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Abstract: Main cables, comprising a number of wire strands, constitute a vital element in long-span
suspension bridges. The determination of their alignment during construction is of great importance,
and relative sag is commonly measured for the efficient sag adjustment of general strands. The
conventional approach uses the caterpillar method, which is inconvenient, difficult-to-implement,
and potentially dangerous. In order to realize the high-precision measurement of cable alignment
in a strong wind environment, a vision-based method for relative sag measurement of the general
cable strands is proposed in this paper. In the proposed measurement system, images of pre-installed
optical targets are collected and analyzed to realize the remote, automatic, and real-time measurement
of the relative sag. The influences of wind-induced cable shaking and camera shaking on the accuracy
of the height difference measurement are also theoretically analyzed. The results show that cable
strand torsion and camera roll have a great impact on the measurement accuracy, while the impacts
of the cable strand swing and vibration, camera swing and vibration, and camera pitch and yaw
are insignificant. The vision-based measurement system tested in the field experiment also shows a
measurement error within 3 mm, which meets the requirements for cable adjustment construction.
At the same time, the vision-based measurement method proposed and validated in this paper can
improve the measurement accuracy and efficiency of strand alignment in a strong wind environment.
Potential risks involved in the manual measurement, e.g., working at heights and in strong wind
environments, can be eliminated, facilitating the automation of the cable erection process.

Keywords: suspension bridge; main cable construction; general cable strand; sag measurement;
machine vision; system development

1. Introduction

Currently, suspension bridges, together with cable-stayed bridges, constitute the main
solutions for long-span structures. The suspension bridge, in its modern form, typically
consist of the anchorage, main towers, main cables, suspenders, and stiffening girders,
according to their sequence of construction in common practices. A number of previous
studies have investigated the challenges and solutions during the construction of these
vital components [1,2], aiming for improved efficiency [3] and quality control [4]. In
particular, main cables, as a major load-carrying member, connect between the towers and
are anchored at each end of the ground or the bridge deck. As tension members, main
cables are highly efficient in carrying all the loads transferred through the suspenders.
Since the 1820s, wire strand cables were adapted for suspension cables for improved
strength and reliability [5]. Cables are generally erected using an aerial spinning (AS)
method or a prefabricated parallel wire strand (PWS) method [6]. In the former method,
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single wires are pulled across separately in situ, while in the latter method, prefabricated
full-length wire stands are constructed directly. Challenges during the cable erection
process, such as cable-saddle connection [7,8] and galloping in the wind field [9–11], have
attracted intensive attention in academia [12]. During the operation and maintenance
(O&M) phases of suspension bridges, the condition of the cable system requires close
monitoring so as to identify safety issues such as broken wires and corrosion [13,14].
For example, Cho, Jin [15] proposed a cable climbing robot to approach the suspenders
directly and inspect the inside status. Other studies deployed computer vision technology
to determine the dynamic characteristics of cable-supported systems [16,17], given their
intensive and successful applications in construction projects [18]. Accordingly, methods
for the remedy and replacement of damaged cables have been proposed and tested in
previous studies [19,20].

The configuration of suspension cables, especially sag, which is defined as the vertical
intervals of the main cable in the main span, relates closely to the stability of the bridge and
cable tensile forces. Specifically, the cable sag largely affects the aerodynamic stability of a
suspension bridge, i.e., torsional frequency and flutter wind speed [21]. Extensive research
efforts have been made regarding shape-finding analysis to determine the optimum cable
configuration during the design stage [2]. At the construction stage, the main cables are
commonly erected before the girder construction for earth-anchored suspension bridges.
Therefore, the alignment control of all wire strands within a main cable, including the
datum strand and the general strands, is vital to the construction quality control of a
suspension bridge. Among all wire strands in the main cable, the initial configuration of
the datum strand contributes largely to the main cable configuration, requiring precise
control. An absolute triangular elevation method is commonly used by first determining
the elevations of two prisms installed at the upper and lower middle of the datum strand
with a total station. The midspan elevation of the strand is then calculated accordingly. In
current practices, the sag measurement and adjustment of the datum strand are carried
out at night when the temperature is stable, the wind speed is low, and there is no rain or
fog. During the construction of the Shimotsui-Seto Bridge, a controlled tension method
was first adopted for sag adjustment by determining cable sag under a constantly applied
tension [22]. There are other methods proposed in previous studies as well, such as
an iterative method based on the catenary theory [23] and a direct method based on the
parabolic theory [24]. Other than the datum strand, there are general strands comprising the
main cable. A relative sag method is intensively used for the sag adjustment of the general
strands. Generally, a large caliper is used to measure the elevation difference between the
datum strand and the general strand, which is then used for the sag adjustment of the
general strand. Alternatively, a relative datum strand is selected as the reference strand for
each layer of the cable. Based on the configuration of the relative datum strand, the sag of
the general strands in the same layer and a new relative datum strand of the next layer can
be adjusted. Iteratively, the configuration of the main cable can be precisely controlled.

Currently, the construction of bridges in high mountains and valleys or on the sea
often faces a strong windy environment. To measure the cable sags under challenging
conditions, conventional methods require trained inspectors to measure at height, e.g., on
the cables or ladders, which is highly dangerous. Moreover, large calipers used in such
methods are inconvenient to carry and difficult to implement. In particular, teamwork is
required to conduct different tasks, such as providing adequate lighting and holding the
ladder steady. In addition to the difficulties encountered during measurement, the accuracy
of the measured height difference can be adversely affected by the shaking of cable strands.
Considering the abovementioned issues in the current methods, this paper proposes a novel
vision-based method to free inspectors from potentially dangerous and intensive tasks
and, at the same time, improve the measurement accuracy. Specifically, two optical targets,
installed in the midspan of the general strand and the datum strand, respectively, are used.
An industrial camera is installed in the middle of the catwalk gantry, facing towards the
span to obtain an orthophoto of the targets. A deep learning network is employed to
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learn features of the targets from images, enabling their detection and pixel-level location.
Through proper conversion from the pixel distance, the actual spatial distance between
the targets can be calculated. Considering other factors, such as tower deviation and
strand temperature change, the elevation difference between the measured strand and
the datum strand can be determined, providing informed and reliable instructions for
sag adjustment. As a result, the proposed method can achieve the remote, automatic,
and real-time measurement of general strand alignment with satisfactory precision and
efficiency. In addition, a wide range of environmental factors are taken into account, and
the proposed measurement method can be robust regarding various challenging conditions,
e.g., wind conditions.

2. Principle of Sag Measurement

Figure 1 presents the conventional methods for on-site relative sag measurement
and adjustment using calipers. According to the measurement principles (as illustrated
in Figure 2), the elevation difference between the target strand and the datum strand is
determined using the Equation (1).

Hs = H − r1 cos(30◦ − α1)− r2 cos(30◦ − α2) (1)

where H is the height difference measured by the caliper, α1 and α2 are the rotation angles
of the target strand and the datum strand, respectively, and r1 and r2 represent the diameter
of the circumcircles for both wire strands.
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The proposed vision-based method to measure the relative sag, i.e., Hs in the conven-
tional method, employs a vision system to remotely collect imagery data and deep learning
algorithms for analysis and measurement. To further facilitate field observation, a wire
strand is erected directly above the datum strand, acting as a ruler for reference. All general
wire strands will be adjusted based on this reference wire strand. Two optical targets are
installed in the mid-span of the target strand and the reference strand, respectively. An
industrial camera is installed in the middle of a gantry beam, facing the span to orthophoto
the optical targets. In the images, optical targets are identified, and their pixel-level distance
is estimated and converted to actual spatial distance. Different from the conventional
methods, which directly measure the height difference of strands, the height difference
between these two optical targets, i.e., HT , is estimated, as shown in Figure 3. Using the
equation HS = HT , the relative sag of the target strand can be determined. To ensure
that the equality holds, hoops are used to fix the optical targets so that they are always
positioned vertically and do not slide.
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Large amounts of video data containing optical targets in different shooting angles,
distances, and colors were used to train the deep neural network for feature extraction.
The least square approach was applied for model fitting as well. The image coordinates of
both targets on the general strand and the reference strand were obtained and denoted as
(x1, y1) and (x2, y2), respectively. Therefore, the pixel-wise distance of the optical targets
can be calculated as Hpix = |y1 − y2| in the vertical direction, and Hpix = |x1 − x2| in the
horizontal direction. Based on the lens focal length, sensor size, image resolution, shooting
distance, and other parameters, the coefficient to convert pixel-wise distance on the image
to actual distance Pacc, in the unit of mm/pix, can be further determined. Figure 4 illustrates
the conversion, where WD represents the working distance, FOV is the field of view, and S
represents the sensor resolution. The conversion coefficient is calculated using Equation (2),
and the relative sag of a general strand is estimated using Equation (3).

Pacc =
FOVL

ResolutionL
or

FOVW
ResolutionW

(2)

HS = HT = Hpix × Pacc (3)

where the subscripts L and W represent the FOV/resolution in the length/width direction
of the frame, respectively.
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3. Analysis of Factors Affecting Measurement Accuracy

Two variables directly affect the accuracy of relative sag measurement, i.e., pixel-wise
height difference Hpix and the conversion coefficient Pacc, as indicated in Equation (3).
The accuracy of the former variable is largely determined by the performances of target
detection and the circle center fitting process, while the latter one is calculated based on
parameters such as camera resolution, lens focal length, and camera-target distance. A
summary of the factors affecting the measurement accuracy is listed in Table 1.

Table 1. Factors affecting the calculation of the cable height difference.

Factors Affected Variables/Process Proposed Improvement

Environmental factors

Changes in lighting Target detection, Hpix
Adapt the camera exposure and other

parameters to different lighting.

Rain and fog Target detection, Hpix Avoid such measurement conditions.

Wind-induced strand shaking Target localization, Hpix
Dynamically change the distance

between the optical targets.

Wind-induced camera shaking Target localization, Hpix
Dynamically change the distance

between the optical targets.

Algorithms

Deep learning-based algorithm
for target detection Target detection, Hpix Increase the video data for model training.

Center fitting algorithm Target localization, Hpix Change algorithms.

Devices
Camera Image resolution, Pacc Deploy cameras with higher resolutions.

Camera lens Focal length, Pacc Deploy suitable lens.

It can be seen from Table 1 that most of the adverse impacts can be mitigated by
improving the hardware and algorithms, except for the wind-induced strand shaking and
camera shaking. Such environmental factors can directly affect the pixel-wise positioning
of the identified target in the image, causing constant changes in the relative sag. Therefore,
the rest of this section mainly analyzes the measurement error caused by the wind-induced
shaking of the strands and camera in the vision-based monitoring system.

3.1. Impact Analysis of Cable Strand Shaking

The cable strand shaking under wind actions can be categorized into three types, i.e.,
transverse swing, vertical vibration, and torsion in the cable plane. An example suspension
bridge with a main span of 800 m and a sag to span length ratio of 1/10 is used to illustrate
the impacts of the shaking of an individual strand.

3.1.1. Impact Analysis of Transverse Swing

Assuming that the transverse swing amplitude of the strand is Ls, the sag of the reference
strand is R0, and the sag of the general strand is Ri, as shown in Figure 5. Specifically, C0 and
Ci in the figure represent the reference cable strand and a random general cable strand. The
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swing height of the reference strand and the targeted strand for relative sag measurement, i.e.,
H0 and Hi, can be calculated using Equations (4) and (5), respectively.

H0 = R0 −
√

R0
2 − Ls

2 (4)

Hi = Ri −
√

Ri
2 − Ls

2 (5)
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In the illustrative case, R0 = 80 m, Ls = 1 m, and Ri = 75 m. As a result, the swing
height of the reference strand H0 is calculated to be 6.25 mm, indicating a height er-
ror of 6.25 mm~6.67 mm when the strand swings in the range of 1 m. When taking
[−5 mm, 10 mm] as the control target of the measurement error, the measurement data
will be filtered when the shaking amplitude of the cable strand reaches 1 m to reduce the
measurement error.

3.1.2. Vertical Vibration of Cable Strand

In addition to transverse swings, the strand will vibrate vertically under the action
of external force. Figure 6 presents the vibration curve of a general strand, which is
symmetrically distributed on both sides of the initial state. Specifically, the maximum
displacement of the vibration is denoted as Hvib, the vibration period is Tvib, and the video
sampling frequency is F. The height difference at the current time t is estimated using
the average height difference in the time period [t− Tsam, t], where the duration is set
to be Tsam. The error of visual measurement is denoted as Evib. As a result, the maxi-
mum error visual measurement caused by individual strand vibration can be calculated
using Equation (6).

maxEvib =
Hvib

Tsam × F
×

int( Tvib
2 )

∑
i=1

sin

 i× 180◦

int
(

Tvib
2

)
+ 1

 (6)

In the illustrative case, it is assumed that F = 1 Hz and Tsam = 120 s. According to
field measurement data, Tvib is generally shorter than 10 s, and Hvib is usually smaller than
100 mm. Take F = 1 Hz and Tsam = 120 s, and the maximum error caused by the vertical
vibration of an individual strand is computed to be 3.11 mm. In the case when both the
reference strand and the general strand vibrate simultaneously, the error should be 2Evib.
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3.1.3. Strand Rotation out of the Cable Plane

During cable adjustment, the general cable strands are temporarily anchored at the
cable saddle on the top of the tower, whose midspan will have a certain degree of out-
of-plane torsion under the action of wind force. Figure 7 includes on-site photos of such
torsion, and Figure 8 is the schematic diagram of strand torsion. Hopt represents the
height of the optical target, and the rotation angle of the targeted strand is denoted as
α (0 < α < 90◦).
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As the strand rotates, the deviation between the optical target distance and the rel-
ative sag is calculated using Equation (7). Assuming Hopt = m and α = 30◦, we have
H30◦ = 26.79 mm.

Hα = 2× Hopt ×
(

sin
α

2

)2
(7)

3.1.4. Collective Impacts Caused by Wind-Induced Strand Shaking

The maximum measurement errors caused by the wind-induced cable strand shaking
based on the empirical values of parameters (e.g., Ri, Hvib, and Hopt) are summarized in
Table 2. By referring to Table 2, the following three conclusions can be drawn: (a) When the
transverse swing amplitude is less than 200 mm, the measurement error is only 0.27 mm.
Therefore, the horizontal spacing of cable strands can be used to filter out noise data in
a real-time measurement scheme. (b) The accuracy of the height difference estimation
improves as the amplitude and/or vibration period decreases. (c) The out-of-plane torsion
of the strand largely contributes to the measurement error, recommending the correction of
the measurement of the torsion angle.

Table 2. Summary of measurement errors caused by different types of strand shaking.

Items
Type of Strand Motion

Transverse Swing Vibration in the Elevation Direction Plane Rotation

Calculation
formula

Hi = Ri −
√

Ri
2 − Ls2 Hvib

Tsam×F ×
int(Tvib/2)

∑
i=1

sin
(

i × 180◦
int(Tvib/2)+1

)
Hα = 2× Hopt ×

(
sin α

2

)2

Parameters Ri = 75 m,
Ls = 1000mm

Ri = 75 m,
Ls = 200 mm

Hvib = 100 mm,
Tsam = 120 s,
Tvib = 10 s,
F = 1 Hz

Hvib = 100 mm,
Tsam = 120 s,
Tvib = 5 s,
F = 1 Hz

Hvib = 50 mm,
Tsam = 120 s,
Tvib = 5 s,
F = 1 Hz

Hopt = 200 mm,
α = 15◦

Hopt = 200 mm,
A = 30◦

Maximum
error (mm) 6.67 0.27 3.11 1.44 0.72 6.81 26.79

3.2. Impact Analysis of Camera Shaking

The camera used in the proposed system can be installed either on the top of the
cable tower or at the cross beam of the catwalk gantry. The former approach produces
better stability, yet it has occlusion issues and a necessitates a longer shooting distance,
requiring a higher cost for camera lens. The catwalk beam is close to the midspan (about
55 m) and less subject to occlusions. However, the camera shaking along the catwalk due
to wind action can adversely affect the measurement accuracy. The camera motions contain
both displacements and rotations in the longitudinal, transverse, and vertical directions,
as shown in Figure 9. Specifically, θ is the pitch angle, ψ is the yaw angle, and ϕ is the
roll angle.
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Due to the displacement in the longitudinal direction, it is assumed that the mea-
surement distance from the camera to the optical target is Dcal , and the variation is
Dcha (0 mm ≤ Dcha ≤ 100 mm), as shown in Figure 10. HT represents the height dif-
ference between the optical targets, without considering camera rotations. Dcha is relatively
small, since the catwalk gantry is fixed and the optical target will not slide along the
strand. Thus, the height difference between the optical targets will vary in the range of[

Dcal
Dcal+Dcha

× HT , Dcal
Dcal−Dcha

× HT

]
.
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Under wind actions, the camera rotates in the longitudinal direction, causing the
overall deflection of the collected image, as shown in Figure 11. It is worth noting that the
image deflection does not change the actual spatial distance (i.e., Dcen) between the target
centers. Assuming that the angle between the line connecting the targets and the horizontal
direction is β, when the rolling angle is 0◦, the height difference between the optical targets
can be expressed as HT = Dcen × sin β. When the roll angle is α, the height difference is
calculated as Hrot = Dcen × sin(β + α).
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Figure 11. Schematic diagram of image deflection caused by camera deflection.

The camera displacements in the transverse and vertical directions only change the
position of optical target in the collected images, as shown in Figure 12, causing no devia-
tions to the measurement. Similarly, the pitch angle and yaw angle of the camera do not
lead to image deflection. Their impacts on the measurement accuracy can be eliminated by
expanding the monitoring range of the camera and using an anti-distortion lens.
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Collectively, the maximum measurement errors caused by the wind-induced camera
shaking are summarized in Table 3, according to the empirical values of key parameters. It
can be concluded that the image deflection caused by the camera’s roll angle is the major
contributor to the measurement error.

Table 3. Summary of measurement errors caused by wind-induced camera shaking.

Items

Type of Camera Motion

Displacement (Longitudinal) Displacement
(Horizontal)

Displacement
(Elevation)

Pitch
Angle

Yaw
Angle Roll Angle

Equation
[

HT − Dcal×HT
Dcal−Dcha

, HT − Dcal×HT
Dcal+Dcha

]
HT HT HT HT Dcen × |sin(β + α)− sin β|

Parameters
Dcal = 55 m, Dcha = 100 mm,

HT = 1 m / / / / Dcen = 1.5 m,
β = 45◦, α = 5◦

Dcen = 1 m,
β = 80◦, α = 5◦

Maximum
error (mm) 1.82 ≈ 0 ≈ 0 ≈ 0 ≈ 0 88.41 11.39

4. Development of the Vision-Based Measuring System
4.1. System Composition

The vision-based system for relative sag measurement consists mainly of: (1) optical
targets, (2) a camera, (3) an attitude sensor for measurement correction, (4) a wireless bridge
for data transmission, and (5) a workstation for real-time data analysis and system control.
Figure 13 illustrates the workflow of the proposed system.
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4.2. Design of the Optical Target

The optical target is designed to include a ring LED lamp, and its brightness can be
adjusted as required. A vertical light band is set at the lower end of the target to collect the
torsion angle of the strand. The bracket hoop of the optical target is customized according
to the strand diameter. The top of the bracket is designed with an elevation angle of 10◦,
making it easier to be captured by the camera. The optical target and bracket are shown
in Figure 14.
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4.3. Integrated Camera Set

The main data acquisition and transmission modules are integrated, as shown in
Figure 15. The integrated camera set consists of a zoom lens, an industrial camera, a
gyroscope, and an embedded processor. Specifically, the gyroscope is used to monitor the
camera attitude in a real-time manner, and the embedded computer is used for efficient
image compression and command transmission. In addition, a ventilation and heating
module is employed to improve the internal environment of the equipment to maintain
durability, and the external protective cover is used for dust and rain protection.
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4.4. Visual Monitoring Software

The visual monitoring software is designed to achieve real-time detection and track-
ing of the optical target, horizontal spacing measurement, real-time measurement of the
vertical height difference, static height difference prediction, wireless transmission network
monitoring, and camera attitude monitoring. Figure 16 presents the interface of developed
software, including a few previously mentioned modules.
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In order to eliminate the influence of wind-induced transverse swing and vertical
vibration of the strands, Equation (8) is used to predict the static height difference (Hcal).

Hcal =
1
n

n

∑
i=1

Hi, and Li ≤ 200 mm, |t− Ti| ≤ 120s (8)

where Hi and Li are the height difference and horizontal spacing between the targets,
respectively. The image acquisition frequency is set to 1 Hz, t is the current time, and Ti is
the data acquisition time of Hi and Li. The number of height differences, n, is determined
by satisfying two conditions, i.e., Li ≤ 200 mm and |t− Ti| ≤ 120s.

5. Field Application

The developed system was applied to the Oujiang Beikou Bridge, validating its ef-
ficiency in sag measurement for the suspension cables. The main bridge of the Oujiang
Beikou Bridge is a suspension bridge with three towers, four spans, and a double layer stiff-
ening girder. Figure 17a is a photo of the Oujiang Beikou main bridge under construction.
The total length of the bridge superstructure is 2178 m, consisting of two main spans of
800 m and two suspended side spans of 230 m and 348 m, respectively. The cable sag is
80 m and the sag to span length ratio is 1/10. Each main cable is composed of 169 strands,
and each strand is made of 127 wires composed of Φ 5.4 mm galvanized high-strength
steel wire. The wire stands are arranged in an approximate regular hexagon, as illustrated
in Figure 17b. The erection method for the main cables is the prefabricated parallel wire
strand (PPWS) method, given its higher construction efficiency, easy control of fabrication,
and higher precision compared to the aerial spinning (AS) method [12].
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Figure 17. The Oujiang Beikou Bridge: (a) a photo of Oujiang Beikou bridge under construction;
(b) an image of the cross section of the main suspension cables.

5.1. Layout of the Vision-Based Measuring System

In this project, a ruler cable strand is used as the reference strand to adjust the configu-
ration of the general strands. First, two light targets were installed at the midspan of the
general cable strand and the reference cable strand. The targets had an outer diameter of
90 mm and included 4 rows of LED lamps, which were powered by batteries. The camera
integration set (as introduced in Section 4.3) and the bridge camera were mounted at the
middle top of the gantry beam. The hardware specifications for the camera integration
set are summarized in Table 4. The on-site hardware equipment was directly powered
by the distribution box. The transmission direction of the bridge signal faced the remote
monitoring room, and a video recorder was installed and connected to a high-performance
computer for real-time target identification and height difference calculation. The field
installation is shown in Figure 18.
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Table 4. Specifications of the main hardware.

Items Products Specifications

Camera
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5.2. Distance Calibration and Accuracy Verification

In addition to the on-site hardware installation, the parameters of the developed
software require calibration beforehand. Figure 19 shows the interface for parameter
settings of the developed software. Specifically, the camera gain was set to be relatively
low, considering that the optical target itself emits light. The image can be dimmed as a
whole, to better capture the characteristics of the target and improve the accuracy of target
recognition and positioning.
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The shooting distance is calibrated using a measuring rod customized on site. The
measuring rod is perforated every 10 cm, from 60 cm to 130 cm. The distance between the
two optical targets is measured first by a measuring tape and then by the visual system.
The measurement results are shown in Table 5. According to the results, the overall
measurement error of the developed vision-based system is less than 2 mm, including the
tape measurement error, optical target positioning error, distance parameter setting error,
and static height difference prediction algorithm error.

Table 5. Accuracy comparison of measurements between the visual measuring system and a caliper.

The distance measured by the
caliper (mm) 601 702 800 900 1001 1099 1199 1300

The distance measured by the
measuring system (mm) 601.46 702.9 801.59 901.61 1001.49 1100.86 1200.46 1301.17

Error (mm) 0.46 0.9 1.59 1.61 0.49 1.86 1.46 1.17

5.3. Validation of the Proposed Measuring System

The height difference measurement, using a caliper and the proposed system, were
both carried out at night. Figure 20 presents the photos of the field experiment. During
the test, the wind force was level 2~3 and the temperature was 8~10◦. The general strands
presented a maximum 30 cm horizontal displacement and 5 cm vertical displacement.
Neither the out-of-plane torsion of the strand nor the camera shaking was significant. The
wind-induced shaking posed challenges to the conventional approach using the caliper;
thus, an average of three separate measurement times was used. The comparison between
the caliper measurement and the proposed method is shown in Table 6. Notably, with strand
shaking and camera shaking, the overall measurement error of the proposed measuring
system is about 3 mm.

Table 6. Measurement results of the caliper vs. the proposed measuring system.

# Strand No. Deflection
Angle (Clockwise)

Height
Difference (mm)

Measurement of
the Caliper (mm)

Calibrated
Measurement of
the Caliper (mm)

Measurement of
the Proposed
System (mm)

Measurement
Error (mm)

1
Reference strand 27.3◦ 18.88

510.6 456.35 455.6 −0.75General strand
of No. 96 24.8◦ 35.37

2
Reference strand 28.8◦ 18.90

1061.8 1009.24 1010.9 1.66General strand
of No. 102 48.6◦ 33.66

3
Reference strand 27.4◦ 18.88

1066.4 1014.92 1018 3.08General strand
of No. 106 6.6◦ 32.60

4
Reference strand 27.0◦ 18.87

1061.3 1007 1009.3 2.30General strand
of No. 109 34.2◦ 35.42

5
Reference strand 9.0◦ 17.64

1074.75 1025.74 1022.6 −3.14General strand
of No. 118 2◦ 31.36

6
Reference strand 9.0◦ 17.64

950.1 896.96 897.3 0.34General strand
of No. 122 32◦ 35.5
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5.4. Discussion

At present, the sag of the cable strand during erection is generally measured manually
with a caliper. The comparison between this conventional method and the vision-based
measurement system proposed in this paper in terms of accuracy, efficiency, and automation
is shown in Table 7.

Table 7. Comparison between the traditional measuring method and the proposed measuring system.

Aspects Caliper Proposed System

Accuracy
Slight strand shaking ≥1 mm ≤1 mm
Moderate strand shaking ≥5 mm ≤3 mm
Significant strand shaking ≥10 mm ≤3 mm

Time cost of a single-strand measurement ≥3 min ≥2 min

Required operators ≥2 1

It can be concluded that the proposed method based on computer vision has a lower
requirement for field operators, is more efficient, and can improve the measurement
accuracy. In addition, a large amount of cable strand shaking data accumulated in the
measurement process can provide a data basis for further research on wind-induced cable
strand shaking mechanisms and the optimization of the visual measurement algorithm.

5.5. Further Improvement of the Measuring System

Although this study verifies the feasibility of a vision-based system to measure the
relative sag of general cable strands and validates its accuracy, the hardware and software
of the system still need to be optimized. In the optical target design, the target size, support
height, and bracket structure can be further optimized to realize rapid disassembly and
installation. In terms of the camera integration, the selection and integration design of the
comprising gadgets in the integration box can help reduce the volume of the equipment.
Moreover, the algorithms used to predict the static height difference of strands can be further
improved. In terms of system design, the measurement accuracy reduction caused by strand
torsion, and the observation difficulty caused by strand swing requires further investigation.
The above improvements will further improve the applicability and measurement accuracy
of the proposed measurement system.

6. Conclusions

Regarding the drawbacks of conventional methods, this paper innovatively proposes
a vision-based method to measure the relative sag of general wire strands of suspension
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bridges regarding datum methods. Theoretical analysis, in terms of both cable strand
shaking and camera shaking, is conducted, based on which a vision-based measuring
system is developed. Pre-designed optical targets are attached to cable strands, and an
integrated camera set is designed to conduct data collection. An ad hoc monitoring and
analysis software system is developed to determine the relative sag of target strands.
Through field experiment, the following conclusions are drawn:

(1) In a strong wind environment, cable strand torsion and camera rolling are the main
contributors to the measurement errors, as indicated in Tables 3 and 4. To further
improve the measurement accuracy, it is necessary to design the optical target support,
monitor the camera attitude, and develop the correction algorithm.

(2) The strand sag measurement error of the proposed measuring method in a complex
field environment is 3 mm, and this error can be further reduced after hardware and
software optimization.

(3) The developed measuring system can be applied to the main cable erection construc-
tion in a strong wind environment and can be further extended to the monitoring of
strand shape change from day to night. In this way, the feasibility study of daytime
cable adjustment can be conducted in future work.

(4) The measuring system can reduce the personnel demand and time cost, eliminate the
potential risk of surveyors working in adverse environments (e.g., high altitude, dark
and windy weather), and facilitate the automation of cable erection in suspension
bridge construction.
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