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Abstract: Rock strength parameters are essential to understanding the rock failure mechanism and
safely constructing rock excavation. It is a challenging problem for determining the rock failure
criterion and its parameters due to the complexity of rock media. This study adopts an artificial
bee colony (ABC) algorithm to determine the Hoek-Brown failure criterion, widely used in rock
engineering practice, based on experimental data. The ABC-based approach is presented in detail and
applied to a collection of experimental data collected from the literature. The ABC-based approach
successfully determines the Hoek-Brown failure criterion, and the determined failure envelope is
in excellent agreement with the measured curve. The maximum relative error obtained by ABC is
only 2.15% and is far less than the 12.24% obtained by the traditional method. Then, the developed
approach is applied to the Goupitan Hydropower Station, China, and determines the rheological
parameters of soft rock based on the Burgers model. The deformation of an experiment located in
the Goupitan Hydropower Station is evaluated based on obtained parameters by the developed
approach. The predicted deformation matches the monitored displacement in the field. The obtained
parameters of the failure criterion characterize the mechanical behavior of rock mass well. Thus, the
method used provides a reliable and robust approach to determining the mechanical parameters of
the failure criterion.

Keywords: rock material; strength; test data; artificial bee colony; intelligent optimization

1. Introduction

Stability analysis is one of the most challenging issues in rock excavation activities,
such as tunnelling, sloping, coal mining, etc. The rock failure criterion is critical to esti-
mating the stability of rock structures. Various failure criteria have been developed for
rock engineering in the last decades [1–6]. The Hoek-Brown failure criterion, derived for
brittle and jointed rock masses by Hoek and Brown, has been widely used in practical
rock engineering for the last several decades [7–10]. In order to estimate and predict the
accuracy of the failure behavior for a rock mass, it is essential to determine the Hoek-Brown
failure criterion, which is difficult to measure experimentally in laboratory and field tests.
The rational determination of parameters for the model have drawn increased attention
from researchers and engineers in rock engineering.

In order to understand and characterize the failure mechanism and deformation be-
havior of a rock mass, the strength failure criterion is necessary for stability analysis and
construction in rock engineering. The Hoek-Brown failure criterion is a relatively simple
function with a small number of parameters; it defines rock strength as a nonlinear function
of confining pressure. The Hoek-Brown failure criterion provides a standardized method
for determining rock mass strength parameters based on intact laboratory test data [11].
Mathematical and statistical methods are essential to approximate the failure criterion and
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its parameters [12,13]. Simple linear regression was used to determine the rock failure
criterion, illustrated by three examples [14]. The simplex reflection method was applied
to fit the rock failure criterion based on the laboratory test data [15]. A bonded block
numerical model was developed to numerically quantify the strength of fractured rock
mass [16]. A GSI-softening model was proposed to capture the strength behavior of ther-
mally damaged rock based on the Hoek-Brown failure criterion [17]. With the development
of computational technology, nonlinear regression was also used to determine the rock
failure criterion [18,19]. The multiple regression method was developed to estimate the rock
failure criterion [20]. Using a single empirical model is not enough to describe the failure
envelope in tension and high compression zones. A bi-segmental Hoek-Brown failure crite-
rion was developed to overcome the above problem by considering the failure mechanism
in different zones [21]. A mathematical formula was developed to characterize the fatigue
and strength of concrete using symbolic regression [22]. Recently, researchers applied
Bayes theory to determine the rock failure criterion [23,24]. Bayesian inference was used to
determine the rock strength anisotropy and evaluate the uncertainty of the Hoek–Brown
failure criterion [25]. With the development of artificial intelligence, the soft computing
method provides an optimal method for determining the parameters of the model [26,27].
The genetic algorithm was used to determine the Mohr-Coulomb constitutive model [28].
Symbolic regression-based data were developed to determine the fatigue equation [22].
Zhao et al. adopted particle swarm optimization (PSO) to determine the geomechanical
parameters and perform reliability analysis for geotechnical engineering [29,30]. A fuzzy
inference system, artificial neural network, and adaptive neuro-fuzzy inference system
were utilized to predict the Brazilian tensile strength of rock samples [17]. The artificial
Bee Colony (ABC) algorithm, which simulates the intelligent foraging behavior of honey
bee swarms, was proposed by Karaboga for optimizing numerical problems [31]. Sonmez
and Kang applied it to structural engineering [32,33]. Zhao et al. applied ABC to the back
analysis in geotechnical engineering [34]. Villegas et al. applied ABC to optimize the values
for the variables of a proportional integral controller for observing the behavior of the
controller [35]. Caraveo et al. developed a modification of a bio-inspired algorithm based
on ABC for optimizing fuzzy controllers [36]. An improved artificial bee colony algorithm
was proposed to address the optimization of the injection scheme of steam flooding [37].
A hybrid model was proposed for predicting the cemented paste backfill strength based
on an adaptive neuro-fuzzy inference system and artificial bee colony [38]. Yavuz et al.
developed the artificial bee colony algorithm with distant savants for solving constrained
optimization problems [39]. Uncertainty quantification was utilized to capture the strength
of the reinforcement rock mass [40]. The maximum entropy probability density function
was adopted to obtain the uncertainty of the shear strength of the intact rock in the Jinping
II project [41]. In this study, ABC is adopted to determine rock strength parameters based
on testing data for rock engineering.

It is not easy to determine the strength parameters due to the complexity and unclear
failure mechanism of the rock mass. ABC is a straightforward, robust, and population-
based stochastic optimization algorithm that does not depend on the specific problem
and is suitable for the black-box problem. The significant advantage of ABC is it is easy
to implement without any gradient information. Moreover, ABC offers a good balance
between fast convergence and exploratory search, allowing for escaping from local minima
and aiming for global instead. Meanwhile, ABC could provide a data-driven model capable
of correctly determining the strength parameters of the rock mass based on laboratory
tests. The remainder of this paper is organized as follows. Firstly, the Hoek-Brown
failure criterion and the Burgers model of rock mass are introduced in detail. Secondly,
the algorithm of ABC is described, and the procedure of determining the rock failure
criterion and its parameters is presented briefly. Then, the proposed method is verified
and illustrated using the test data of the uniaxial compression test, triaxial compression
test, and tensile test, and is applied to the soft rock mass in a practical experimental tunnel.
Finally, some conclusions are presented.
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2. Rock Failure Criteria
2.1. Hoek-Brown Failure Criterion

Rock failure originates from micro-cracks or flaws in the rock mass. Griffith developed
the tensile failure and deepened it to obtain a nonlinear compressive failure envelope for
brittle materials [42]. On the basis of the above nonlinear Griffith failure criterion, Hoek
and Brown proposed the generalized Hoek-Brown criterion for rock mass strength [7]. The
generalized Hoek-Brown failure criterion could be expressed as follows:

σ1 = σ3 + σci

(
mb

σ3

σci
+ s
)a

(1)

where σ1 and σ3 denote the major and minor principal stresses, respectively; σci denotes
the unconfined compressive strength; mb, s, and a denote the rock mass material constants,
determined as follows:

mb = mie
GSI − 100
28− 14D (2)

s = e
GSI − 100

9− 3D (3)

a =
1
2
+

1
6

e
−

GSI
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20
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where GSI denotes the geological strength index, which presents the failure criterion based
on the engineering geology observations in the field; D denotes a factor that considers the
degree of the rock mass disturbance by blast damage and stress relaxation. For the intact
rock, the material constants are adopted by mi, s = 1, and a = 0.5. The Hoek-Brown failure
criterion was employed to capture the results of a wide range of triaxial tests on intact
rock samples.

σ1 = σ3 + σci

√
mi

σ3

σci
+ 1 (5)

In order to characterize the Hoek-Brown failure criterion for intact rock mass, mi and
σci are determined based on the experimental data. This study utilizes ABC to charac-
terize the Hoek-Brown failure criterion and determine its material constants based on
laboratory tests.

2.2. Burgers Model

The rheological properties of rock mass characterize the deformation behavior of the
surrounding rock mass over time during rock excavation. The rock failure criterion of
the combination model is commonly adopted in rheological numerical calculation and
analysis. Its advantage is that the appropriate combination of idealized basic elements can
be utilized to capture the complex rheological properties of the actual rock mass, and the
mechanical concept and the physical meaning are also simple and clear. The Burgers model
is generally adopted to capture the mechanical and deformation behavior of soft rock [43].
It consists of the Kelvin model and the Maxwell model (Figure 1). The Burgers model of
rock failure can be expressed as follows [44–46]:

..
σ +

(
E1

η2
+

E1

η1
+

E2

η1

)
.
σ +

E1E2

η1η2
σ = E1

..
ε +

E1E2

η2

.
ε (6)

where σ and ε denote the stress and strain of the Burgers model, E1 and η1 denote the elastic
modulus and viscosity for the Kelvin model, and E2 and η2 denote the elastic modulus
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and viscosity for the Maxwell model. Under constant load σ0, the Burgers equation can be
changed into the following equation:

ε = σ0

{
1

E1
+

t
η1

+
1

E2

[
1− exp(−E2t

η2
)

]}
(7)

The Burgers model is utilized in a soft rock mass with instantaneous deformation,
deceleration creep, constant velocity creep, relaxation, and elastic after-effect.
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3. The Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm was first developed for unconstrained
optimization problems, where it showed good performance [47]. ABC was inspired by the
intelligent foraging behavior of bee swarms. There are various tasks done by specialized
bee individuals in the actual bee colony. In the ABC algorithm, the colony of artificial
bees includes three groups of bees, i.e., employed bees, onlooker bees, and scout bees.
Employed bees are used to exploit the nectar sources previously explored and then transfer
information to the other waiting bees in the hive about the quality of the food source
they seek. Onlooker bees wait in the hive and build a food source to exploit based on the
information gained from the employed bees. Scout bees seek an environment in order to
obtain a new food source. Once the ABC algorithm is initialized, it needs a cycle of three
phases: employed bee phase, onlooker bee phase, and scout bee phase.

3.1. Initialization Phase

Firstly, the ABC algorithm generates the initial population of SN solutions/bees
randomly and calculates the fitness function of each solution/bee.

x(i, j) = xj
min + rand(0, 1)

(
xj

max − xj
min

)
(8)

where SN is an integer; x(i,j) denotes the candidate solution of problem; i = 1, 2,..., SN/2
and SN/2 denotes the size of population; j = 1,2, . . . , Dim and Dim denotes the dimension
number of each solution; rand(0,1) denotes a random number between [0, 1]; xj

min and
xj

max denote the upper and lower bound of each solution.

3.2. Employed Bee Phase

While initialization is finished, employed bees generate the new solution based on the
ABC algorithm (Figure 2). A candidate solution can be obtained using the memory of bees,
as follows:

v(i, j) = x(i, j) + ϕij(x(i, j)− x(k, j)) (9)

where k is different from i and denotes the indexes randomly chosen from {1, 2,..., SN/2}, j
also denotes randomly chosen indexes from {1, 2,..., Dim}, ϕij denotes a random number in
[−1, 1], characterizes the generation of neighbor food sources around x(i,j), and denotes
the comparison of two food positions seen by a bee.
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3.3. Onlooker Bee Phase

Onlooker bees determine a solution based on the fitness function gained from em-
ployed bees, generate the solution to be abandoned, and allocate its employed bees as
scout bees. The probability of being selected for each fitness function pi can be computed
as follows:

pi =
f itnessi

SN/n
∑

n=1
f itnessn

(10)

where fitnessi denotes the fitness value of the solution.

3.4. Scout Bee Phase

In the ABC algorithm, scout bees randomly seek a new solution in the predetermined
searching ranges. No further improved solution is assumed to be abandoned by onlookers
in a predetermined number of cycles. The abandoned solution x(i,j) is updated by a new
solution x’(i,j), generated by the scout bees using Equation (9). Each candidate solution
v(i,j) generated by x(i,j) can be determined using the comparison between x(i,j) and its old
solution. The old solution will be updated by the new solution when it equals or is better
than the old solution. Otherwise, the old solution is unchanged in the memory.

3.5. Procedure of ABC

ABC mainly depends on three controlling parameters: the number of food sources
equals the number of employed or onlooker bees (SN), the value of limit, and the maximum
cycle number (MCN). The fitness function is essential to ABC algorithm, which depends on
the specific problem. In this study, mean absolute error and mean relative error are utilized
to determine the fitness function. The detailed formation is presented in Section 4.1. The
procedure of ABC can be described in detail as follows:

Step1: Set the value of control parameters SN, MCN, and “limit” of the ABC algorithm.
Step2: Initialize the population x(i,j) using Equation (8) and calculate the fitness value of

each solution.
Step3: For each employed bee, generate a new solution v(i,j) using Equation (9) and calculate

its fitness.
Step4: Determine the probability pi for the solution x(i,j) using Equation (10).
Step5: For each onlooker bee, determine a solution x(i,j) based on pi, generate a new solution

v(i,j), and calculate the fitness.
Step6: If there is an abandoned solution for the scout, it is in place of a new solution that

will be randomly generated using Equation (8).
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Step7: Record the best solution.
Step8: Repeat Step3 to Step7 until reaching the maximum cycle.

4. Determination of Hoek-Brown Failure Criterion Based on Artificial Bee Colony

Based on the laboratory test, the ABC-based approach is developed to characterize the
Hoek-Brown failure criterion. The ABC is employed to seek the material constant mi and
rock compressive strength σci based on the error function, which is the difference between
the predicted and actual values.

4.1. Fitness Function

In order to use the ABC algorithm to characterize the Hoek-Brown failure criterion, as
in any conventional optimal method, it is necessary to construct the error function/fitness
function for ABC. In this study, the absolute error and relative error that Douglas recom-
mended are defined as follows [20]:

f itness =


∑ σ1 − σ′1

n
σ1 > −3σ3

∑ σ3 − σ′3
n

σ1 ≤ −3σ3

(11)

f itness =


∑

σ1−σ′1
σ′1

n
σ1 > −3σ3

∑
σ3−σ′3

σ′3

n
σ1 ≤ −3σ3

(12)

where σ1′ and σ3′ denote the predicted stresses using the Hoek-Brown failure criterion, σ1
and σ3 denote the measured stress values from the experiment, and n denotes the number
of experimental data. In this study, the root mean squared error is also utilized to illustrate
the performance of ABC.

f itness =



√
∑
(
σ1 − σ′1

)2

n
σ1 > −3σ3√

∑ (σ3 − σ′3)
2

n
σ1 ≤ −3σ3

(13)

f itness =



√
∑
(

σ1−σ′1
σ′1

)2

n σ1 > −3σ3√
∑
(

σ3−σ′3
σ′3

)2

n σ1 ≤ −3σ3

(14)

4.2. Procedure of Determination of Hoek-Brown Failure Criterion

Once the rock laboratory experiments are finished, the fitness value can be determined
based on testing data and the error function in the above section. ABC is utilized to seek
the material parameters of the Hoek-Brown failure criterion based on the error function.
The analysis proceeds through these steps as follows (Figure 3):
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• Step 1: Collect the information on the rock and determine the parameters of ABC.
• Step 2: Determine the test scheme based on rock mass property.
• Step 3: Implement the rock test according to the test standard.
• Step 4: Generate the test data.
• Step 5: Calculate the fitness value based on the fitness function using the testing data

above.
• Step 6: Use the ABC algorithm to seek material constants of the Hoek-Brown failure

criterion.
• Step 7: Characterize the Hoek-Brown failure criterion.

4.3. Verification

The Hoek-Brown failure criterion is utilized to capture the rock properties based on
experimental data. For a good estimation, the more experimental data, the more accurate
the estimation of the rock properties will be. Sari collected 266 experimental data points,
including the uniaxial compression test, Brazilian tensile test, and triaxial compression
test [48]. The data points are very widely scattered (Figure 4). Sari adopted the linear
regression method and non-linear Levenberg-Marquardt fitting algorithm to determine the
Hoek-Brown failure criterion based on the above experimental data. This study utilizes
ABC to characterize the Hoek-Brown failure criterion (Figure 5). Based on the Hoek-Brown
criterion (Equation (1)) and fitness function (Equations (11)–(14)), material constant σci and
mi were determined using ABC. The major principal stress σ1 and minor principal stress
σ3 are the input parameters from 266 experimental data for the ABC model based on the
fitness function. The results are compared with the different methods. The performance
of ABC and estimation of rock properties are illustrated using the different parameters of
ABC, searching range, and fitness/error function.
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Hoek-Brown failure criterion σc and mi parameters are listed in Table 1 based on the
266 experimental data points using the different methods. The obtained strength parame-
ters are closer to the measured parameters than the modified least square method (MLS).
Based on the MLS, the maximum relative error is 12.24%, but the maximum relative error is
only 2.15% based on ABC. Meanwhile, the obtained parameters are almost identical to the
data, including and excluding tensile experiments using ABC. This shows that ABC can
capture the strength property of rock mass better than MLS. Figure 6 shows the comparison
of the obtained parameters using the different methods. The above investigation shows
that the proposed method has an optimal global performance. The envelopes measured
and obtained by ABC and MLS is shown in Figure 7. The envelope obtained using ABC is
closer to the measured envelope than that obtained using MLS when using data included
in the tensile experiment. The proposed method is obviously superior to MLS for the
envelope excluding tensile experiment data. With the increase of the confining pressure, the
difference between the measured parameters and those predicted using ABC will increase.
However, the difference is very insignificant. This further proves that the proposed method
reasonably determines the Hoek-Brown failure criterion using the experimental data points.



Buildings 2022, 12, 725 9 of 21

Buildings 2022, 12, 725 9 of 21 
 

proposed method reasonably determines the Hoek-Brown failure criterion using the ex-
perimental data points. 

(a) (b) 

Figure 6. The comparison between the predicted and measured coefficients: (a) σci; (b) mi. 

 

(a) (b) 

Figure 7. The Hoek-Brown failure envelope determined using different methods: (a) tensile; (b) no 
tensile. 

Table 1. The obtained strengths using different methods. 

Material constants 
Include Tensile No Tensile 

Measured 
MLS ABC MLS ABC 

σci 74.02 69.77 72.30 69.76 68.30 
Relative error (%) 8.37 2.15 5.86 2.14 - 

Figure 6. The comparison between the predicted and measured coefficients: (a) σci; (b) mi.

Buildings 2022, 12, 725 9 of 21 
 

proposed method reasonably determines the Hoek-Brown failure criterion using the ex-
perimental data points. 

(a) (b) 

Figure 6. The comparison between the predicted and measured coefficients: (a) σci; (b) mi. 

 

(a) (b) 

Figure 7. The Hoek-Brown failure envelope determined using different methods: (a) tensile; (b) no 
tensile. 

Table 1. The obtained strengths using different methods. 

Material constants 
Include Tensile No Tensile 

Measured 
MLS ABC MLS ABC 

σci 74.02 69.77 72.30 69.76 68.30 
Relative error (%) 8.37 2.15 5.86 2.14 - 

Figure 7. The Hoek-Brown failure envelope determined using different methods: (a) tensile; (b) no tensile.

Table 1. The obtained strengths using different methods.

Material
Constants

Include Tensile No Tensile
Measured

MLS ABC MLS ABC

σci 74.02 69.77 72.30 69.76 68.30
Relative error
(%) 8.37 2.15 5.86 2.14 -
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The convergence performance of the proposed method is shown in Figure 8. Figure 9
shows the variation process of parameters of the failure criterion. It shows that the proposed
method has good convergence and can quickly determine the Hoek-Brown failure criterion
based on the experimental data points. The fitness of the population is shown in Figure 10.
The results are similar to the above results. This shows that ABC has a fast convergence
performance. Based on the test data, the ABC-based approach can accurately determine
the Hoek-Brown failure criterion.
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The optimal global performance is an essential index to the optimal method. In order
to verify the ABC algorithm, a different searching range is used to determine the parameters
of the failure criterion. Table 2 lists the results in different searching ranges. The ABC-based
approach can determine well the parameters of the failure criterion and find the minimum
fitness. The proposed method has a good global optimal performance. The ABC-based
approach can avoid the optimal local solution and determine the best solution for the
Hoek-Brown failure criterion. Figure 11 shows the convergence in different ranges. The
ABC-based approach can determine the solution at about Cycle 10 in a smaller range, and
it can determine the solution at about Cycle 20 in a more extensive range. This shows that
the proposed method is suitable and can quickly determine the solution in a smaller range.

Table 2. The parameters of the failure criterion and fitness value in different ranges.

Range σc (MPa) mi Fitness

[0, 100] 67.2842 11.0439 9.99552
[0, 200] 67.2848 11.0437 9.99552
[0, 400] 67.2827 11.0442 9.99552

[0, 1000] 67.2832 11.0449 9.99552
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The objective function drives the optimal method to search for the solution and is
essential to the optimal method. Sari investigated the fitness function in multiple regression
and found that the fitness function is essential for determining the Hoek-Brown failure
criterion [48]. In this study, various fitness functions were used to verify the performance
of the ABC-based approach. Figure 12 shows the Hoek-Brown failure envelope using a
different fitness function. The fitness function has little influence on the Hoek-Brown failure
criterion when using the ABC-based approach. It is important to determine the failure
criterion because of the difficulty of determining the fitness function. This shows that the
ABC-based approach is a reliable and robust method for determining the Hoek-Brown
failure criterion.
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5. Application

The Goupitan Hydropower Station is located in Wujiang, Guizhou Province, China.
It is a landmark electricity transmission project ranging from the west to the east of the
province [49]. In order to characterize the rheological property of the rock mass, rock
samples of gray-green claystone and mauve claystone were analyzed using the uniaxial
compression rheological test in the laboratory. The samples were taken as blocks on site
and processed into φ50 mm × 100 mm. The test was implemented on an LYJ rheometer.
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The loading method was step-by-step loading, and the load direction was perpendicular
to the rock layer. After loading the first stage load, the instantaneous displacement was
measured immediately; then, the creep displacement was measured at 5 min, 10 min,
15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 12 h, 16 h, and 24 h (cumulative time). After 24 h, the
creep displacement was measured twice a day until the creep displacement was stable
(24 h displacement was no more than 0.001 mm). Then, the next shear load was applied,
and the above measurements were repeated until the specimen was rheologically damaged.
The strain increment was determined based on the relationship between the displacement
and time at the various stress levels to the step-by-step loading. The curve between time
and the increment of strain is shown in Figure 13 for different stress levels.
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claystone.

Once the testing data were obtained, ABC could be used to determine the rheological
parameters of the Burgers model. The size of the population and the maximum cycle of
ABC were 50 and 100, respectively. The range of rheological parameters was determined
based on the field measurements and laboratory tests (Table 3). The rheological parameters
of grey-green claystone are shown in Figure 14 for the different stress levels. We can see
from Figure 14 that the rock rheological parameters depend on the stress level (loading)
and are not constant under different stress conditions. It is difficult to reveal the complex
and uncertain relationship between rheological parameters and stress levels (loading).
Generally, the average value of different stress levels is regarded as the identified rheological
parameters in rock engineering. In this study, the rheological parameters were determined
based on the stress conditions of the Goupitan experiment tunnel. The width, height, and
buried depth of the tunnel were 2 m, 2 m, and 70 m, respectively. The experimental tunnel
was excavated through rock layer S1−1

2h ; the S1−2
2h stratum lies about 3 m below the tunnel,

and layer S1
1q lies 30 m above it (Figure 15). According to the buried depth, the testing

data at 1.48 MPa and 2.71 MPa was adopted to determine the rheological parameters of
grey-green claystone and mauve claystone, respectively. The values of the rheological
parameters are listed in Table 4. Figure 16 shows the comparison between testing data and
predicted data based on the obtained rheological parameters using the Burgers model. The
rheological parameters are determined based on the testing data of stress level 1.48 MPa.
The predicted strain is in excellent agreement with the testing data (Figure 16b). This
shows that ABC can better characterize the mechanical properties. For the other stress
level, there is a higher error. The predicted curve is better closer to the 1.48 MPa stress
level (Figure 16a,c,d) than further away (Figure 16e–g). There is a larger discrepancy
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between the test data and predicted values in Figure 16f because the stress level is 4.77 MPa,
far removed from 1.48 MPa. This shows that the rock rheological parameters should be
determined based on the practical in situ stress conditions. A comprehensive comparison
of the predicted curve based on the full test data is shown in Figure 16h. It shows that the
rheological parameters should be determined based on the field stress conditions. Figure 17
shows the results of mauve claystone at a 2.71 MPa stress level. This proves that the
parameters obtained by ABC characterize well the deformation and mechanical properties
of rock.
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Figure 16. The curve comparison between test data and values predicted by the obtained rheological 
parameters using the Burgers model: (a) 0.9 MPa, (b) 1.48 MPa, (c) 2.08 MPa, (d) 2.98 MPa, (e) 3.57 
MPa, (f) 4.77 MPa, (g) 5.39 MPa, and (h) predicted curve based on the full test data. 

Figure 16. The curve comparison between test data and values predicted by the obtained rheolog-
ical parameters using the Burgers model: (a) 0.9 MPa, (b) 1.48 MPa, (c) 2.08 MPa, (d) 2.98 MPa,
(e) 3.57 MPa, (f) 4.77 MPa, (g) 5.39 MPa, and (h) predicted curve based on the full test data.
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Table 3. The ranges of rheological parameters.

Rock Type E1 (MPa) E2 (MPa) η1 (MPa·h) η2 (MPa·h)
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Table 4. The value of rheological parameters.

Rock Type E1 (MPa) E2 (MPa) η1 (MPa·h) η2 (MPa·h)

Grey-green claystone 1169.0985 390.9448 1,041,173.4899 2500.9780
Mauve claystone 2432.5317 10,800.7721 36,000,000.0000 24,000.1511

Figure 18 shows the changing process of population fitness with the increase of the
cycle. The fitness of the population is converged to the constant with the cycle. Figure 19
shows the convergence of the ABC algorithm. This shows that the developed method
has a good global optimal and convergence performance. This proves again that the
developed method has a good performance and can quickly determine the solution in a
more extensive range.

In the field, an experimental tunnel was excavated to observe the rheological behavior
of the claystone. Some monitoring sites were set up to investigate the deformation of the
surrounding rock during excavation. The experimental tunnel was analyzed based on the
determined rheological parameters in this study. The width, height, and buried depth of
the tunnel were 2 m, 2 m, and 70 m, respectively. Fast Lagrangian analysis of continua
(FLAC) software was utilized to compute the deformations of the surrounding rock mass.
The deformation of the surrounding rock mass was evaluated based on the rheological
parameters of the Burgers model. The displacements of the monitored borehole were then
evaluated by a numerical model that used the determined rheological parameters. These
are compared in Figure 20, in which it is evident that the predicted displacement meets the
laws of monitored displacement with increasing time. This proves that the testing data are
helpful for characterizing the mechanical behavior of the rock mass and can be utilized for
capturing the time-dependent properties of the surrounding rock mass. The geotechnical
parameters obtained in this way can be helpful for design, stability analysis, construction,
and safety management in rock excavation.
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6. Conclusions

The rock failure criterion is critical to rock excavation. However, the determination
of rock strength is a challenging issue because of the unclear mechanism of rock failure
and the complexity of geology conditions. This study develops an ABC-based approach to
determine the rock strength parameters by combing them with the experimental data.

(1) In this study, ABC was utilized to determine the strength parameters, which char-
acterize the rock failure mechanism and deformation behavior. Once the strength
parameters were determined, the corresponding failure criterion could be used to
evaluate the stability of the rock mass and determine the supporting pattern of the
surrounding rock mass in practical engineering.

(2) Laboratory testing is a common way to determine rock mass strength. This study
developed an ABC-based approach to characterize the rock strength properties based
on the Hoek-Brown and Burges models. Test data, hiding the rock failure mechanism,
were utilized to capture the rock failure criterion based on the mathematical tool.
The determined Hoek-Brown failure envelope was in excellent agreement with the
experimental curve. The ABC-based approach provides a promising and scientific
way to determine the rock failure criterion.

(3) The fitness function is an essential component of the developed approach. The ABC-
based approach can determine the optimal material constants using different fitness
functions based on experimental data and avoids the limitations and disadvantages
of the traditional methods. Meanwhile, the strength parameters obtained by the
developed approach characterize well the deformation and strength properties of the
rock mass.

(4) It is challenging to understand and characterize the failure mechanism and defor-
mation behavior of a rock mass. Thus, it is not easy to determine the rock strength
criterion and its coefficient. The ABC-based approach has a good performance for
global optimization; it can avoid the optimal local solution and provides an alternative
tool to address it, which is illustrated by its performance. The developed approach
focuses on the Hoek-Brown failure criterion and the Burger model for rock mass.
It is worth noting that the proposed ABC approach can be employed to determine
the strength parameters of other failure criteria in rock mechanics and engineering.
Further study is necessary for various strength criteria in the future.

(5) In this study, ABC was adopted to determine the strength parameters of rock mass
based on laboratory data. ABC has been proven to have a strong global searching
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capability, which can significantly increase the efficiency of the strength parameter
determination process. However, the efficiency depends on the number of laboratory
data. With the increase in laboratory data, the computation time will increase. The
developed method will be further studied by combining it with a new seeking strategy
in the future.
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