in the prevention of building safety accidents can have various manifestations
and can involve various types of safety knowledge in the building field, but it needs to
be standardized. Therefore, the following points should be noted in future applications:
(1) the risk management system should be regularly updated and improved, such as adding
more accident cases, literature analyses, etc.; (2) with the updating of modeling software,
the rule base used in ontology construction requires regular maintenance; and (3) more
artificial intelligence technologies could be added for the identification of safety risk factors
for prefabricated building construction.

6. Conclusions

In practice, with the widening application of prefabricated buildings, safety risk
management is becoming increasingly complicated. To provide timely information and
knowledge for construction safety risk decisions regarding prefabricated buildings and
to display this information visually, a safety risk management system for prefabricated
building construction in the BIM environment was established based on ontology theory
and secondary development of the Revit software, and it was empirically verified using a
real case study. The results showed that, first, ontology technology can be applied in the
Revit software through plug-in integration, and the available knowledge on safety risk
management in prefabricated building construction can be shared, reused, and accumulated.
Second, problems in the design and construction of prefabricated buildings that do not
meet the specification requirements could be detected by the monitoring system in the Revit
software. Third, automatic risk identification and responses implemented by ontology and
BIM technologies can effectively increase construction safety risk management performance
in relation to prefabricated buildings. The specific contributions of this study are as follows:

(1) The first contribution is methods innovation. The application of BIM in prefabricated
building construction safety risk management can be combined with the knowledge
from other fields, such as DT, IoT, etc. However, our study uses ontology technology,
which is the first time that this technology has been applied to the safety risk manage-
ment of prefabricated building construction. This study provides a complete technical
scheme for the efficient reuse of historical project information and knowledge to assist
managers in risk decision-making.

(2) The second contribution is functional innovation. Once the risk factors were iden-
tified and detected using the Revit software, the preventive measures were directly
displayed. This allows managers to quickly adjust the design scheme or construction
method by monitoring the risk factors in the design or construction stages, thereby
reducing the occurrence of prefabricated building construction accidents.

The safety risk management system for prefabricated building construction in the
BIM environment established in this study also has some limitations. First, although
a substantial body of risk rules have been included, there are still risk rules that have
been ignored in the current study. Moreover, the extraction of complex reinforcement
information on the prefabricated components of prefabricated buildings has not yet been



Buildings 2022, 12, 765 18 of 20

completed. In addition, the code can be improved in future research to realize the fully
automatic mapping transformation of BIM information into ontology instances and instance
attributes. In addition, the intelligent management system of prefabricated building risks
developed in the current study is only suitable for the design and construction stages.
Further expansion is required for its application to the stages of component production
and maintenance.
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