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Abstract: For shear tests of reinforced concrete (RC) beams, a simply supported and symmetrical
loading system is usually applied. In deterministic analysis, shear capacities of the paired shear spans
of such beams are the same. However, considering the randomness of concrete strength, geometric
dimension, and other factors, shear failure often occurs in the weaker one of the paired shear spans of
a beam rather than occurring in the two shear spans simultaneously. Therefore, from the perspective
of probability theory, the shear capacities of the paired shear spans of such simply supported and
symmetrically loaded beams can be regarded as two random variables with the same distribution.
The beam shear capacity, which is the minimum of the two random variables, is also a random
variable. Hence, probabilistic differences exist between the shear capacities of shear spans and beams.
In this paper, the transformation relationship between the stochasticities of shear span shear capacity
and beam shear capacity is theoretically derived. By taking the RC beams without web reinforcement
as an example, the shear capacity stochasticities of shear spans and beams, which are valuable for
reliability-based design codes, are quantitatively analyzed based on three shear strength models in
design codes and a reliable experimental database. Their probabilistic differences are identified and
verified to have an impact on the model calibration in the reliability analysis. The results also show
that there are obvious differences in the shear capacity stochasticities obtained by different models. It
indicates that to obtain the real stochasticity of the shear capacity, it is not enough to consider the
model uncertainty merely but to minimize it. Therefore, models based on a solid understanding of
the shear mechanisms are urgently needed for practical design.

Keywords: shear capacity; simple beam; stochasticity; model uncertainty; model calibration; database

1. Introduction

In shear tests of RC beams, a symmetrical three- or four-point loading system is widely
used, as shown in Figure 1. It is impossible to predict in advance that shear failure will
occur in which shear span. As the load increases, the flexural-shear diagonal cracks appear
gradually in the shear spans. When the beam reaches its ultimate shear capacity, shear
failure occurs with one of the two shear spans separated along the critical shear crack. At
this point, generally, less damage can be observed in the other shear span. If the failed
shear span is reinforced (such as by external stirrups) and then re-loads to shear failure of
the other shear span, the ultimate capacity is often higher than that in the first load. This
phenomenon can be observed in the experiments performed by Feldman and Siess [1],
Leonhardt and Walther [2], Chana [3], Collins and Kuchma [4], Lubell et al. [5,6], and
Sherwood et al. [7,8].

In deterministic analysis, for a symmetrically loaded and simply supported beam, the
capacities (all of the following “capacity” refers to “shear capacity”) of the two spans (all of
the following “span” refers to “shear span”) Vs are the same due to their identical values of
geometry parameters and material strength. In this case, there is no difference between
span capacity Vs and beam capacity Vb. On the other hand, considering the randomness of
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concrete strength, geometric dimension, and other factors, the shear failure occurs in one of
the paired spans of the beam, which has a lower shear capacity than the other one. In this
case, the beam capacity equals the lower span capacity.
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Figure 1. Typical shear test for RC beams. (a) three-point symmetrical loading. (b) Four-point
symmetrical loading.

Suppose the capacities of the two spans of a symmetrically loaded and simply sup-
ported beam are regarded as two random variables with an identical distribution. In that
case, the capacity of the beam is a function of the two variables and also a random variable.
For a real beam, each span’s capacity can be considered a sample of the corresponding
random variable, and the smaller one of the span capacities determines the capacity of
the beam.

Yi and Chen [9] assumed that shear capacities Vs1 and Vs2 of the two spans of a
symmetrically loaded and simply supported beam obey the same normal distribution (the
mean value was 300 kN, and the standard deviation was 50 kN). By Monte Carlo sampling,
500,000 pairs of data were generated as 500,000 virtual beams. The smaller value of each
pair of data was selected as the shear capacity Vb of the virtual beam. The probability
density function (PDF) curves of Vs1, Vs2, and Vb indicate significant differences between
the stochasticities of the span capacity and the beam capacity. However, as the PDF of the
span capacity was entirely hypothetical, and the PDF of the beam capacity was obtained by
numerical simulation, they cannot truly reflect the differences and relationships between
the stochasticities of the span capacity and the beam capacity.

According to the probability theory [10], the transformation relation between the
stochasticities of span capacity Vs and beam capacity Vb of symmetrically loaded simple
beams was established in this paper. By taking the RC beams without web reinforcement
as an example, the stochasticity of Vb was obtained based on a reliable shear test database.
On this basis, Vs was theoretically derived, and the probabilistic differences between the
stochasticities of Vs and Vb were identified.

The shear capacity stochasticity is important in the reliability analysis. In practical
design, shear capacity models of design codes are used to calculate the shear capacity of
a shear span or the critical (diagonal) section in a shear span. However, most test results
used to calibrate the models are beam capacities of symmetrically loaded simple beams.
The discrepancy between the prediction and calibration of the models and the influence on
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reliability were discussed. In addition, this study also explored the influences of different
shear models (i.e., different model uncertainties) on the shear capacity stochasticity.

2. Methodology: Formulation of Shear Capacity Stochasticity

When the shear capacity is regarded as a random variable, the span capacity Vs and
beam capacity Vb, respectively, are

Vs = VPKPs (1)

Vb = VPKPb (2)

where VP is the shear capacity predicted by shear models, and KPs and KPb are the model
uncertainties corresponding to Vs and Vb, respectively.

2.1. Stochasticity of Beam Capacity

As most shear tests of simple beams are symmetrically loaded, the tested beam capacity
is the smaller value of the capacities of the paired spans. According to the Equation (2),
there is

Kpb =
Vb
VP

(3)

The samples of the model uncertainty Kpb can be obtained by Equation (3) with the
samples of the beam capacity Vb. When the VP in Equation (3) is calculated, the measured
values of material properties and geometrical dimensions should be used to exclude
material uncertainties and geometric uncertainties.

After the samples of Kpb are obtained, the PDF of Kpb can be obtained by fitting, and
then the PDF of Vb can be obtained according to Equation (2). However, the number of
samples of the span capacity Vs is very limited. Thus, the PDF of Vs cannot be determined
by this method.

2.2. Stochasticity of Span Capacity

Assuming that the shear capacities of the paired spans of a simple beam are random
variables Vs1 and Vs2 respectively, the beam capacity Vb is

Vb = min(Vs1, Vs2) (4)

For a symmetrically loaded simple beam with identical structural characteristics in the
paired spans, the span capacities Vs1 and Vs2 are assumed to be statistically independent
and identically distributed. According to probability theory [10], the cumulative distribu-
tion function (CDF) FY (y) of the minimum Y of the sample random variables X1, X2, ···,
Xn, which are statistically independent and identically distributed, is

FY(y) = 1− [1− FX(y)]
n (5)

The corresponding PDF fY (y) of Y is

fY(y) = n[1− FX(y)]
n−1 fX(y) (6)

The above general conclusion can be used for the establishment of the transformation
relationship between the stochasticity of span capacity Vs and beam capacity Vb.{

FVb(y) = 1− [1− FVs(y)]
2

fVb(y) = 2[1− FVs(y)] fVs(y)
(7)

FVs(y) = 1−
√

1− FVb(y)

fVs(y) =
fVb(y)

2
√

1−FVb(y)

(8)
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where FVb (y) and fVb (y) are the CDF and PDF of Vb respectively, and FVs (y) and fVs (y) are
the CDF and PDF of Vs respectively.

Thus, once the stochasticity of the beam capacity Vb is known, the stochasticity of the
span capacity Vs can be further determined by Equation (8).

It should be noted that although there is a certain correlation between the span ca-
pacities of a beam, this correlation is difficult to be quantified and verified. Moreover,
considering the correlation will make the theoretical transformation relationship much
more complicated [11]. Therefore, for the sake of simplicity, this study adopted the as-
sumption that the paired span capacities in a symmetrically loaded simple beam are
independent. Similarly, the independent assumption was also applied to adjacent strips
(macroelements) for numerical analysis of the statistical size effect of span in four-point
bending beams [12,13].

3. Example: Shear Capacity Stochasticity of Simple RC Beams without Stirrups
3.1. Shear Tests Database

In this paper, the ACI-DAfStb database established by Reineck et al. [14] is considered.
The shear failure of slender beams, characterized by diagonal tension, differs from the
shear-compression failure of deep beams [15–19]. The transition of slender and deep beams
occurs at a shear span-to-depth ratio a/d of 2.0 to 2.5 [20]. Therefore, in order to keep a
consistent shear failure mode (i.e., diagonal tension failure), 605 point-loaded rectangular
RC beams with shear span-to-depth ratio a/d greater than 2.5 from the database are used
to obtain the statistical samples required for this study.

Of the 605 beams, 573 simple beams with symmetrical structural characteristics were
symmetrically loaded. The test results of these beams can be regarded as the samples of
beam capacity Vb. For the removed 32 beams [1–8,21–23], the shear failures of 4 beams
(specimens H50/5 and H100/5 in [23], SB2012/0, and SB2003/0 in [22]) were fixed in the
selected spans by reinforcing the other spans with stirrups, which can be regarded as the
samples of the span capacity Vs.

3.2. Shear Capacity Models

In this study, the shear capacity models of RC beams without stirrups in the European
code EC2 [24], the American code ACI 318-14 (ACI) [25], and the Chinese code GB 50010-10
(GB) [26] are selected and listed in Table 1. Since the bending moment weakens shear
capacity in the ACI model, it is necessary to determine the critical cross-section. As the
shear failure surface involves a length along the beam axis approximately equal to effective
depth d, sections closer than d to the face of the support or the face of the load will not be
critical [27,28], as shown in Figure 2. Therefore, the cross-section with a distance d from the
loading point is selected as the critical section in the ACI model.

Table 1. Shear capacity models for RC beams without stirrups in the codes.

Code Shear Capacity Model Note

EC2 VP,EC2 = 0.18
(

1 +
√

200
d

)
(100ρ fc)

1/3bd
where b is the width of the beam; d is the effective depth of
the beam; ρ is the ratio of longitudinal reinforcement; a is

the shear span measured center-to-center from load to
support; fc and ft are the compressive and tensile strength of

concrete; bending moment Mp,ACI occurs simultaneously
with Vp,ACI at the section considered; and βd in GB is the

factor considering the influence of d on shear capacity.

ACI VP,ACI =
(

0.16
√

fc + 17ρ
VP,ACI d
MP,ACI

)
bd

=
(

0.16
√

fc + 17ρ d
a−d

)
bd

GB
VP,GB = βd

1.75
a/d+1 ftbd, 1.5 ≤ a/d ≤ 3.0

where βd =
(

800
d

)1/4
, 800 ≤ d ≤ 2000
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3.3. Model Uncertainty Kpb of RC Beams without Stirrups

By filtering the ACI-DAfStb database, 573 samples of beam capacity Vb are obtained,
while there are only four samples of span capacity Vs. Therefore, the samples of Vb are
used to calculate the samples of model uncertainty Kpb according to Equation (3). In order
to exclude the impact of material uncertainty and geometrical uncertainty, the measured
values of material properties and geometrical dimensions should be used for Vp. Then, the
distribution function of Kpb can be obtained by fitting.

The shear capacities of the 573 beams are calculated by the models in Table 1, and
the comparison of the model predictions and the test results are shown in Figure 3. The
correlation coefficient R between the predictions by the EC2 model and the test results is
the highest, reaching 0.876. Figure 3a shows the prediction points of the EC2 model are
closest to the red line, which indicates that the predicted value is equal to the test value. In
comparison, the R of the GB model is the lowest, only 0.566. Figure 3c shows the prediction
points by the GB model are most significantly scattered on both sides of the red line. The
comparison shows that the EC2 model best predicts the shear capacity, followed by the
ACI model, while the GB model performs worst.
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After the samples of the model uncertainty Kpb are obtained, they are fitted by the
normal distribution, lognormal distribution, generalized extreme value (GEV) distribution,
logistic distribution, and log-logistic distribution, respectively. The Kolmogorov-Smirnov
(KS) test is carried out on whether Kpb obeys the distributions at the 0.05 significance level,
and the results are shown in Table 2. For the distributions accepted by the KS test, their
fitting results are shown in Figure 4, and the fitting degree is quantified in the log-likelihood
value shown in Table 2. The results indicate that the logistic distribution is accepted by the
KS test for all the shear capacity models, and its fitting degree is relatively high. Therefore,
the logistic distribution is selected for Kpb, and its estimated parameters (i.e., mean µKpb
and standard deviation σKpb) are shown in Table 3.
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Table 2. Fitting results of the model uncertainty Kpb.

Code Fitting Result
Distribution Type

Normal Lognormal Generalized Extreme
Value (GEV) Logistic Log-Logistic

EC2
KS test Rejected Accepted Accepted Accepted Accepted

log-likelihood value - 229.678 222.272 237.324 247.25

ACI
KS test Rejected Rejected Rejected Accepted Rejected

log-likelihood value - - - −175.865 -

GB
KS test Accepted Rejected Accepted Accepted Accepted

log-likelihood value −179.592 - −178.583 −181.497 −197.03
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Table 3. Parameter estimation for the logistic distribution of model uncertainty Kpb.

Code
Parameter of Logistic Distribution

µKpb σKpb

EC2 0.978 0.161
ACI 1.225 0.332
GB 1.022 0.339

3.4. Beam Capacity Vb of RC Beams without Stirrups

The stochasticity of the model shear capacity Vp can be determined by the random
variables considered. According to JCSS Probabilistic Model Code [29], the distribution
types and probabilistic properties of the geometric and material variables (including b, d, a,
ρ, fc and ft) in the shear capacity models are defined [30], as shown in Table 4.

The concrete compressive strength is defined as [29]

fc = α(t, τ)( fco)
λY1 (9)

where fco is the basic concrete compression strength; α(t,τ) is a deterministic function which
takes into account the concrete age at the loading time t and the duration of loading τ; λ
is a lognormal variable with mean 0.96 and coefficient of variation 0.005, and generally
it suffices to take λ deterministically; Y1 is a log-normal variable representing additional
variations due to the special placing, curing and hardening conditions of in situ concrete.

The concrete tensile strength is defined as [29]

ft = 0.3( fc)
2/3Y2 (10)
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where the variable Y2 mainly reflects variations due to factors not well accounted for by
concrete compressive strength (e.g., gravel type and size, chemical composition of cement
and other ingredients, climatical conditions).

Table 4. Probabilistic properties of the variables considered by the models.

Variable Distribution Type Unit
Parameters of the Distribution

Note
µ σ COV

Geometry

b Normal mm bm 4 + 0.006 bm ≤ 10 -

where COV is the
coefficient of

variation, and equals
σ/µ; bm, dm, am, As ,m,

and fco ,m are the
mean values of the

corresponding
variables.

d Normal mm dm 10 -
a Normal mm am 4 + 0.006 am ≤ 10 -

As Normal mm As,m - 0.02

Material

fc - MPa - - -
α (t,τ) Deterministic - 1.0 - -

fco Lognormal MPa µ (fco ,m) σ (fco ,m) -
λ Deterministic - 0.96 - -

Y1 Lognormal - 1.0 - 0.06
ft - MPa - - -

Y2 Lognormal - 1.0 - 0.3

By referring to the specimen OA1 tested by Bresler and Scordelis [31], the values of the
distribution parameters are assumed as follows: bm = 310 mm, dm = 556 mm, am = 1830 mm,
As,m = 2579 mm2, µ (fco,m) = 22.6 MPa, and σ (fco,m) = 2.5 MPa. According to Equation (2), the
Monte Carlo method is used to simulate 100,000 samples of Vp and Kpb each to obtain the
samples of Vb, which are then fitted by appropriate distribution types. The fitting results
are shown in Figure 5, and the estimation values of the distribution parameters are shown
in Table 5.
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Table 5. Parameter estimation for the distributions of beam capacity Vb.

Beam Capacity Vb Distribution Type
Parameter of Distributions

µVb σVb kVb

Vb,EC2 Logistic 149.918 25.748 -
Vb,ACI Logistic 173.894 48.140 -
Vb,GB GEV 148.545 68.506 −0.034

Note: kVb is the scale parameter of GEV distribution.
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3.5. Span Capacity Vs of RC Beams without Stirrups

The stochasticity of the span capacity Vs is determined by Equation (8) after obtaining
the stochasticity of the beam capacity Vb, and the PDFs of Vs are shown in Table 6. From the
comparison of the PDFs of Vb and Vs in Figure 6, it can be seen that the mean and standard
deviation of the span capacity Vs are larger than the beam capacity Vb, which is consistent
with the conclusion by Nowak et al. [32,33] that both the mean value and the variance de-
crease with an increasing sample random variable number (i.e., n in Equations (5) and (6)).
Therefore, the difference between the stochasticities of Vb and Vs is theoretically verified,
and its influence on the reliability analysis is discussed in Section 3.6.

Table 6. Probability density functions for the shear span’s shear strength Vu.

Span Capacity Vs Probability Density Function

Vs,EC2
fVu(y) =

(
exp

(
y−µVb

sVb

))1/2

2sVb

(
1+exp

(
y−µVb

sVb

))3/2 , where sVb =
√

3σVb
π

Vs,ACI

Vs,GB fVu(y) =

1
σVb

exp

(
−
(

1+k (
y−uVb)

σVb

)−1/k
)(

1+k (
y−uVb)

σVb

)−1−1/k

2

√√√√1−exp

(
−
(

1+k (
y−uVb)

σVb

)−1/k
)
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Figure 6. Comparison of the PDFs of Vb and Vs. (a) EC2. (b) ACI. (c) GB.

The stochasticities of beam and span capacities of RC simple beams are inherent
characters and should be independent of the design models. However, by comparing the
calculated PDFs of Vb and Vs obtained based on different models, as shown in Figure 7,
it can be seen that there are great differences among them. It can be inferred that the
differences are transferred from the various model uncertainties Kpb, which quantify the
deficiencies of the empirical models. To obtain the real stochasticity of the shear capacity,
it is not enough to consider the model uncertainty but also to make the model as far as
possible to reflect the mechanism of shear failure, i.e., to minimize the model uncertainty.
Therefore, models based on a solid understanding of the shear mechanisms are urgently
needed for practical design.

3.6. Reliability Analysis of Span and Beam Capacities

In order to achieve the predetermined target reliability of designed structures, design
models in codes need to be calibrated using test results [32,33]. The shear capacity models
in the design codes are used to calculate the shear capacity of a shear span or the critical
(diagonal) section in a shear span. However, most test results used to calibrate the models
are beam capacities of symmetrically loaded simple beams, which are the lower span
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capacities of the paired spans. The discrepancy between the prediction and calibration of
the models and the influence on reliability need to be evaluated.
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Figure 7. Comparison of the PDFs of shear capacity by different models. (a) PDFs of Vb. (b) PDFs of Vs.

In this study, the reliability analysis is carried out by using the ACI model and speci-
men OA1 [31] as an example. The dead load D and the live load L are determined according
to Equation (11) and Table 7.

1.2Dn + 1.6Ln ≤ φVP,ACI (11)

where Dn and Ln are the nominal values of D and L, respectively, and their statistical
parameters are shown in Table 7 [32,33]. Resistance factors φ is 0.75 for shear failure
according to ACI [25].

Table 7. Probabilistic properties for the dead load D and live load L.

Load Type Distribution Type
Statistical Parameters

µ(D)/Dn COV

D Normal 1.05 0.10
L Extreme type I 1.00 0.18

The limit state functions ZVs and ZVb for the shear failure of span and beam, respec-
tively, are formulated as Equations (12) and (13).

ZVs = VPKPs − D− L = Vs − D− L (12)

ZVb = VPKPb − D− L = Vb − D− L (13)

Using Monte Carlo simulations, the reliability indexes for Vs and Vb are shown in
Figure 8, showing that the reliability index of Vs is about 0.25 higher than that of Vb,
which means the failure probability of Vs is about half of that of Vb under the same load
combination.

It should be noted that the reliability indexes obtained in this study are lower than
those provided by Szerszen and Nowak [33]. The main reason is that the COV (about 0.28)
of the shear capacity obtained in this study is much larger than the COV (about 0.11) used
by Szerszen and Nowak [33]. If the COV = 0.11 is used in the reliability analysis of this
study, the reliability indexes will be close to those provided by Szerszen and Nowak [33].

As previously mentioned, in practical design, the shear capacity models are used to
calculate the shear capacity of shear spans. However, most test results available to calculate
the model uncertainty are beam capacities of symmetrically loaded simple beams, so the
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shear models are actually calibrated only at the beam-level, which causes the reliability of
shear spans designed by the beam-level calibrated shear models to be underestimated.
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To more reasonably calibrate the reliability of the beam shear capacity, attentions
should be paid to (1) the selection criteria of test results in the database, (2) the inconsistency
of the shear capacity stochasticities between the shear span and the beam for symmetrically
loaded simple beams, and (3) the minimizing of the model uncertainty. On the other hand,
the independence assumption of the paired span capacities of symmetrically loaded simple
beams is adopted in this study, which still needs to be further discussed.

4. Summary and Conclusions

1. The transformation relationship between the stochasticities of span capacity and beam
capacity was theoretically derived. It is applicable to shear controlled members with
symmetrical boundary conditions and structural parameters, including symmetrically
loaded simple and continuous beams with and without stirrups.

2. By taking the RC beams without web reinforcement as an example, the stochasticities
of the span and beam capacities, which are valuable for reliability-based design code,
were quantitatively analyzed on the basis of three shear strength models in design
codes and a reliable experimental database. The results theoretically verified the
probabilistic difference between the stochasticities of Vb and Vs.

3. Differences in the shear capacity stochasticities obtained by different models were also
identified, which indicated that to obtain the real stochasticity of the shear capacity, it
is not enough to merely consider the model uncertainty, but to minimize it.

4. The reliability analysis showed that the reliability index of Vs is higher than that of Vb,
and the failure probability of Vs is about half of Vb under the same load combination.
In addition, the discrepancy between the prediction and calibration of the models and
the influence on reliability were evaluated, indicating the reliability of shear spans
designed by the beam-level calibrated shear models is underestimated.
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Notations

a shear span measured center-to-center from load to support
As area of longitudinal reinforcement
b width of the beam
D dead load
fc compressive strength of concrete
fco basic concrete compression strength
ft tensile strength of concrete
k scale parameter of generalized extreme value distribution
KPs, KPb model uncertainties corresponding to Vs and Vb, respectively
L live load
Mp bending moment occurs simultaneously with VP at the section considered
s scale parameter of logistic and log-logistic distribution
Vb beam shear capacity
VP shear capacity predicted by model
Vs shear capacity of shear span

Y1
log-normal variable representing additional variations due to the special placing,
curing and hardening conditions of in situ concrete

Y2
variable reflects variations due to factors not well accounted for by concrete
compressive strength

Z limit state functions

α(t,τ)
deterministic function which takes into account the concrete age at the loading time t
and the duration of loading τ

βd factor considering the influence of d on shear capacity
µ mean value of random valuable
ρ ratio of longitudinal reinforcement
σ standard deviation of random valuable
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13. Novák, D.; Bažant, Z.; Vořechovský, M. Computational modeling of statistical size effect in quasibrittle structures. In Proceedings
of the ICASP 9 International Conference on Applications of Statistics and Probability in Civil Engineering, San Francisco, CA,
USA, 6–9 July 2003; Millpress: Rotterdam, The Netherlands, 2003; pp. 621–628.

14. Reineck, K.-H.; Bentz, E.C.; Fitik, B.; Kuchma, D.A.; Bayrak, O. ACI-DAfStb Database of Shear Tests on Slender Reinforced
Concrete Beams without Stirrups. ACI Struct. J. 2013, 110, 867–875.

15. Chen, H.; Yi, W.-J.; Hwang, H.-J. Cracking strut-and-tie model for shear strength evaluation of reinforced concrete deep beams.
Eng. Struct. 2018, 163, 396–408. [CrossRef]

16. Chen, H.; Yi, W.-J.; Ma, Z.J. Shear size effect in simply supported RC deep beams. Eng. Struct. 2019, 182, 268–278. [CrossRef]
17. Chen, H.; Yi, W.-J.; Ma, Z.J.; Hwang, H.-J. Shear strength of reinforced concrete simple and continuous deep beams. ACI Struct. J.

2019, 116, 31–40. [CrossRef]
18. Chen, H.; Yi, W.-J.; Ma, Z.J. Shear-Transfer Mechanisms and Strength Modeling of RC Continuous Deep Beams. J. Struct. Eng.

2020, 146, 04020240. [CrossRef]
19. Chen, H.; Yi, W.-J.; Ma, Z.J.; Hwang, H.-J. Modeling of shear mechanisms and strength of concrete deep beams reinforced with

FRP bars. Compos. Struct. 2020, 234, 111715. [CrossRef]
20. Tuchscherer, R.G.; Birrcher, D.B.; Bayrak, O. Reducing Discrepancy between Deep Beam and Sectional Shear-Strength Predictions.

ACI Struct. J. 2016, 113, 3–16. [CrossRef]
21. Adebar, P.; Collins, M.P. Shear strength of members without transverse reinforcement. Can. J. Civ. Eng. 1996, 23, 30–41. [CrossRef]
22. Cao, S. Size Effect and the Influence of Longitudinal Reinforcement on the Shear Response of Large Reinforced Concrete Members.

Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2001.
23. Cladera Bohigas, A. Shear Design of Reinforced High-Strength Concrete Beams. Ph.D. Thesis, Universitat Politècnica de

Catalunya, Barcelona, Spain, 2003.
24. BS EN 1992-1-1:2004; Eurocode 2: Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings. British

Standards Institution: London, UK, 2004.
25. ACI 318R-14; Building Code Requirements for Structural Concrete (ACI 318-14): Commentary on Building Code Requirements

for Structural Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2014; p. 519.
26. GB 50010-2010; Code for Design of Concrete Structures. Chinese Building Press: Beijing, China, 2010.
27. ACI-ASCE Committee 326. Shear and Diagonal Tension. ACI J. 1962, 59, 1–124.
28. Collins, M.P.; Bentz, E.C.; Quach, P.T.; Proestos, G.T. The Challenge of Predicting the Shear Strength of Very Thick Slabs. Concr.

Int. 2015, 37, 29–37.
29. Vrouwenvelder, T. Probabilistic Model Code; Joint Committee on Structural Safety: Amsterdam, The Netherlands, 2001; ISBN

978-3-909386-79-6.
30. Sangiorgio, F.; Silfwerbrand, J.; Mancini, G. Scatter in the Shear Capacity of RC Slender Members without Web Reinforcement:

Overview Study. Struct. Concr. 2015, 17, 11–20. [CrossRef]
31. Bresler, B.; Scordelis, A.C. Shear Strength of Reinforced Concrete Beams. ACI J. 1963, 60, 51–74.
32. Nowak, A.S.; Szerszen, M.M. Calibration of design code for buildings (ACI 318): Part 1—Statistical models for resistance. ACI

Struct. J. 2003, 100, 377–382.
33. Szerszen, M.M.; Nowak, A.S. Calibration of design code for buildings (ACI 318): Part 2—Reliability analysis and resistance

factors. ACI Struct. J. 2003, 100, 383–391.

http://doi.org/10.1016/j.engstruct.2018.02.077
http://doi.org/10.1016/j.engstruct.2018.12.062
http://doi.org/10.14359/51718003
http://doi.org/10.1061/(ASCE)ST.1943-541X.0002814
http://doi.org/10.1016/j.compstruct.2019.111715
http://doi.org/10.14359/51688602
http://doi.org/10.1139/l96-004
http://doi.org/10.1002/suco.201400107

	Introduction 
	Methodology: Formulation of Shear Capacity Stochasticity 
	Stochasticity of Beam Capacity 
	Stochasticity of Span Capacity 

	Example: Shear Capacity Stochasticity of Simple RC Beams without Stirrups 
	Shear Tests Database 
	Shear Capacity Models 
	Model Uncertainty Kpb of RC Beams without Stirrups 
	Beam Capacity Vb of RC Beams without Stirrups 
	Span Capacity Vs of RC Beams without Stirrups 
	Reliability Analysis of Span and Beam Capacities 

	Summary and Conclusions 
	References

