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Abstract: Conventional methods of estimating pressure coefficients of buildings retain time and
cost constraints. Recently, machine learning (ML) has been successfully established to predict
wind pressure coefficients. However, regardless of the accuracy, ML models are incompetent in
providing end-users’ confidence as a result of the black-box nature of predictions. In this study,
we employed tree-based regression models (Decision Tree, XGBoost, Extra-tree, LightGBM) to
predict surface-averaged mean pressure coefficient (Cp,mean), fluctuation pressure coefficient (Cp,rms),
and peak pressure coefficient (Cp,peak) of low-rise gable-roofed buildings. The accuracy of models
was verified using Tokyo Polytechnic University (TPU) wind tunnel data. Subsequently, we used
Shapley Additive Explanations (SHAP) to explain the black-box nature of the ML predictions. The
comparison revealed that tree-based models are efficient and accurate in wind-predicting pressure
coefficients. Interestingly, SHAP provided human-comprehensible explanations for the interaction of
variables, the importance of features towards the outcome, and the underlying reasoning behind the
predictions. Moreover, SHAP confirmed that tree-based predictions adhere to the flow physics of
wind engineering, advancing the fidelity of ML-based predictions.

Keywords: explainable machine learning; pressure coefficient; shapley additive explanation;
tree-based machine learning; gable-roofed low-rise building

1. Introduction

Low-rise buildings are popular all over the world as they serve many sectors (e.g.,
residential, industrial, and commercial). Despite the ubiquitous presence, these build-
ings are constructed in various terrain profiles with numerous geometric configurations.
From the wind engineering viewpoint, these buildings are located in the ABL with high
turbulence intensities and steep velocity gradients. As a result, external wind pressure
on low buildings is spatially and temporally heterogeneous. Either physical experiments
(full scale or wind tunnel) or CFD simulations are often employed to investigate external
pressure characteristics of low buildings. In the experiments, external pressure coefficients
are recorded to investigate the external wind pressure on the building envelope. These
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pressure coefficients are required to estimate design loads and for natural ventilation calcu-
lations. External pressure coefficients indicate the building components that are subjected
to large suction loads. However, these methods are resource-intensive and require time
and significant expertise. Despite being computationally expensive, numerical simulations
such as CFD are widely used for ABL modeling [1–5].

Alternatively, secondary methods including analytical models and parametric equa-
tions were developed in numerous ways. For example, DAD methods were introduced
to ensure that structural designs are economical and safe [6–8]. Swami and Chandra [9]
established a parametric equation to estimate Cp,mean on walls of low-rise buildings. Subse-
quently, Muehleisen and Patrizi [10] developed a novel equation to improve the accuracy
of the same predictions. However, both equations are permitted only for rectangular-
shaped buildings and failed to predict the pressure coefficients of the roof. In consequence,
the research community explored advanced data-driven methods and algorithms as an
alternative.

Accordingly, a noticeable surge in ML-based modeling is observed in engineering ap-
plications. Foremost, these approaches can be categorized into supervised, semi-supervised,
and unsupervised ML, based on data-labeling [11,12]. Regardless of the complexity of
the approach, various ML algorithms are successively employed in structural engineering
applications as evident from the comprehensive review provided by Sun et al. [13]. In
addition, many recent studies combined ML techniques with building engineering [14–26].
For example, Wu et al. [27] used tree-based ensemble classifiers to predict hazardous ma-
terials in buildings. Fan and Ding [28] developed a scorecard for sick building syndrome
using ML. Ji et al. [29] used ML to investigate life cycle cost and life cycle assessment of
buildings. In their proposed work, deep learning models showed superior performance.
Overall models achieved an R2 between 0.932 and 0.955. Yang et al. [30] reported that
supervised classification methods can be effectively used for building climate zoning. Olu-
Ajyal et al. [31] argued that deep neural networks perform better compared to remaining
machine learning models (Artificial Neural Network, Gradient Boosting, Decision Tree,
Random Forest, Support Vector Machine, Stacking, K-Nearest Neighbour, and Linear
Regression) in predicting building energy consumption in residential buildings.

Given its ability to find non-linear and complex functions, Kareem [32] stated that
ML algorithms are competent with physical experiments and numerical simulations when
predicting wind loads on buildings. Numerous studies have been conducted over the
years on investigating ML applications in wind engineering [14,33–44]. For example,
Bre et al. [33] and Chen et al. [35] developed ANN models to predict wind pressure coeffi-
cients of low-rise buildings. Lin et al. [45] suggested an ML-based method to estimate the
cross-wind effect of tall buildings. They used lightGBM regression to predict crosswind
spectrum, and it achieved an acceptable accuracy, complying with experimental results.
Kim et al. [46] proposed clustering algorithms to identify wind pressure patterns. They
noticed that the clustering algorithm reasonably captures the pressure patterns better than
independent component analysis or principal component analysis. Dongmei et al. [36], and
Duan et al. [37] used ANNs to predict wind loads and wind speeds, respectively. Hu and
Kwok [40] proposed data-driven (tree-based) models to predict wind pressure around cir-
cular cylinders. Accordingly, all tree-based models achieved R2 > 0.96 for predicting mean
pressure coefficients and R2 > 0.97 for predicting fluctuation (rms) pressure coefficients.
Hu et al. [47] investigated the applicability of machine learning models (Decision Tree,
Random Forest, XGBoost, GAN) to predict wind pressure of tall buildings in the presence of
interference-effect. The proposed GAN showcased superior performance in contrast to the
remaining models. The GAN achieved R2 = 0.988 for mean pressure coefficient predictions
and R2 = 0.924 for rms pressure coefficient predictions. Wang et al. [48] integrated LSTM,
Random Forests, and gaussian process regression to predict short-term wind gusts. They
argued that the proposed ensemble method is more accurate than employing individual
models. Tian et al. [49] introduced a novel approach using deep neural networks (DNN) to
predict wind pressure coefficients of low-rise gable-roofed buildings. The method achieved
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R = 0.9993 for mean pressure predictions and R = 0.9964 for peak pressure predictions.
In addition, Mallick et al. [50] extended experiments from regular-shaped buildings to
unconventional configurations while combining gene expression programming and ANNs.
The proposed equation was intended to predict surface average pressure coefficients of
a C-shaped building. Na and Son [51] predicted the atmospheric motion vector around
typhoons using GAN, and the model achieved acceptable accuracy (R2 > 0.97). Lamberti
and Gorle [44] reported that ML can balance computation cost and accuracy in predicting
complex turbulent flow quantities. Recent work done by Arul et al. [52] proposed that
shapelet transformation is an effective way to represent the time series of wind. They ob-
served that shapelet transformation is useful in identifying a wide variety of thunderstorms
that cannot be detected using conventional gust factor-based methods. Interestingly, these
ML models were precise and less time-consuming in contrast to conventional methods.

However, all related studies failed to explain the black-box nature of ML predictions
and their underlying reasoning. ML models estimate complex functions while no insights
on its inner-working methodology are provided to the end-user. Regardless of its superior
performance, model transparency is inferior compared to traditional approaches. The
absence of such knowledge makes implementing ML in wind engineering more difficult.
For instance, end-users are confident in physical and CFD modeling as a result of the
transparency of the process. Hence, ML models should be explainable in order to obtain
the trust of domain experts and end-users.

As an emerging branch, explainable artificial intelligence expects to overcome the
black-box nature of ML predictions. It provides insights into how an ML model performs
the prediction and the causality of prediction. It works as the human agent of the ML model.
Therefore, it is highly recommended among multi-stakeholders [53]. Explainable ML makes
regular ML predictions interpretable to the end-user. In addition, end-users become aware
of the form of relationship that exists between features. Hence, it is convenient for the user
to understand the importance of the features, and the dependency among various features
as a model in whole or instances [54–56]. With such advanced features, explainable ML
turns black-box models into glass-box models. One such attempt has been recently given to
predict the external pressure coefficients of a low-rise flat-roofed building surrounded by
similar buildings by using explainable machine learning [57]. They argued that explainable
models advance the ML models by revealing the causality of predictions. However, that
study focused on the effect of surrounding buildings, whereas the present study focused
on isolated gable-roofed low-rise buildings and the effect of its geometric parameters.

Therefore, the main objective is to predict surface-averaged pressure coefficients of
low-rise gable-roofed buildings using explainable ML. We argue that explainable ML
improves the transparency of the pressure coefficient predictions while exposing the inner-
working of the model. On the other hand, the explainable ML is imperative to cross-
validate the predictions using theoretical/experimental knowledge on low-rise gable-
roofed buildings. Finally, the study demonstrates that using explainable ML to predict
wind pressure coefficient does not affect model complexity or accuracy but rather enhances
the fidelity by improving end users’ trust in predictions.

Because the wind engineering community is new to explainable ML, Section 2 pro-
vides a brief on the concept and the explanation we used (Shapley additive explanations
(SHAP) [58]). Section 3 provides the background of tree-based ML models used in this
study. Sections 4 and 5 provide the performance analysis and the methodology of the study,
respectively. Results and discussion are provided in Sections 6 and 7 concludes the paper.
Section 8 discusses the limitations and future work of the research study.

2. Explainable ML

Explainable ML does not own a standard definition. Explainable methods can be
categorized into unique approaches namely, intrinsic and post hoc. For example, models
whose structure is simple are self-explainable (intrinsic) (e.g., linear regression, Decision
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Trees at lower tree depths). However, when an ML model is complex, a post hoc explanation
(explainable ML) is required to elucidate the predictions

Several models are already available that provide post hoc explanations. These include
models such as DeepLIFT [59], LIME [60], RISE [61], and SHAP [58]. LIME and SHAP have
been widely used in ML applications. However, Moradi and Samwald [62] state LIME
creates dummy instances considering the neighborhood of an instance by approximating
a linear behavior. Therefore, LIME interpretations do not reflect actual feature values. In
this study, we used SHAP to investigate the influence of each parameter on respective
prediction, its quantification, and convince underlying reasoning behind instances.

Shapley Additive Explanations (SHAP)

SHAP provides both local and global explanations of an ML model [63]. The value
assigned by SHAP can be used as a unified measure of feature importance. SHAP follows
core concepts in game theory when computing the feature importance. For instance,
“games” can be referred to as model predictions, and features inside the ML model are
represented by “players”. Simply, SHAP quantifies the contribution of each player to the
game [58]. Global interpretation provided by SHAP measures how a patient attribute
contributes to a prediction. Liang et al. [54] provided a detailed classification of explanation
models, in which SHAP is a data-driven and perturbation-based method. Therefore, it
relies on input parameters and does not require understanding the operation sequence of
the ML model.

Perturbation works by masking several regions of the data samples to create distur-
bances. Subsequently, a disordered sample will result in another set of predictions that
can be compared with the original predictions. Lundberg and Lee [58] introduced unique
SHAP versions (e.g., DeepSHAP, Kernel SHAP, LinearSHAP, and TreeSHAP) for specific
ML model categories. For example, the current study employed TreeSHAP for ML predic-
tions. There, a linear explanatory model is used and the corresponding Shapley value is
calculated using Equation (1),

f
(
y′
)
= фo +

N

∑
i = 1

фiy
′
i (1)

where f denotes the explanation model whereas y′ ∈ {0, 1}N denotes the simplified features
of the coalition vector. N and ф ∈ R denote the maximum size of the coalition and the
feature attribution, respectively. Lundberg and Lee [58] specified Equations (2) and (3) to
compute feature attribution,

фi = ∑
S {1,...,p}\{i}

|S|!(p− |S| − 1)!
p!

[gx(S∪ {i})− gx(S)] (2)

where; gx(S) = E[g(x)|xS] (3)

In Equation (2), S represents a subset of the features (input) and x is the vector of
feature values of the instance to be interpreted. Thus, the Shapley value is denoted through
a value function (gx). Here, p symbolizes the number of features and gx(S) is the prediction
obtained from features in S. E[g(x)|xK] represents the expected value of the function on
subset S. In addition, this study employs Scikit-learn (Sklearn), NumPy, matplot, pandas,
and Shap libraries for the implementation.

Sklearn is the most efficient and robust library that is used for machine learning
applications in python. Sklearn allows using numerous machine learning tools, including
regression, classification, clustering, and dimensionality reduction. In addition, this library
was written mostly using python over Numpy, Scipy, and Matplotlib.
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3. Tree-Based ML Algorithms

We proposed four tree-based ML models for the present study. All four models are
Decision Tree-based models. Tree-based models follow a deterministic process in decision-
making. Patel and Prajapati [64] reported that a Decision Tree mimics the human thinking
process. Despite the complexity that grows with tree-depth, the decision-tree structure is
self-explainable. Moreover, tree-based models work efficiently for structured data.

3.1. Decision Tree Regressor

Decision Trees serve for both regression and classification problems [65–67]. The
working principle of a Decision Tree is to split a comprehensive task into several simplified
versions. Evolved structure of the Decision Tree is hierarchical from roots to end leaves
and generates a model based on logical postulations that can be subsequently employed to
predict new data.

Recursive breakdown and multiple regression are performed to train a decision-tree
regression model. Until end criteria are met, splitting takes place at each interior node,
starting from the root node of a Decision Tree. Primarily, each leaf node of the tree represents
a simple regression model. Trimming low information gain branches (pruning) is applied
to enhance the generalization of the model. Furthermore, the Decision Tree compacts each
possible alternative toward the conclusion.

Per each partition, the response variable y is separated into two sets, namely, S1
and S2. Subsequently, the Decision Tree examines a predictor variable x concerning the
split threshold,

SSE = ∑
i∈S1

(yi − y1)
2 + ∑

i∈S2

(yi − y2)
2 (4)

where y1 and y2 are the average values of the response for each set. The tree generally
intends to minimize the sum of squared error (SSE) (refer to Equation (4)) for each split. The
tree starts growing with recursive splits and split thresholds. The terminal node represents
the average of y values of samples collected within the node.

3.2. XGBoost Regressor

XGBoost is a gradient boosting implementation that boosts weak learners. It is
more often preferred due to its fast execution process [68]. Chakraborty and Elzarka [69],
Mo et al. [70], and Xia et al. [69–71] have successfully used XGBoost in their respective stud-
ies. The regressor itself can handle overfitting or underfitting issues, and regularizations
are better than Decision Tree and Random Forest algorithms.

The regularization function of XGBoost assists to control the complexity of the model
and to select predictive functions. The objective function is defined as a regularization term
together with a loss function and it is optimized using gradient descent. XGBoost provides
column subsampling compared to conventional Gradient Boosting [72]. At each level, the tree
structure is formed by estimating leaf score, objective function, and regularization. Hence,
it is difficult to evaluate all possible combinations at the same time. Subsequently, the tree
structure will be re-employed in an iterative manner that helps to reduce computational
expense. Information gain at each node is estimated during the splitting process and seeks the
best splitting node until it reaches maximum depth. Later, the pruning process is executed in
bottom-up order. The objective function in terms of loss and regularization can be expressed
as given in Equation (5),

objective =
N

∑
j = 1

l(yj, ŷj) +
K

∑
j = 1

Ω
(

f j
)

(5)
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The summation (
N
∑

j = 1
l(yj, ŷj)) is the loss function that represents the difference be-

tween predicted (ŷj) and actual values (yj). The summation (
K
∑

j = 1
Ω
(

f j
)
) is the regulariza-

tion term that decides the complexity of XGBoost model.

3.3. Extra-Tree Regressor

Extra-tree regressor is classified under ensemble methods of supervised learning [73–75].
It builds random trees whose primary structure is independent of the outcome of the learning
sample. Okoro et al. [74] stated randomized trees are adopted for numerical inputs that
improve precision and substantial reduction in computational burden.

Extra-tree regressor follows the classical top-down approach to fit disarrayed De-
cision Trees on subsamples of learning data. Random split points make the extra-tree
regressor unique from other tree-based ensembles. Afterward, the tree grows using the
whole learning sample. In particular, final predictions are done using a voting process in
classification and regression. John et al. [76] and Seyyedattar et al. [77] described random
subset features and detailed structure and their importance, respectively. Interestingly,
explicit randomization can reduce similarities in contrast to weaker randomization of
other methods.

For regression, relative variance reduction is used, and the score is expressed in
Equation (6). The terms Ui and Uj represent subsets of cases from U that correspond to the
outcome of a splits,

ScoreR(s, U) =
var{y|U} − |Ui|

|U| var{y|U i} −
|Uj|
|U| var

{
y|U j

}
var{y|U} (6)

3.4. LightGBM Regressor

LightGBM is an efficient gradient boosting structure formed on boosting and Decision
Trees [78–80]. It uses histogram-based algorithms in contrast to XGBoost, to accelerate the
training process, reducing memory consumption. Given that Decision Tree itself is a weak
model, the accuracy of the segmentation point is not important. A coarse segmentation
process can influence the regularization effect that avoids over-fitting. Leaf orientation at
the downside can grow deeper Decision Trees leading to over-fitting situations. Hence,
LightGBM tackles this issue by constricting maximum depth to the top of leaves. The model
not only enables a higher efficiency but also handles non-linear relationships, ensuring a
higher precision.

4. Model Performance

The following analysis was carried out to evaluate the performance of predictions
obtained from machine learning models.

Performance Evaluation

Ebtehaj et al. [81] specified several indices to compare model efficiencies in terms of
predictions. Hyperparameter optimization and model training were performed based on
R2. For validation predictions, we proposed R, MAE, and RMSE. R2 expresses how well
predictions fit actual data. R closer to +1 or −1 indicates a strong positive or negative
correlation, respectively. MAE evaluates direct residual between wind tunnel and ML
predictions while RMSE considers standard deviation of residuals, indicating how far
predictions lie from experimental values. These four indices are mathematically formulated
as shown in Equations (7)–(10),

R2 =
∑N

i = 1
(
Cp,ML − Cp,WT

)2

∑N
i = 1

(
Cp,WT − Cp,WT

)2 =
Model Sum of Squares (MSS)

Total Sum of Squares (TSS)
(7)
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R =
N ∑N

i = 1
(
Cp,WT.Cp,ML

)
− (∑N

i = 1 Cp,WT. ∑N
i = 1 Cp,ML)√

(N ∑N
i = 1 Cp,WT

2 − (∑N
i = 1 Cp,WT)

2
).
√

N ∑N
i = 1 Cp,ML

2 − (∑N
i = 1 Cp,ML)

2
)

(8)

MAE =
∑N

i = 1
∣∣Cp,WT −Cp,ML

∣∣
N

(9)

RMSE =

√
∑N

i = 1 (Cp,WT −Cp,ML)
2

N
(10)

N denotes the number of data samples and subscripts WT and ML refer to “Wind
Tunnel” and “ML” predictions, respectively. Cp represents all three predicting variables,
including mean, fluctuating (rms), and peak (minimum) components. CP refers to the
average value of the dependent variable in the validation data set.

5. Methodology

For each ML application, the quality and reliability of training data are very crucial.
In terms of wind engineering applications, data sets should consist of a wide range of
geometric configurations with multi parameters to obtain a generalized solution. The
explanation becomes more comprehensible with a wide range of parameters.

Several wind tunnel databases are freely available for reference. NIST [82] and
TPU [83] databases are well-known as reliable databases, especially for bluff body aero-
dynamics related to buildings. Both databases provide time histories of wind pressure
including various geometric configurations of buildings. However, TPU provides wind
tunnel data of gable-roofed low-buildings involving a wide range of roof pitches. Therefore,
the TPU data set was selected for the application purpose.

Mean, fluctuating, and peak pressure coefficients on the corresponding surface were
averaged and denoted as surface averaged pressure coefficients. Equations (11)–(14) were
used to calculate the pressure coefficients from the time histories. It is noteworthy that the
experiments had been conducted under fixed wind velocity. Therefore, the study cannot
assess the effect of approaching wind velocity.

Cp,mean =
∑n

i = 1 Cp,i

n
(11)

Cp,rms =

√
∑n

i = 1 (Cp,i −Cp,mean)
2

n
(12)

Cp,peak = min
{

Cp,i
}

; (sin gle worst minimum) (13)

Surface avaraged CP =
∑n

i = 1 CPAi

∑n
i = 1 Ai

; for mean, rms, and peak (14)

where Cp,i represents instantaneous external wind pressure, uh denotes wind velocity at
roof-mid height and ρ air density. Ai refers to the tributary area of a pressure tap and n is
the total number of time steps).

Each model consists of four H/B ratios (0.25, 0.5, 0.75, and 1), three D/B ratios (1, 1.5,
2.5) and seven distinct wind directions (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦). Next, the roof pitch
(α) of each model was altered eight times (5◦, 10◦, 14◦, 18◦, 22◦, 27◦, 30◦, 45◦). The last
independent variable of the data set is surface, including walls and building roof (S1 to S6),
marked in Figure 1. In addition, Cp,mean, Cp,rms, and Cp,peak are prediction variables.
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Figure 1. Low-rise gable roof building: (H—Height to mid-roof from ground level, B—Breadth of the
building, D—Depth of building, θ—Direction of wind, α—Roof pitch, and “S” denotes surface).

Table 1 provides a summary of the input and output variables of the present study.
Since surface 1 to surface 6 is categorical, we used one-hot encoding. For occasions where
an ordinary relationship does not exist, one-hot encoding is a better option compared to
integer encoding. All independent and predicting variables were tabulated and 60% of
data samples (2420 out of 4032 total samples) were fed into the training sequence while the
remaining 40% is employed for the validation (out-of-bag data) process. All variables were
provided to four tree-based algorithms through the sci-kit learn library in python [84].

Table 1. Descriptive statistics of the dataset.

Type Variable Details

Independent

Wind direction (θ) 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦

Roof Pitch (α) 5◦, 10◦, 14◦, 18◦, 22◦, 27◦, 30◦, 45◦

H/B 0.25, 0.5, 0.75, 1

D/B 1, 1.5, 2.5

S1

One-hot encoding is active.
A value of “1” is used when a

particular surface is referred whereas
remaining surfaces hold “0”.

S2

S3

S4

S5

S6

Dependant

Cp,mean Ranges from −1.39 to 0.74

Cp,rms Ranges from 0.09 to 0.57

Cp,peak [Single worst minimum] Ranges from −4.91 to −0.13

In addition, hyperparameters are required to optimize all four models. All required
hyperparameters of four tree-based models were chosen based on a grid search. Optimized
model predictions were compared using performance indices. Subsequently, we followed
the model explanatory process to elucidate the causality of predictions. Figure 2 summa-
rizes the workflow of this study. The methodology shows the existing research gap in the
wind engineering field. Therefore, the authors strongly believe the novelty-explainable ML-
would advance the wind engineering research community.
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6. Results and Discussion
6.1. Hyperparameter Optimization

The grid search method was used to optimize the hyperparameters for all four tree-
based models. Grid search considers different combinations of parameters and evaluated
their respective output to obtain optimum values. Table 2 presents the optimized hyper-
parameters for each model. Their definitions are presented in Appendix A. Interestingly,
tree-depth held a greater significance compared to the remaining hyperparameters. Figure 3
depicts how the accuracy of training and validation depends on tree-depth.
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Table 2. Optimized hyperparameters for tree-based ML models.

Decision Tree Extra Tree XGBoost LightGBM

Hyperparameter Value Hyperparameter Value Hyperparameter Value Hyperparameter Value

C
P,

m
ea

n

criterion MSE criterion MSE Maximum depth 4 Learning rate 0.1

splitter Best Maximum depth 10 Gamma 0.0002 Maximum depth 4

Maximum depth 10 Minimum samples leaf 2 Learning rate 0.3 Random state 5464

Minimum samples leaf 2 Minimum sample split 2 Number of Estimators 50 Number of jobs none

Minimum sample split 2 Number of Estimators 50 Random state 154 Reg_Alpha 1 × 10−4

Maximum Features 5 Bootstrap FALSE Reg_Alpha 0.0001

Minimum impurity decrease 0 Minimum impurity decrease 0 Base score 0.5

Random state 5464 Random state 5464

CC alpha 0 Number of jobs none
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criterion MSE criterion MSE Maximum depth 5 Learning rate 0.1

splitter Best Maximum depth 10 Gamma 0.0001 Maximum depth 5

Maximum depth 10 Minimum samples leaf 2 Learning rate 0.4 Random state 5464

Minimum samples leaf 2 Minimum sample split 2 Number of Estimators 400 Number of jobs none

Minimum sample split 2 Number of Estimators 100 Random state 154 Reg_Alpha 1 × 10−4

Maximum Features 5 Bootstrap True Reg_Alpha 0.0001

Minimum impurity decrease 0 Minimum impurity decrease 0 Base score 0.5

Random state 5464 Random state 4745
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Table 2. Cont.

Decision Tree Extra Tree XGBoost LightGBM

Hyperparameter Value Hyperparameter Value Hyperparameter Value Hyperparameter Value

C
p,

pe
ak

criterion MSE criterion MSE Maximum depth 4 Learning rate 0.1

splitter Best Maximum depth 10 Gamma 0.0001 Maximum depth 5

Maximum depth 10 Minimum samples leaf 2 Learning rate 0.053 Random state 5464

Minimum samples leaf 2 Minimum sample split 2 Number of Estimators 400 Number of jobs none

Minimum sample split 2 Number of Estimators 100 Random state 154 Reg_Alpha 1 × 10−4

Maximum Features 5 Bootstrap True Reg_Alpha 0.0001

Minimum impurity decrease 0 Minimum impurity decrease 0 Base score 0.5

Random state 5464 Random state 4745

CC alpha 0 Number of jobs 100

6.2. Training and Validation of Tree-Based Models

Figure 3 depicts the performance of tree-based regressors in terms of training and
validation. Both XGBoost and LightGBM achieve an R2 > 0.8 at a depth of 3, showing
greater adaptability to wind pressure data. The Decision Tree regressor comprises enhanced
predictions at depths between 5 and 10, though it is considered a weak learner compared to
the remaining models. Both the Decision Tree and the Extra Tree slowly increase prediction
accuracy with respect to remaining tree-based models. Compared to the training process
of Cp,mean, Decision Tree, Extra Tree, and LightGBM decelerated training phase of Cp,rms,
and Cp,peak as shown in Figure 3. However, the same performance was maintained by
the XGBoost regressor throughout the entire training process. Despite different forms of
pressure coefficients, all models exceed R2 beyond 0.95 and become stalled between depths
of 5 to 10. It is noteworthy that the stalled R2 values beyond depths of 10 can lead to overfit
the model.

6.3. Prediction of Surface-Averaged Pressure Coefficients

According to Figure 4, all models provide accurate predictions to the validation set
of Cp,mean compared to wind tunnel data. XGBoost and Extra-Tree exhibit improved
predictions with moderately higher R2 values of 0.992 and 0.985, respectively. The Extra-
Tree and XGBoost maintain the consistency of validation predictions for both negative
and positive values within a 20% margin, most of the time. Slight inconsistencies can be
observed for negative predictions obtained from the Decision Tree regressor. The accuracy
of LightGBM is also satisfactory for Cp,mean predictions.

The coefficient Cp,rms represents turbulent fluctuations. Cp,rms is important, especially
along perimeter regions where high turbulence is present. However, such localization was
not feasible with the available data set due to the distinct pressure tap arrangement of each
geometry configuration. Hence, for the present study, we had to employ (area-averaged)
Cp,rms coefficient, which may not reflect localized effects. Nevertheless, the accuracy of
validation predictions remains within a 20% error margin except for the Decision Tree
regressor (see Figure 5). Both the XGBoost and LightGBM validation predictions are
consistent, achieving relatively higher R2 values.
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For Cp,peak predictions, negative peaks were only considered as they induce large
uplift forces on the external envelope [84]. Generally, the external pressure on roofs is more
important than the pressure on walls as the roof is subjected to relatively larger negative
pressure compared to walls. Especially negative pressure on the roof surface is critical to



Buildings 2022, 12, 734 14 of 27

assess vulnerability for progressive failures [85]. Even with surface averaging, values closer
to −5 (See Figure 6) have been obtained. Compared to mean and fluctuation predictions,
peak pressure predictions (validation) have deviations beyond the 20% error limit for all
tree-based models. In the case of the Decision Tree model, substantial deviations are visible
for lower Cp,peak values, compared to wind tunnel data. Repeatedly, the XGBoost model
showcased superior performance (R2 = 0.955) with respect to the remaining models.
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6.4. Performance Evaluation of Tree-Based Models

Figures 4–6 provide insights into the applicability of tree-based models to predict
wind pressure coefficients. However, models require performance analysis to explain the
uncertainty associated with each model. The summary of model performance indices
(validation predictions) is shown in Table 3.

Table 3. Performance indices of optimized tree-based models.

Cp Performance Indicators Decision Tree Extra Tree LightGBM XGBoost

Cp,mean

Correlation (R) 0.990 0.993 0.977 0.996

MAE 0.049 0.043 0.051 0.033

RMSE 0.067 0.055 0.07 0.043

Cp,rms

Correlation (R) 0.955 0.966 0.969 0.977

MAE 0.018 0.016 0.015 0.013

RMSE 0.023 0.020 0.019 0.017

Cp,peak

Correlation (R) 0.957 0.970 0.970 0.974

MAE 0.177 0.150 0.149 0.143

RMSE 0.246 0.206 0.205 0.192

Based on lower tree depth, XGBoost and LightGBM perform better than the remaining
two models. In terms of validation predictions, XGBoost achieved the highest correlation.
All models are adaptable to Cp,rms predictions as observed from lower MAE and RMSE
values. Among four models, the Decision Tree showcased the lowest accuracy for Cp,rms,
and Cp,peak whereas lightGBM showcased the lowest accuracy for Cp,mean predictions.

Bre et al. [33] obtained an R of 0.9995 for Cp,mean predictions of gable-roofed low-rise
buildings using an ANN. According to Table 3, the same task is performed using tree-based
ML models (R > 0.98) while expanding predictions to Cp,peak, and Cp,rms. In this study, we
have separately provided training and validation accuracies because reliability is a measure in
terms of the accuracy of training and validation (refer to Figure 7). For example, if training
accuracy is considerably higher than validation, it leads to over-fitting. Lower accuracies of
both imply under-fitting occasions. Therefore, obtaining similar accuracies in training and
validation is more important (see Figure 3). Based upon R, RMSE, and MAE values, the
XGBoost model was selected as the superior model and continued to the explanatory process.
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7. Model Explanations
7.1. Model-Based (Intrinsic) Explanations

All tree-based algorithms used in this study are based on the Decision Tree structure. A
simple Decision Tree is explainable without a post hoc agent. Figure 8 provides a Decision
Tree regressor formed at a depth of three for the current study. X[number] denotes the
number assigned to a variable in the selected order. (0—wind angle (θ); 1—D/B; 2—H/B;
3—Roof angle (α); 4—Surface 1 (S1); 5—Surface 2 (S2); 6—Surface 3 (S3); 7—Surface 4
(S4); 8—Surface 5 (S5); 9—Surface 6 (S6)). Value in the box refers to the mean value of the
predictor variable of the samples passing through each box.
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Splitting takes place at each node based on MSE. The selection criteria are followed
by “IF-THEN” and “ELSE” statements. For instance, at the root node of the Decision Tree,
variables are clustered based on whether it is surface 4 (X [7]) or not. After confirming value
does not belong to surface 4, the tree decides wind direction (X [0]) should be examined.
There it leads to initiate clustering depending on whether the θ < 37.5◦. Subsequently,
(θ < 37.5◦) is clustered farther towards the left whereas the remaining will be clustered to
the right. Interestingly, layer-wise splitting is performed by separating large deviations
into a single group, gradually reducing MSE.

Though XGBoost, Extra-tree, and LightGBM are Decision Tree-based architectures,
within those tree-based models, various methods such as bagging and boosting are imple-
mented, which lead to perceive different outcomes. For example, XGBoost forms numerous
Decision Trees at a particular point and conducts voting criteria to obtain a suitable one.

7.2. SHAP Explanations

As previously highlighted, a post hoc component is required to explain complex
models. The authors used SHAP for this purpose. The explanatory process is divided
into two stages. First, the global explanation is provided using SHAP explanations. Sec-
ondly, instance SHAP values are explained to compare the causality of predictions with
respect to experimental behavior. Figure 9 depicts SHAP explanation on Cp,mean prediction
of XGBoost.
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Figure 9. SHAP Global interpretation on XGBoost regressor (Cp,mean prediction).

The horizontal axis determines whether the impact is negative or positive. Feature
values are denoted using red and blue color, whereas the former indicates higher feature
values and the latter represents lower values. For example, wind angle contains several
distinct values. Therefore, SHAP identifies values closer to 90◦ as higher feature values and
values closer to 0◦ as lower feature values. Further, all surfaces are binary variables such
that “1” (Higher feature value) means that the instance belongs to a particular surface and
“0” (Lower feature value) indicates that the instance does not belong to the corresponding
surface. SHAP identified that if instances belong to surface 4, there is a higher possibility
to make a positive impact on the model whereas “not being surface 4” influences a low
negative impact on the model. Generally, surface 3 and surface 4 experience positive Cp,mean
values when it is facing a windward direction. Therefore, a considerable positive effect
can be expected on the model output as identified by SHAP. Subsequently, concatenated
blue-colored values explicate that there are more instances where a low negative impact
occurs due to lower feature values.

When the wind angle (θ) is considered, the concatenated portion is observed towards
the middle of the horizontal axis. That explains more instances exist where a neutral effect
is observed regardless of feature values. Nevertheless, higher wind angles (closer to 90◦)
have influenced a moderately higher negative effect on model output. Fascinatingly, SHAP
recognizes that higher roof pitch influences a positive effect on model output. According
to SHAP explanation, surface 2, surface 3, surface 4, roof angle and wind angle have a
substantial contribution to Cp,mean compared to the remaining variables.

A markedly different explanation was obtained for Cp,rms (See Figure 10). Surface
3 has become a crucial factor for model output. If a particular instance belongs to surface 3,
it results in a positive impact on the model. Surface 2 has influenced a considerable positive
(SHAP value > 0.125) effect on Cp,rms. Lower values of wind angle and H/B ratio cause a
negative influence on the output. Surface 5 creates a mixed effect based on feature values,
and that effect is more pronounced in roof angle and wind angle. However, concatenated
regions indicate a neutral effect from wind angle and roof angle regardless of feature value.
Overall, the effect of surface 6 was less notable on Cp,rms. Effects of H/B and D/B ratios on
Cp,rms contradict the effect that appeared on Cp,mean.
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Repeatedly, Surface 3 (S3) and Surface 4 (S4) provided a comparable effect on Cp,peak
(See Figure 11). In addition, Surface 5 and Surface 6 (roof halves) show a similar effect on
model output except for the fact that surface 5 can influence both positive and negative
effects on Cp,peak. A notable difference was observed from the θ that influences a relatively
higher negative effect on the ML model regardless of feature value. On the contrary, roof
pitch (α) creates a dissimilar effect compared to θ, whereas higher feature values create a
positive impact and lower features create a negative impact. H/B and D/B ratio creates a
completely different impact on Cp,peak. Compared to the Cp,rms, the effect of surfaces 1 and
2 has been reversed. Less notable features observed in Cp,mean have become considerably
important for the Cp,peak. The overall effect of surfaces 3 and 4 was similar for all forms
of predictions. The effects of H/B and D/B were comparable for Cp,mean, and Cp,peak but
completely reversed for Cp,rms. There exist instances in which the effect of wind direction
and roof pitch appeared to be less dependent on feature values. However, we recognized
that a completely different impact was observed from wind direction and roof pitch. The
effect of roof surfaces becomes pronounced Cp,peak.
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Heretofore, a generic overview of XGBoost models was described with the aid of
SHAP explanations. Further, SHAP can provide a force plot picture based on each instance.
That elucidates how each parameter forces the base value. The base value is defined as
the average value observed during the training sequence. Red color features force the
base value to be higher and blue color features force the lower side. The length of each
segment is proportionate to its contribution (see Figure 12). SHAP can quantify the largest
influential parameters at any given instance, assisting decision-making.
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For example, we can consider three instances on surface 3, varying the only direction
of the wind as 0◦, 45◦, and 90◦. Figure 12 illustrates the SHAP force plot on these instances,
considering Cp,mean. The base value tends to reduce when θ increases. For example, at
θ = 0◦, approaching wind directly attacks surface 3, where maximum positive pressure is
obtained. Subsequently, positive pressure decreases for oblique wind directions as observed
at θ = 45◦. Thus, the maximum negative value is obtained at θ = 90◦ when surface 3 becomes
a sidewall. From θ = 0◦ to θ = 90◦, the effect of flow separation causes negative pressure
to dominate on surface 3. Similar variation is observed based on the SHAP explanation
where the effect of wind angle is positive (forcing towards higher values; Figure 12a) and
gradually becomes negative (forcing towards lower values; Figure 12c). SHAP claims
negative contribution is substantial at θ = 90◦ compared to the magnitude of contribution
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at θ = 0◦. Moreover, SHAP has quantified the contribution of each parameter toward the
instance value.

Figure 13 displays four instances of Cp,mean on surface 2 at θ = 90◦ (along wind
direction for surface 2). More importantly, SHAP confirmed the effect of roof pitch as one
of the influencing parameters in each instance. From α = 5◦ to α = 45◦, the effect of roof
pitch shifts from negative (forcing towards lower) to positive (forcing towards higher).
From the wind engineering viewpoint, flat roofs induce large negative pressure due to
the effect of flow separation along the upwind edge. When roof pitch increases, the effect
of flow separation on the upwind half of the roof becomes less pronounced [85]. Further,
at α = 45◦, positive values dominate on the upwind half of the building roof, indicating
flow reattachments.
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Figures 14 and 15 describe three instances of Cp,rms, and Cp,peak on surface 1 at
θ = 0◦ (crosswind direction for surface 1), for three different roof pitches (α = 5◦, 14◦, 27◦).
SHAP identifies that both Cp,rms, and Cp,peak have increased due to increased roof pitch.
Interestingly, wind tunnel results confirmed the same observations as a result of an increase
in roof pitch. Except for roof pitch and H/B, the remaining parameters force the base
value towards the lower side (Figure 15). Cp,rms are critical in zones where high turbulence
is expected. Peak values are critical, especially near roof corners and perimeter zones.
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The overall explanations indicate that SHAP adheres to what is generally observed in the
external pressure of the low-rise gable-roofed building.
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8. Conclusions

Implementation of ML in wind engineering needs to advance the end-user’s trust in
the predictions. In this study, we predicted surface-averaged pressure coefficients (mean,
fluctuation, peak) of low-rise gable-roofed buildings, using tree-based ML architectures.
The explanation method—SHAP—was used to elucidate the inner working and predictions
of tree-based ML models. Following are the key conclusions of this study:

• Ensemble methods such as XGBoost and Extra tree are more accurate in estimating
surface averaged pressure coefficients than a Decision Tree and LightGBM model.
However, decision tree and extra-tree models require a deeper tree structure to achieve
good accuracy. Despite the complexity at higher depths, the decision-tree structure
is self-explainable. However, complex tree formations (ensemble method: XGBoost,
Extra Tree, LightgGBM) require a post hoc explanation method.

• All tree-based models (Decision Tree, Extra tree, XGBoost, LightGBM) accurately
predict surface-averaged wind pressure coefficients (Cp,mean, Cp,rms, Cp,peak). For
example, tree-based models reproduce surface averaged mean, fluctuating, and peak
pressure coefficients (R > 0.955). XGBoost model achieved the best performance
(R > 0.974).

• SHAP explanations convinced predictions to adhere to the elementary flow physics of
wind engineering. This provides causality of predictions, the importance of features,
and interaction between the features to assist the decision-making process. The
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knowledge offered by SHAP is highly imperative to optimize the features at the design
stage. Further, combining a post hoc explanation with ML provides confidence to its
end-user on “how a particular instance is predicted”.

9. Limitations of the Study

• According to the obtained TPU data set, the pressure tap configuration is not uniform
for each geometry configuration. Therefore, investigating point pressure predictions is
difficult. Further, the data set has a limited number of features. Hence, we suggest
a comprehensive study to examine the performance of explainable ML, addressing
these drawbacks. Adding more parameters would assist in understanding complex
behaviors of external wind pressure around low-rise buildings. For example, the
external pressure distribution strongly depends on wind velocity and turbulence
intensity [86,87]. Therefore, the authors suggest future studies, incorporating these
two parameters.

• We used SHAP explanations for the model interpretations. However, there are many
explanatory models available to perform the same task. Each model might result in a
unique feature importance value. For example, Moradi and Samweld [62] explained
the difference between LIME and SHAP on how those models explain an instance.
Therefore, a separate study can be conducted using several interpretable (post hoc)
models to evaluate the explanations. In addition, we recommend comparing intrinsic
explanations to investigate the effect of model building and the training process of
ML models.

• The present study chooses tree-based ordinary and ensemble methods to predict
wind pressure coefficients. As highlighted in the introduction section, many authors
have employed sophisticated models (Neural Network Architectures: ANN, DNN) to
predict wind pressure characteristics. Given their opinion, we suggest combining in-
terpretation methods with such advanced methods to examine the difference between
different ML models.
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ABL Atmospheric Boundary Layer LSTM Long short term memory
AI Artificial Intelligence ML Machine learning
ANN Artificial Neural network MAE Mean Absolute Error
CFD Computational Fluid Dynamics MSE Mean Square Error
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Cp,mean Surface-averaged mean pressure co-
efficient

NIST National Institute of Standards and
Technology

Cp,rms Surface-averaged fluctuation pres-
sure coefficient

R Coefficient of Correlation

Cp,peak Surface-averaged peak pressure co-
efficient

R2 Coefficient of Determination

DAD Database Assist Design RISE Real-time Intelligence with Secure
Explainable

DNN Deep neural network RMSE Root Mean Square Error
DeepLIFT Deep Learning Important FeaTures SHAP Shapley Additive explainations
GAN Generative adversarial network TPU Tokyo Polytechnic University
LIME Local Interpretable Model-Agnostic

Explanations

Appendix A

Definition of hyperparameters

• Criterion: The function to measure the quality of a split. Supported criteria are “mse”
for the mean squared error.

• Splitter: The strategy used to choose the split at each node. Supported strategies are
“best” to choose the best split and “random” to choose the best random split.

• Minimum_samples_split: The minimum number of samples required to split an
internal node.

• Minimum sample leaf: The minimum number of samples required to be at a leaf node.
• Random_state: Controls the randomness of the estimator. The features are always

randomly permuted at each split, even if “splitter” is set to “best”.
• Maximum_depth: The maximum depth of the tree. If none, then nodes are expanded

until all leaves are pure or until all leaves contain less than min_samples_split samples.
• Maximum features: The number of features to consider when looking for the best split.
• Minimum impurity decrease: A node will be split if this split induces a decrease of the

impurity greater than or equal to this value.
• CC alpha: Complexity parameter used for Minimal Cost-Complexity Pruning.
• Bootstrap: Whether bootstrap samples are used when building trees. If False, the

whole dataset is used to build each tree.
• Number of estimators: The number of trees in the forest.
• Number of jobs: The number of jobs to run in parallel.
• Gamma: Minimum loss reduction required to make a further partition on a leaf

node of the tree. The larger gamma is, the more conservative the algorithm will be;
range: [0, ∞].

• Reg_Alpha: L1 regularization term on weights. Increasing this value will make model
more conservative.

• Learning_rate: Learning rate shrinks the contribution of each tree by “learning rate”.
• Base score: The initial prediction score of all instances, global bias.
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