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Abstract: The load–deformation relationship under the footing is essential for foundation design.
Shallow foundations are subjected to changes in hydrological conditions such as rainfall and drought,
affecting their saturation level and conditions. The actual load–settlement response for design and
reconstructions is determined experimentally, numerically, or utilizing both approaches. Ssettlement
computation is performed through large-scale physical modeling or extensive laboratory testing.
It is expensive, labor intensive, and time consuming. This study is carried out to determine the
effect of different saturation degrees and loading conditions on settlement shallow foundations using
numerical modeling in Plaxis 2D, Bentley Systems, Exton, Pennsylvania, US. Plastic was used for
dry soil calculation, while fully coupled flow deformation was used for partially saturated soil. Pore
pressure and deformation changes were computed in fully coupled deformation. The Mohr–Columb
model was used in the simulation, and model parameters were calculated from experimental results.
The study results show that the degree of saturation is more critical to soil settlement than loading
conditions. When a 200 KPa load was applied at the center of the footing, settlement was recored
as 28.81 mm, which was less than 42.96 mm in the case of the full-depth shale layer; therefore,
settlement was reduced by 30% in the underlying limestone rock layer. Regarding settlement under
various degrees of saturation (DOS), settlment is increased by an increased degree of saturation,
which increases pore pressure and decreases the shear strength of the soil. Settlement was observed
as 0.69 mm at 0% saturation, 1.93 mm at 40% saturation, 2.21 mm at 50% saturation, 2.77 mm at
70% saturation, and 2.84 mm at 90% saturation of soil.

Keywords: soil; shallow foundation; degree of saturation; loading; FEM; Plaxis 2D; settlement

1. Introduction

Foundations are typically built to achieve standards of strength and serviceability to
support structure and equipment. Under serviceability conditions, the foundation must
perform so that the structure or equipment it supports may fulfil its design purpose under
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typical operating loads. Settlement or other motion limits are commonly used to explain
these serviceability limitations. Strength requirements are to ensure that the foundation
has enough reserve strength to withstand enormous loads that may occur due to extreme
environmental conditions or other sources. Serviceability or settlement and strength criteria
can be addressed as separate design jobs in most circumstances. Serviceability is a long-
term issue for the foundation that might be influenced by time-dependent consolidation
characteristics. Foundation strength, also known as bearing capacity, may be a short-term
issue, such as the construction of an embankment on an undrained clay foundation, or
a long-term one in which the maximum foundation load may arise at an undetermined
period in the future [1]. In designing shallow foundations, settlement is one of the main
parameters [2,3]. Settlement assessment of shallow foundations and carrying capacity
calculation are significant and typical geotechnical problems [4], and have been widely
investigated as deterministic problems. The most prominent scientific publications em-
phasize the importance of the interaction between soil and footing settlement and portray
this as of the impact on footing shape [5–14]. According to Das et al. [15], factoring in
settlement is more important than considering the bearing capacity in shallow foundation
design, particularly for foundation widths greater than 1.5 m, which is more common in
engineering practices.

There are two kinds of shallow foundation settlements—immediate and secondary
settlements of compression. Immediate settlement is encountered as load application after
the structure is constructed [16,17]. Settlement of footings depends on many variables,
including the shape and size of the footing, embedding depth, layering, soil mass non-
homogeneity, type of loading conditions, and saturation degree [18].

Loads are transferred to near-surface unsaturated soils, which change with hydrologi-
cal events at shallow footings. Recent advances in unsaturated soil mechanics demonstrate
that matric suction has a large influence on the strength and settlement of soils. Shal-
low footings have been located and built on near-surface unsaturated soils, ignoring the
influence of matric suction on soil shear strength [2,19–24].

At present, it is possible to analyze foundations by finite element methods, and limit
equilibrium [25–28] and the finite difference method [29] have been widely used in recent
years to determine the bearing capacity and settlement of footings.

The hydrological process in heterogeneous porous media has received a lot of interest
and study [30–33], using analytical or numerical methods [34,35], since layered soil is
significantly more widespread than homogeneous soil. The numerical modeling of shallow
foundations in unsaturated layered soil using variably saturated conditions under varying
loading and stiffness of soil has hardly been reported.

In recent years, the geotechnical problem of shallow foundation response was inves-
tigated by its stochastic nature. Scientific publications have investigated the uncertainty
quantification of the material uncertainty in cohesive and non-cohesive soil materials. Un-
certainty quantification analyses have led to probability density functions regarding many
aspects of soil response such as the non-linear response of sand or the porous consolidation
and failure of clays. Finally, footing settlement response under spatial variability of soil has
also been investigated [11,36–44]. Sivakugan and Johnson [45] developed a probabilistic
system based on settlement records in the literature to calculate the risk associated with
settlement prediction methods. Settlement and bearing capacity of foundation models
with various vertical cross-sectional shapes under the vertically applied load action are
presented on non-cohesive subsoil bases. Models of foundations of rectangular, wedge,
and T vertical cross-sectional forms were experimentally tested and verified, with a study
generally showing foundations with higher bearing capacity and lower settlement with
rectangular vertical cross-sectional shapes rather than with wedge and T shapes, from
which lower bearing capacity and higher settlement were reported [46].

The mechanical behavior of unsaturated soils, depending on the form of the soil and
various pore-water and pore-air conditions, can be interpreted using either modified total
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stress or a modified efficient stress system. The technique proposed is tested in unsaturated
cohesive soils with model base test results [22].

Due to challenges in measuring strength and deformation parameters as functions
of matric suction and/or degree of saturation, only a few studies have been conducted to
examine the effect of rainfall infiltration on the stability of shallow footings (DoS) [47–56].
The spatial and temporal change in the degree of saturation (DoS) of soil is impacted
directly by numerous hydrological parameters, including water table depth, infiltration,
flood, and drought [57,58].

Changes in moisture content and groundwater level highly affect the strength and the
deformation properties of soil, thereby on the whole overlaying construction. However,
geotechnical engineers neglect this topic in most cases, assuming that soil conditions will
always remain unchanged. Thus, it is considered one of the foremost causes of foundation
settlement, leading to various adverse effects on the overlaying constructions. It appears
necessary to use various ground modification methods to stabilize the soil, and strengthen
and restore foundations [59–62].

Floods, excessive rainfall, seasonal changes, and drought substantially impact foun-
dation settlement behavior, which may exceed limits [63–77]. For locations where the
near-surface soil is partially saturated during the structure’s design life, the present design
approach can be either conservative or unconservative, depending on the type of hydrolog-
ical event. This process can cause settlements to exceed acceptable limits, jeopardizing the
structure’s stability. As a result, it is vital to estimate the additional settlements that may
occur due to changes in water conditions to offer an adequate margin of safety [78,79].

The current study is dedicated to observing footing settlement under various degrees
of saturation and matric suction in Plaxis 2D FEM Software, Bentley Systems, Exton,
Pennsylvania, US. The numerical modeling of Plaxis 2D is to be conducted on soil from the
Jamshoro area to assess settlement of shallow foundations under different soil saturation
and loading conditions. This research consists of three phases: compilation of all the in situ
and laboratory data available and extraction of soil profiles for each plot in the area; the
use of well-known correlation to determine model parameters; and numerical modeling.

2. Materials and Methods
2.1. Experimental Methods

Undisturbed soil samples, namely shale and weathered limestone, were obtained by
rotatory drilling. After sample collection, samples were transported to the laboratory of
Mehran University Jamshoro for testing. Several tests were performed on the soil samples
including sieve analysis and calculation of liquid limit, plastic limit, shear strength, and
unconfined compression strength.

Extensive soil investigation and laboratory work have been conducted in the Jamshoro
study area. The collected soil sample profile has a characteristic two-layer soil structure
followed by a stiff layer of rocks, as shown in Figure 1. The soil was classified as A-7-5
according to AASHTO (8th edition), while CH was based on the USCS classification system.
After soil extraction, the Casagrande testing method was used to calculate the Atterberg
limits. The liquid limit was determined as 70%, the plastic limit as 30%, the shrinkage
limit as 15%, and the specific gravity of the shale as 2.60. The modified proctor test found
a maximum dry density of 1.9 g/cm3. Equations (1) and (2) were used to calculate the
undrained cohesion (Cu) and the modulus of elasticity (E), which are represented in Table 1.
The angle of internal friction and cohesion was determined using the shear box test as 11◦

and 22 (kN/m2).
The modulus of elasticity is determined using the following relationship:

E = 180 Cu (1)

Cu = qu/2 (2)

where Cu is the undrained cohesion, and qu is the ultimate load applied.
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Table 1. Soil properties.

Parameters Values

Angle of internal friction φ (degrees) 11◦

Cohesion (kN/m2) 22
E (kN/m2) 24,711

Poisson’s ratio v; 0.3
Dilatancy angle (Ψ) 0

The modulus of the welasticity of soil was determined with the correlation men-
tioned above and cited from the work of Sivrikaya et al. [80,81]. Thus, E is determined as
24,711 kN/m2, as mentioned in Table 1.

The Poisson’s ratio was calculated as suggested by Pusadkar et al. [82] for CH and CL
soil, determined as 0 from the relationship (Ψ = φ − 30).

2.2. Numerical and Boundary Conditions

The finite element analysis was conducted using Plaxis 2D ultimate v.21, Bentley
Systems, Exton, PA, USA. The plain strain condition using the elastoplastic Mohr–Columb
model was selected to simulate the behavior of the soil sample (Jamshoro Shale), with the
parameters selected as drained. The overlaying foundation is modeled as a typical linear
elastic with non-porous media. The symmetry axis and the proper vertical boundaries
are constrained laterally. In both vertical and horizontal directions, the bottom boundary
was restrained. Under load, soil and rock exhibit highly non-linear behaviour. The well-
known Mohr–Coulomb model can be thought of as a first-order approximation of real
soil behaviour. Mohr–Coulomb model parameters such as the modulus of the elasticity
of soil, shear strength parameters such as cohesion, and angle of internal friction are
inserted as input parameters. The dilatancy angle was zero. As a first-order (linear)
simulation of actual soil efficiency, the known Mohr–Coulomb constitutive law was used.
Hook’s law of isotropic elasticity underpins the linear elastic portion of the MCM. Based
on the Mohr–Coulomb failure criterion, the component is perfectly plastic. The MCM
does not incorporate either the stress nor the stress-path dependencies of the stiffness.
In general, failure stress states can be adequately represented using the Mohr–Coulomb
failure criterion and effective strength parameters. There was no assumption of material
hardening or softening. Because there was no subterranean water in the profile at testing,
no pore pressure was assumed during the study [83].
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The distributed load was applied on the footing as a line load in Plaxis; and through
the staged construction option, the footing was initially activated after the line load. After
the geometry of the model was established and the material properties were assigned to
all clusters, the next step was to divide the geometry into elements in mesh generation. A
medium-sized mesh was selected for more accuracy and reduced program processing time.
The Plaxis 2D software allows the ‘Robust Triangulation Scheme’ to automatically generate
finite element meshes. A relatively coarse mesh may fail to capture the domain’s signifi-
cant responses, whereas probability accumulates numerical errors beyond the optimally
fine mesh. Additionally, very fine meshing should be avoided because calculations take
excessive time. With further provision of local refinements, as required by the merit of the
problem and the position of the answer points in the numerical simulation, any simple
meshing scheme can be adopted.

The plane strain model and 15 nodes were selected to simulate the soil medium. Plane
strain models are used for shapes with a (more or less) uniform cross-section, stress state,
and loading scheme along a certain length perpendicular to the cross-section (z direction).
It is assumed that there are no displacements or strains in the z direction. Plane strain
assumes that the problem being analyzed has an infinite length normal to the segment
of the plane being analyzed. In a plane strain analysis, the out-of-plane displacement
(strain) is zero by definition. The axisymmetric analysis is commonly applied to circular
tunnels. For circular structures with a (more or less) uniform radial cross-section and
loading scheme around the central axis, an axisymmetric model is utilized, in which the
deformation and stress state are assumed to be the same in any radial direction. Compared
to the 6 noded triangular components, it offers more nodes, and Gauss points to assist
in the comparatively precise determination of displacements and stresses. The model
dimensions have been selected so that the deformation in the soil does not intersect the
model’s boundaries. The width of the soil model was set as 20 m and the depth as 10 m.
There is a need to determine the initial stresses in Plaxis simulations. For the specification
of these stresses, two possibilities are available in the software: ‘K0 procedure’ and ‘gravity
loading’. As a guideline, in the case of a horizontal surface and for any soil layer and
phreatic lines parallel to the surface, the ‘K0 procedure’ should be used. The “standard
fixity” condition was employed in the numerical model. On the vertical edges, horizontal
fixity was added, while the model’s bottom edge is considered to be non-yielding and
constrained from both vertical and horizontal movements. The numerical modeling was
performed using an official Plaxis 2D v.21 Ultimate Licence at Saint Petersburg polytechnic
university, Russian Federation, subscription type: CNTI—SPbPU (1006650066). Figure 2
shows the geometry of the model, in which the foundation modeled with a plate element
and positive and negative interfaces was applied. The positive and negative interfaces are
applied to soil and foundation.
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3. Results and Discussion

Foundation settlement under load model conditions was simulated similar to under
field conditions using Plaxis 2D. The initial stress state of the soil was generated before
construction. The initial stage is often called the K0 procedure. K0 and Rinter are 0.67 and 1.0,
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respecively. The displacements after this initial stage are set to zero. The model’s geometry
from the second phase is inherited, and the vertical load is applied. The footing has a
uniform load of 12 or 24 KPa, roughly corresponding to the equivalent load of a typical
one-story and two-story building [84]. Settlement of the footing under a load of 12, 24, and
36 KPa is depicted in Figure 3, and it is noted that with the increase in load, settlement
increased. The corresponding bending moment of the footing is shown in Figure 4.
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With the intensity of load increased to 200 KPa, the load–deformation curve under
a load of 50, 100, and 200 KPa is shown in Figure 5, and the crorresponding observed
settlements are 3.7, 9.8, and 42.2 mm, respectively. Numerical modeling was performed by
Altaweel et al. [85]. The purpose was to offer a numerical study that uses 3D Plaxis applica-
tion’s finite element analysis to evaluate the impact of clay soils on foundation settlement.
This effect is explored using a 1 m wide strip foundation under different situations.
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In Figure 6, numerical modeling was performed on two-layered soil, with a difference
in stiffness. Settlement decreased with the inclusion of a higher stiffness layer. In turn,
the bending moment of the footing decreased, as shown in Figure 7. The thickness of the
shale layer (top layer) was 1 m and that of the lower layer was 9 m. Similarly, settlement
decreased considerably in the limestone layer (rock layer) below the shale layer. The effect
of the deformation modulus on the deformation properties is shown in Figure 8. The
thickness of the footing was 0.75 m. The inteface between the shale and limestone layers
influenced the deformation properties, as shown in Figure 9.
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In Figure 10, settlement decreased due to unsaturated conditions. This is due to ma-
tric suction dominating settlement. The unsaturated conditions were modeled with fully
coupled flow deformation. The research presented by Liu et al. [86] is a novel investigation
into the numerical modelling of rainfall-induced shallow landslides in unsaturated layered
soil using the variably saturated flow equation. A one-dimensional, transient, unsaturated
groundwater flow problem in two-layered soil was investigated. The permeability coeffi-
cient of the layers was different. This demonstrates that the lowest FOS occurs during a
rainstorm event at the interface between two consecutive soil layers.
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In Figure 11, the effect of the degree of saturation on settlement of footing is depicted;
the degree of saturation varied from 0.4 to 0.9, and as the degree of saturation increased,
settlement increased. Changing the matric suction and saturation level affects the soil shear
modulus, which directly impacts shallow foundation elastic settling. In general, raising the
matric suction (or lowering the saturation level) significantly impacts foundation settlement
reduction [87]. The change in the degree of numerical saturation modeling was performed
in FORTON with the cam clay model by Mehnedritta and Sawant [88] to observe the
effect of saturation on settlement. In that study, the degree of saturation varied from
85% to 95% and 100%, and they stated that the instantaneous displacement is reported
to be significantly lower at 100 percent saturation than at lower degrees of saturation. At
100 percent saturation, the load is transmitted to the soil particles and water present in the
voids, resulting in a decrease in soil volume due to pore water expulsion alone. However,
in a partially saturated situation, the volume can be reduced by compressing the air voids
and the water and soil particles.
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Figure 12 shows the variation in deformation with time from settlement to heave of
the footing due to the development of matric suction in the soil under a load of 12 KPa.
Figure 13 shows the contours of settlement and heave. In the first phase of dry conditions
and the second phase, arbitrary small rainfall is applied to soil to activate negative pore
pressure (matric suction). In dry conditions, under the load, settlement is depicted in
Figure 13 as 0.00080 m; and in unsaturated conditions, under the same load, the footing
shows a heave of 0.000485 m. The generation of negative pore pressure is the main reason
behind this phenomenon. The soil water characteristic curve parameters were taken from
the database of Plaxis 2D for clay type of soil. The soil water characteristic curve governs
the behavior of matric suction of soil, more often termed as SWCC, which is the relationship
between negative pore pressure and degree of saturation. The matric suction depends on
the soil type and permeability. For simplicity, the same modulus of elasticity for unsaturated
soil is assumed as saturated soil.
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4. Conclusions

Finite element research was undertaken using the PLAXIS 2D to predict the settlement
behavior of shallow foundations. Analyses were carried out utilizing the Mohr–Columb
model under different soil conditions, loading, and saturation degree (saturated and
unsaturated). Based on the findings of this study, the following conclusions can be drawn:

• Settlement is depicted with load–settlement and time-dependent settlement variation.
Settlement decreased with increased soil stiffness (the modulus of elasticity) and
increased with loading intensity.

• Settlement at the center of footing at a load of 200 KPa is 28.81 mm, which is less
than 42.96 mm in the case of the full-depth shale layer. Thus, settlement reduced by
33 percent when the underlying limestone rock layer was present. These results show
that the presence of an underlying limestone layer decreasse settlement of the shallow
foundation to significant level.

• The footing settlement under various degrees of saturation (DOS) was observed.
It was found that settlment is increasing by increasing the degree of saturation,
which increases pore pressure and decreases the shear strength of the soil. Settle-
ment was observed as 0.69 mm at 0% saturation 1.93 mm at 40% saturation, 2.21 mm
at 50% saturation, 2.77 mm at 70% saturation, and 2.84 mm at 90% saturation of soil.
The increase in the degree of the saturation of soil settlement increased.

• The heave of the footing was observed with an increase in matric suction followed
by settlement.

• The changing of matric suction due to water conditions with time should be considered
while designing of shallow foundations.

• Heave of the foundation was observed when soil conditions changed from saturated
to unsaturated.

• ThAe proper drainage system should be provided for the foundation, so that there is a
minimum effect of changing water conditions of soil.
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