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Abstract: Much research has been conducted and published on the examination of the behavior of
reinforced steel and concrete structures with a FRP system. Nevertheless, the performance of FRP
differs from that of FRCM, particularly at high temperature and ultimate strength. The present study
provides a review of previous research on structural elements (viz. beams, columns, arches, slabs, and
walls) retrofitted with FRCM systems, taking account of various parameters, such as layers, composite
types, configurations, and anchors for controlling or delaying failure modes (FMs). Additionally, this
paper discussed the details of different FMs observed during experimental tests, such as crushed
concrete or bricks, fiber debonding from substrate materials, slippage, fiber rupture, and telescopic
failure for strengthened specimens. Moreover, this paper investigated where and how fractures may
develop in structural elements retrofitted with the FRCM system under various retrofit scenarios. To
this end, in addition to the review of the relevant literature, a large dataset has been compiled from
different (RC) structural elements and masonry members. Next, a relationship is developed between
failure modes (FMS) and influential parameters, i.e., the number of layers and the type of composite,
based on this dataset. This can be used as a benchmark example in future studies, as there is no such
basis available in the literature, to the best of the authors’ knowledge.

Keywords: fabric-reinforced cementitious matrix (FRCM); failure modes (FMs); debonding; slippage;
fiber rupture

1. Introduction

Over the past few decades, conventional strengthening methods, such as the use of
externally bonded steel plates, have been facing serious difficulties; hence, fiber-reinforced
polymers (FRPs) have shown suitable performance for such purposes [1–3]. The use of
FRP composites to reinforce and repair historical as well as concrete structures has been
accordingly considered by many researchers thanks to its advantages [4–6]. In fact, fiber
reinforcement plays a substantial role in strengthening structural elements, especially in
altering brittleness [7]. In this sense, FRPs are much more attractive in civil engineering and
the construction industry owing to their unique benefits [8–10], including weight resistance,
corrosion resistance, high ductility, simple and high-speed implementation, and excellent
adhesion to masonry substrates. FRP composites have also been utilized to attach to the
surface of some elements via organic matrix-like epoxy resins [11,12]. In spite of their
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many advantages, a series of defects in such polymers have been similarly observed, i.e.,
difficulty in use at low temperatures, no use on wet surfaces, differences in materials applied
between epoxy resins and concrete substrates, working hazards, thermal compatibility
problems, different thermal coefficients between epoxy resins and material substrates, no
fire resistance at high temperatures, the cost of epoxies, low glass (G) transition temperature,
and insufficient vapor permeability [13,14]. As a result, poor bonds have often given rise to
the premature delamination of epoxy resins as substrates [15,16].

To deal with the problems in utilizing the organic matrix, researchers have been trying
to find other ways to replace epoxy resins through inorganic forms, such as a similar genus
with concrete substrates [17]. Inorganic matrix can be thus suggested at low temperatures
and into wet surfaces since it accepts vapor permeability and has a better heat resistance and
lower costs compared with epoxy resins. In general, the novel pattern of reinforcements has
been recently introduced with the aim to increase performance and minimize total product
costs. Furthermore, textile-reinforced concrete (RC), in comparison with the well-known
FRP, carries unique advantages such as being light-weight, fast in the application, easy to
handle, and cheap [18–20].

The FRCM system, an inorganic matrix, has been presented as a stable and durable
replacement instead of FRPs (such as epoxy resins) to meet their disadvantages and short-
comings. Meanwhile, several names have been suggested thus far, including FRCM,
textile-reinforced mortar (TRM), and textile-reinforced cementitious (TRC). The FRCM
system contains the supplies with dry fiber mesh in two orthogonal directions. Similarly,
fabric composites are buried in a mortar-based layer of cement. In recent research regarding
the improved performance of FRCM, especially in terms of mesh adhesion, a unique grid
has also been designed to penetrate mortar grains well into the fabric and result in a strong
lock that prevents impermeable or fracture failure [21]. To increase the functionality of
the FRCM system, several types of fiber Gs have also been used, such as polypropylene
(PP), polyethylene (PE), and polyoxymethylene (POM). In this regard, POM has more
engineering applications, and its mechanical properties are more appropriate than PP
and PE. In similar research, carbon (C), G, basalt, steel, and recently polyparaphenylene
benzobisoxazole (PBO) have been further utilized. It is of utmost importance to mention
that the FRCM system has even been improved by ultra-high mesh (UHM), especially
PBO, whose mechanical properties have been enhanced compared with C fiber. Moreover,
PBO can have a significant impact on energy absorption capacity, high friction, fire resis-
tance, and compatibility. Additionally, they have been used for some samples in several
studies [22–24].

Some research has been conducted and published as review papers on the upgrading
of structural elements [7,11,25], focusing mostly on strengthening steel structures and
concrete structures using FRP systems. However, the behavior of FRP differs from that of
FRCM systems, particularly at high temperatures and ultimate strength. Although a hybrid
combination of CFRP and BFRP was proposed for strengthening structural beams at high
temperatures, not many details are reported about this issue [8]. First, the expected cost
was not argued. Second, it was unclear how successful the proposed reinforcement would
be in various temperature ranges. High temperatures can alter the conventional failure
modes, and only limited research has been conducted on this topic to accurately evaluate
the performance of FRCM for the strengthening of concrete members during temperature
change [4,26].

Alabdulhady et al. [27] investigated the torsional strengthening of RC beams using
FRCM composites and reported a series of details regarding strengthening methods (in-
cluding the type of composite, the number of textile layers, wrapping, and modes of
failure), reinforcement configuration, and anchorage systems. However, there are a few
shortcomings in this study, e.g., the effects of temperature and type of matrix (different
mortars were not studied). Koutas et al. [16] provided a literature review on the tensile
and bond response of FRCM systems, as well as flexure and shear strengthening, with
an emphasis on seismic strengthening. However, no design formulations were provided
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in their study. The present study begins with a review of previous research on structural
elements retrofitted with the FRCM system and further proposes a design formula that
takes into account various parameters, such as layers, composite types, configurations,
and anchors, to control or delay FMs. In fact, the FRCM systems exhibit better perfor-
mance at high temperatures compared with FRPs and even decrease the length of cracks
in strengthened specimens. Furthermore, a comprehensive dataset was collected from
different elements, including beams, walls, slabs, and arches. Afterwards, the results are
depicted in the ratio of load-carrying capacity to the number of layers and type of composite
curves, in the forms of beam and column, taking into account various failure modes of
slippage, fiber rupture, delamination, debonding, and crack for flexural and shear behavior
of beams and their failure modes, including slippage, fiber rupture, telescopic failure, and
debonding for the column. For other members, findings are analyzed and discussed using
the ratio of load-carrying capacity to the type of composite curves with respect to their
failure modes. Overall, this paper reflects on the relationship between composite types
and layers against FMs in various structural elements. This can be utilized as a benchmark
example in future studies, as there is no such basis available in the literature, to the best of
the authors’ knowledge.

2. Materials
2.1. Mortar

According to Escrig et al. and Donnini et al. [13,15], mortar in the FRCM or TRM
systems can be classified into high-performance, lime-based, and cementitious types. The
lime-based one is often used for historical masonry structures, even though higher mechan-
ical properties are suitable to repair concrete elements. The latter has also been suggested
for shells. Table 1 shows the mechanical properties of different mortar matrices in terms of
compressive and tensile strength, with reference to the BS EN 1015-11: Methods of Test for
Mortar for Masonry. Bonding strength values are also obtained from the manufacturers.
After the formation of one or two horizontal cracks in a cracked specimen, slippage of
the fabric within the specimen is recognized as a prominent failure mode in LM mortar.
Given a strong bond developed at the fiber-mortar interface, the CM mortar failed due to
fabric breakage. Fabric failure occurs as a result of fiber rupture in HPM mortar. Because
a large amount of energy is released when the first crack is formed in the mortar, this is
referred to as premature failure. The fracture energy data, reported in Table 1, corroborates
this assertion. When compared to other materials, HPM fracture energy is the highest
reported measurement.

Table 1. The mechanical properties of mortars in FRCM systems [15].

Mortar Compressive
Strength (MPa)

Tensile Strength
(MPa)

Elastic
Modulus (GPa)

Fracture Energy
(MPa)0.5

Lime-based (LM) 15 1.75 9 0.027927
Cementitious fiber reinforced (CM) 25 2.54 23 0.033646
High-performance Mortar (HPM) 80 2.71 39 0.034753

2.2. Grid

The TRM or FRCM composite materials consist of fiber rovings configured in two
orthogonal directions. The fabric rovings are thus spaced apart, forming a mesh. The fiber
roving with perforations in between also provides some mechanical interlocks between
the fabric and the matrix, which creates a suitable place to embed grand sand between
the fiber rovings. The spacing between the rovings then provides the impregnation in
bundles and enables the mortar bond strengthening between consecutive mortar layers.
There is no special standard for the mesh size of the grid, although it is considered variable,
ranging from 8 to 30 mm, for some materials, such as C, G, basalt, PBO, and steel. The
coating of textiles similarly enhances the stability of the textile materials by retrofitting the
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bond between the textile and the matrix, which prevents premature failure due to uniform
distribution stress [14,16,22].

2.3. FRCM

The properties of the FRCM system can be enhanced by using an ultra-high PBO fiber.
It is noteworthy that the geometrical and mechanical characteristics of the PBO fiber are
higher than C fiber-reinforced polymers (C-FRPs), as shown in Table 2 and Figure 1. As well,
PBO and steel grids act in a unidirectional manner despite the others that have the same
characteristics in both principal orthogonal directions, so they are designed to be exploited
in masonry structures [13]. Numerous parameters, most notably the type of FRCM system,
affect the stress-strain response of FRCM specimens, as shown in Figure 1. The cracking of
the mortar is a critical factor influencing the stress-strain behavior. Notably, early mortar
cracking commonly occurs when the mechanical properties are relatively poor. In fact,
the mortar cracking is monitored via the bond between the fibers and the mortar itself.
Additionally, a weak bond at the fiber-matrix interface results in the premature failure of
the FRCM system due to stress being transferred to the fibers abruptly, despite the fact that
the load applied is far less than the mesh tensile strength. In contrast, if a high-performance
matrix such as mortar is employed, stresses in the fiber mesh can be transferred. In addition,
the crack phenomenon occurred totally independent of any premature failure [28]. The
properties of the fibers are specified in the bidirectional direction, whereas the parameters
of the reinforcement are specified in the primary direction of the reinforcement. Thus, the
distinctions between grid and basic fiber materials are associated with their unidirectional
and bidirectional applications.

Table 2. The properties of grids and fibers.

The Mechanical Properties and Details of Grids and Fibers Basalt Carbon Glass PBO Steel

Fiber

Fiber orientation N.A. Bi Bi Bi Uni Uni
Ultimate tensile strength ffb (MPa) 3080 4320 2610 5800 3200

Young’s modulus Efb (GPa) 95 240 90 270 206
Ultimate strain εfb (%) 3.15 1.8 2.9 2.15 1.55

Weight W (
g

m2 ) 200 168 225 88 600
Tow/cord width Wm 5 4 3 5 0.9

Grid
Distance between tow and cord Sm (mm) 15 10 25 10 5.5

Equivalent thickness ttex (mm) 0.053 0.047 0.042 0.0455 0.075

Buildings 2022, 12, x FOR PEER REVIEW 5 of 44 
 

widening of existing cracks. As a result, the ultimate failure mode manifested itself in one 
roving and propagated rapidly to the other ones. 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Strain (mm/mm)

0

200

400

600

800

1000

1200

1400

1600

St
re

ss
 (M

Pa
)

C-FRCM
PBO-FRCM

Third stage

Second stage

First stage

 
Figure 1. The stress–strain curves for FRCM-tensile coupon. 

3. Reducing the Catastrophic Effect of FMs on Beams Subjected to Different Behav-
iors 

Following the catastrophic damage caused by the gas explosion in the Ronan Point 
tower [29], several government agencies and international code writers sought to improve 
guidelines and recommendations to mitigate or prevent the potential for such catastrophic 
collapses. In addition, due to extra loads, environmental factors, cracks, and deficiencies 
in designing and implementing concrete structures, rehabilitation is more often vital ra-
ther than reconstruction for concrete members [30]. Hence, a series of research studies 
have been fulfilled on beams strengthened with the FRCM system and the effect of various 
parameters, including the type of FRCM systems (i.e., C, basalt, PBO, and G), configura-
tions (viz. full-, U-, and W-wrapping), surface textiles (that is, uncoated and coated), the 
number of layers, the type of matrix (namely, cement, and resin), anchors (i.e., composite, 
mechanical, near-surface, and externally bonded), the effect of fiber orientation (i.e., 45° 
and 90°), the impact of high temperatures, the type of mortars, the effect of corrosion, the 
impact of fatigue, the effect of internal steel reinforcement, and the impact of value fabric, 
have been so far investigated, whose results in this line are reported in the following sec-
tions. Meanwhile, different methods for beam strengthening are presented in Figure 2. As 
seen, four different flexural strengthening methods of beams with the FRCM system are 
depicted under flexural loading, namely full wrapping, U-wrapping, U-wrapped at the 
end of FRCM, and discontinued wrapping. 

Figure 1. The stress–strain curves for FRCM-tensile coupon.



Buildings 2022, 12, 653 5 of 43

As observed in Figure 1, the FRCM system under tensile loading is comprised of
three distinct stages: un-cracked (Stage I), crack development (Stage II), and cracked
(Stage III). There was no evidence of a crack in the first stage, and the response was linear
throughout. The change in slip in the graph corresponds to the formation of the initial
crack. The mechanical properties of both the mortar and the textile (PBO and C-FRCM), as
well as stress transfer from the textile to the matrix, all have a direct effect on the failure
mechanism [18]. The third stage is characterized by the propagation of cracks and the
widening of existing cracks. As a result, the ultimate failure mode manifested itself in one
roving and propagated rapidly to the other ones.

3. Reducing the Catastrophic Effect of FMs on Beams Subjected to Different Behaviors

Following the catastrophic damage caused by the gas explosion in the Ronan Point
tower [29], several government agencies and international code writers sought to improve
guidelines and recommendations to mitigate or prevent the potential for such catastrophic
collapses. In addition, due to extra loads, environmental factors, cracks, and deficiencies in
designing and implementing concrete structures, rehabilitation is more often vital rather
than reconstruction for concrete members [30]. Hence, a series of research studies have been
fulfilled on beams strengthened with the FRCM system and the effect of various parameters,
including the type of FRCM systems (i.e., C, basalt, PBO, and G), configurations (viz. full-,
U-, and W-wrapping), surface textiles (that is, uncoated and coated), the number of layers,
the type of matrix (namely, cement, and resin), anchors (i.e., composite, mechanical, near-
surface, and externally bonded), the effect of fiber orientation (i.e., 45◦ and 90◦), the
impact of high temperatures, the type of mortars, the effect of corrosion, the impact of
fatigue, the effect of internal steel reinforcement, and the impact of value fabric, have
been so far investigated, whose results in this line are reported in the following sections.
Meanwhile, different methods for beam strengthening are presented in Figure 2. As seen,
four different flexural strengthening methods of beams with the FRCM system are depicted
under flexural loading, namely full wrapping, U-wrapping, U-wrapped at the end of
FRCM, and discontinued wrapping.
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wrapped beam; (c) U-wrapped beam; (d) strengthened beam in tensile face with U-end anchorage.

3.1. Flexural Behavior

The application of externally bonded composite materials increases the load-carrying
capacity in the case of the bending strength of RC structural elements [31–33]. The effec-
tiveness of the FRCM systems as flexural retrofitting materials for RC structures has also
been investigated, so the significant aspects of structural elements with composite materials
are reviewed in this research study. The use of U-wrapping and side-activated surface
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bonding methods have also been suggested to control debonding [34]. Debonding depends
on a variety of parameters, such as crack distance length, the geometry of the beam, the
bending moment of the beam, and the arrangement of reinforcing bars. In fact, debonding
began with intermediate flexural cracks in the constant moment region. Pino et al. [35]
investigated the performance of strengthened beams utilizing FRCM systems subjected
to fatigue. The results indicate that by increasing the number of layers from 1 to 3, fail-
ure modes shifted from the fabric-matrix slip to abrupt debonding of the FRCM, with a
0.17% increase in maximum load.

To study the effect of the number of textile layers, the bond-stiffness coefficient (BSC)
was first introduced by Elsanadedy et al. [36] as the ratio between the TRM stiffness and the
tensile bond strength. On the basis of numerical methods, Table 3 illustrates the adequacy
of the number of textile layers calculated from Equation (1). In general, the number of
textile layers is ideal whenever the effective strain of the textile reinforcement is restricted
to the strain level at which debonding takes place.

αb =

√
nE f t f

NFLS
, (1)

where αb is the BSC, n refers to the number of the TRM layers, E f shows the tensile module
of the fiber in MPa, t f represents the equivalent smeared thickness of one layer in mm, and
NFLS shows the tensile bond strength in MPa [36].

Table 3. Adequacy of bond stiffness coefficient based on number of textile layers.

Bond-Stiffness Coefficient (BSC) The Number of Textile Layers

αb ≥ 225 The number of layers is sufficient

225 ≤ αb ≤ 290 The number of layers is sufficient but not economical

αb > 290 The number of layers is insufficient

When the number of the textile layers is augmented, it contributes to enhancing the
fatigue life of the retrofitted beams. The results reveal that increasing the number of layers
from 1 to 3 can lead to improved fatigue life of the load capacity in the flexural strengthening
by 32–58% [37]. In addition, enlarging the number of the TRM layers from 1 to 3 boosts the
flexural and load-carrying capacity, and even changes the fracture mechanism; however, the
FRP layers do not experience this kind of enhancement due to premature failure, especially
adhesive failure. By expanding the number of layers in FRPs from 1 to 3, the effectiveness
factor becomes 0.47 and 0.80, respectively [38,39].

Based on the results of recent studies regarding the effect of the types of FRCM and
surface textiles, the FRCM materials such as basalt have increased the flexural stiffness
in beams, while the ductility in repaired RC beams has reduced. Textile G also plays a
significant role in minimizing and controlling cracks in strengthened specimens with a G
grid. For steel nets, the flexural capacity of retrofitted beams is also boosted with steel.
Moreover, flexural stiffness elevates at all loading stages in steel nets, being the best material
grid. Meanwhile, PBO yields the second-best outcomes. In the case of improving flexural
capacity, they have lower ultimate flexural moments than the others. Additionally, C-FRCM
is the best option to restore the system to develop flexural stiffness during the linear elastic
step of loading [13]. In this regard, Elghazy et al. [40] demonstrated that strengthened
beams had augmented flexural capacity in harsh environments. Beams repaired with
PBO-FRCM also revealed a strength gain ranging from 7 to 44% compared with the control
ones, while for the C-FRCM system, strength gain had been reported between 39 and 55%.
It should be noted that the fracture mechanism was different for both of them. Considering
the PBO-FRCM system, FRCM delamination and fabric slippage within mortars were
the FMs, while premature matrix cracking had occurred in the C-FRCM system. Raoof
and Bournas [4] had similarly found that different fibers such as G, C, and coated basalt
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could have the same axial stiffness; however, flexural capacity did not follow the same
trend. Coated basalt-fiber textile layers had further proved the highest flexural capacity as
compared with other materials.

On the other hand, Alam et al. [41] investigated a technique to delay debonding
using typical anchorage systems because debonding was a premature failure, especially
for composite materials. The effect of the strengthening configuration had also been taken
into account, indicating that U-shaped anchorage at the end of the TRM layers was a
suitable method for delaying the TRM end debonding [36]. Based on the experimental
texts, at the ends of the external flexural reinforcement, the U-jacket FRCM systems had
precluded debonding failures between the strengthening materials and substrates [42].
Two rehabilitation techniques, including U-shaped and single-sided ones, had also been
studied for improving the fatigue life of the RC beams, suggesting that the single-sided
rehabilitation method was much better for enhancing the fatigue life of RC beams [37].
Elghazy et al. [40] correspondingly showed that the theoretical formulations of the ACI-
549.4R-13 did not consider the impact of continuous anchorage on delayed FM; hence,
such formulations should be modified with an increase of 10% to assume the impact of the
continuous U-shaped technique. In the case of TRM vs. FRP, it had been reported that TRM
could slightly improve flexural capacity by about 9%, owing to the destruction mechanism
compared with the FRP-strengthened beam, recorded as 90% [38,39].

In the case of strengthening configurations subjected to flexural behavior, some au-
thors [39,43] investigated the FRCM U-shaped at the ends of beams (i.e., as an anchorage).
Their findings indicate that this strengthening configuration system contributes signifi-
cantly to delaying failure modes such as FRCM end debonding when compared to FRCM-
strengthened beams without end bonding [36]. On the other hand, although U-shaped
anchorages do not necessarily enhance the effectiveness of the configuration systems in
terms of load-carrying capacity, they do improve ductility and reduce unexpected failure
modes [14]. In addition, D’Ambrisi et al. [44] indicated that there was no difference in
failure modes for beams composed of continuous U-shaped strips and beams composed of
U-shaped strips only at the beam ends, indicating that an increasing load-carrying capacity
was represented by approximately 8% for beams composed of continuous U-shaped strips.
Meanwhile, due to the high cost of FRCM, full wrapping or four-sided strengthening of
beams with FRCM is neither common nor feasible. Similarly, there are a substantial number
of eccentric structures, such as tunnel linings and calvers, which cannot be wrapped due to
their shape, size, or other characteristics [45].

3.1.1. FMs of Strengthened Beams under Flexural Behavior

According to Yin [37], TRM could modify the fatigue destruction mechanism, and
then the retrofitted beams could outperform the control ones. Furthermore, TRN could
decrease the crack width in beams. As highlighted in recent research, the type of FRCM
could determine the type of FM; for example, Elghazy et al. [40] had reported that beams
retrofitted with PBO-FRCM had failed by FRCM delamination and fabric slippage, whereas
other specimens had failed by premature matrix cracking concerning the type of fiber, viz.
C-FRCM. Based on the study conducted by Raoof et al. [38,39] regarding rehabilitation
materials (namely, FRCM vs. FRP), the FMs of the FRCM system were fiber slippage, inter-
linear shear, and TRM debonding, while the FM as the adhesive failure had been recorded
in the FRP-repaired specimens. According to the investigation by Raoof et al. [38,39] and
Koutas et al. [46,47], two different FMs had been recorded, i.e., debonding from concrete
substrates and fiber rupture in the constant moment zone in the FRP-strengthened beams.
However, FMs could be classified into five groups, including textile surface fracture, roving
slippage, TRM debonding, fiber rupture, and concrete cover peel-off. As a result, fracture
mechanisms and FMs depended on the textile fiber materials, the number of TRM layers,
and the textile surface. Considering the effect of temperature on FMs, it had also been
noticed that TRM debonding with cover peel-off had been recorded in the TRM system at
a temperature of more than 500 ◦C; whereas two categories of FMs in the FRP-retrofitted
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specimens had been observed, namely, cohesive failure at 50 ◦C and adhesive failure at the
concrete-resin interface for 75, 100, and 150 ◦C.

According to the data available, five FMs strengthened with the FRCM system under
flexural behavior were observed (Figure 3a,b). Debonding accounted for 38% of FMs,
while delamination was 4%, as shown in Table 4. Therefore, debonding could occur in
those strengthened with the FRCM system because FRCM debonding was followed by the
externally bonded technique. In the cases of debonding failure, fiber rupture, and slippage,
load-carrying capacity also increases upon a rise in the number of textile layers, while the
type of failure mechanism does not change them. Table 5 shows that the flexural crack is
predominant on the FM in one textile layer, whereas debonding is much more common for
two and three layers. On the other hand, the changes in the composite type have led to
variations in the FMs based on the available data (Figure 3b). This could be concluded by
the fact that the mechanical properties of materials have a key role in determining failure
mechanisms. In addition, in Table 6, the percentage of the FMs is determined according to
the composite type.
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Table 4. The percentage of FMs in strengthened beams under flexural behavior in terms of the
number of layers.

FMs Slippage Fiber Rupture Delamination Debonding Flexural Crack

23% 19% 4% 38% 15%

Table 5. The percentage of FMs for each layer based on the number of layers.

FMs Slippage Fiber Rupture Delamination Debonding Flexural Crack

1 layer 15.4% 0 0 38.5% 46.1%
2 layers 41.2% 11.8% 11.8% 29.4% 5.9%
3 layers 0 36% 0 64% 0

Table 6. The percentage of FMs based on the type of composites.

FMs Slippage Fiber Rupture Delamination Debonding Flexural Crack

Type of fiber

PBO 22.2% 0 22.2% 22.2% 33.3%
C 25% 0 0 70% 5%
G 25% 44% 0 19% 12%

Basalt 16.7% 50% 0 16.7% 16.7%
Steel 0 0 0 0 100%
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3.1.2. Theoretical Formulation

In order to design retrofitted with TRM, Equation (2) can be suitable for debonding
failure, which occurs at the matrix subtract:

f f bm = kckmkb βl

√
2

E f

t f
fcm

2
3 , (2)

where f f bm shows the debonding stress of the composite, kc is the intermediate crack factor,
km represents the matrix factor, kb denotes the shape factor, βl stands for the length, E f
is the elastic modulus of the composite, t f indicates the equivalent thickness of the textile,
fcm depicts the concrete compressive strength, kb refers to the shape factor, and f f bm can
be computed by Equation (2) [38]. In the case of the debonding strain of the FRCM material
by the fracture surface at the fiber-matrix interface, Equation (3) is presented:

εdb =

√
2

G f

n f t1 f E f
, (3)

where εdb is the debonding strain, G f refers to the fracture energy, n f stands for the number
of textile layers, t1 f represents the fabric thinness, and E f shows the elastic modulus of the
fiber [14]. In order to investigate the safety of the retrofitted beams under a fatigue load,
the ratio of the realistic stiffness to the computed one is expressed in Equation (4), and if
B
B f

is more than 0.8, wherein the retrofitted beam is safe. In addition, the realistic flexural
stiffness can be calculated by Equation (5):

B
B f

=
B

(−0.0239lgN + 0.9329)Ec Icr
< 0.8, (4)

f =
F
B
× 3.66 × 108 < 0.8 , (5)

where B f is the fatigue flexural stiffness, Ec shows the elasticity modulus of the concrete,
Icr stands for the moment of inertia on the cracked cross-section, F denotes the maximum
fatigue load, f represents the mid-span deflection, and B refers to the realistic flexural
stiffness [48].

3.2. Shear Behavior

The effectiveness of the FRCM system as shear-repairing materials for RC structures
has been thus far investigated, so the significant aspects of structural elements with compos-
ite materials are reviewed in this study [49,50]. Considering the effect of FRCM materials
after experimental tests, it is revealed that shear resistance increases due to the presence of
PBO textiles, which has perfect performance, especially in the non-linear step. Regarding
basalt and G fibers, the G fiber reinforcement had shown better bonding performance as
compared with the basalt one. Likewise, both of them had experienced similar growth in
terms of absorbed energy [42]. For the G fiber, better performance by increasing the shear
strengthening of the concrete beams with three-sided TRM than C fibers had been further
observed. Both of them had also followed the same trend, based on the debonding from the
concrete substrate; however, in the case of the anchored TRM jacketing, C and G fibers had
experienced two different FMs [51]. In recent studies, it has been reported that the type of
FRCM materials can determine the level of FMs. For example, C-FRCM-upgraded beams
had failed due to the partial detachment of the composite and fiber slippage, while a detach-
ment of the composite system had been a failure mechanism in steel FRCM-strengthened
beams [52]. The fiber type could also play a considerable role in controlling crack widths. It
is noteworthy that the C-FRCM systems had been observed to have a smaller crack width
than that of PBO- or G-FRCM systems in strengthened beams. Meanwhile, for continuous
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FRCM systems, the crack widths were smaller in comparison with the intermittent FRCM
systems [34].

The effect of stirrups on the strengthened with C-FRCM had also been investigated
based on several experimental tests, concluding that C-FRCM strengthening had enhanced
the load-carrying capacity of shear beams, especially for the ones without stirrups. The
efficiency of the C-FRCM system had also declined with the presence of stirrups [36].
A series of experimental tests conducted on the C-, G-, and PBO-FRCM had further revealed
that the C-FRCM composite had outperformed the PBO- and G-FRCM ones in the case of
axial stiffness. Additionally, G-FRCM had been confirmed to be more effective compared
with PBO-FRCM. Beams upgraded with C-FRCM had similarly shown better ductile
performance compared with the PBO- and G-FRCM composite. More deflection at the
fracture with an average of 101%, 95%, and 85% had also been recorded in terms of the C-,
G-, and PBO-FRCM strengthening system, accordingly [37]. By nominating the PBO as
the FRCM material in the tests, the shear strength had increased between 10 and 27% in
comparison with the baseline beam [38].

The presence of the anchor in the FRCM system had similarly improved the load
capacity of shear beams. In this sense, the highest capacity of the shear beam had been
recorded in the U-wrapped C-FRCM, whereas the lowest capacity had been assigned to
the side-bonded G-FRCM [53]. According to recent research by Tetta et al. [51], significant
parameters could contribute to enhancing the anchored U-jackets, separated into three
categories, viz. the number of layers, the materials of fibers, and the percentage of jacket
anchorage. The composite anchors such as C-TRM noticeably boosted the effectiveness
of C-TRM U-jackets. Meanwhile, the number of TRM layers and textile geometry could
play a dramatic role in increasing the effectiveness of C-TRM U-jackets. In general, the
anchoring layers of the TRM jacket could reduce the number of layers, especially for C,
anchoring two (heavy) C layers of the TRM jacket with the same performance as that of
four C-TRM layers without anchorage [30]. Although the anchors did not expressively
improve the shear strength, they precluded the premature debonding of the FRCM jacket
and altered the crack patterns of concrete and the mid-span displacement in the specimens
retrofitted with FRCM. Additionally, because of the slight increase in shear strength, the
anchorage system had been insufficient in terms of avoiding other FMs, especially fiber
slippage within the matrix. Consequently, the anchorage system was effective for the FRP
composite, but not appropriate for the FRCM system [52]. The method of anchoring the
outer stirrups had also enhanced the tensile strength of the PBO mesh with no ruptures in
the PBO fiber, utilized in beams. Similarly, owing to the use of anchorage, the maximum
strain in the tests in the composite obtained was 8.23, which was 47% of the ultimate tensile
strain. On the contrary, the maximum strains in the composite were recorded by 3.5% in
the PBO-FRCM system with no anchorage. The anchorage also had a significant influence
on increasing the shear capacity and axial stiffness of the specimens strengthened with
PBO-FRCM. As a result, it was necessary to provide the proper anchor for precluding the
premature debonding of the mesh [38].

The significant difference between TRM and FRP rehabilitation systems could also be
related to the elevation in the number of layers, especially the change from one layer to
three layers. The TRM jackets were additionally more sensitive to augmenting the number
of layers than the FRP jackets. Concerning the TRM jackets, the FM altered as the number of
layers grew and the local damage to the TRM jackets changed toward the concrete substrate
by converting the number of layers from one to two because it provided better mechanical
interlock with respect to the overlapping of at least two textile layers [54]. According
to recent research, increasing the number of the layers was associated with the growth
is non-proportional to the effectiveness of the TRM jackets in the case of anchorage [4];
however, Tetta et al. [51] demonstrated that beam shear capacity boosted proportionally
with the rise in the number of the TRM layers based on the same type of textiles.

The FM of non-anchored TRM U-jackets could further overshadow the number of
layers, especially by increasing the number of layers, and there was a type of shift in the
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fracture mechanism from the fiber rupture to the damage of the concrete substrate. It
is noteworthy that conversion in the FM was detected with respect to the change in the
number of layers from one to two in the specimens without anchors. For the two-layer
cases, the local damage of the TRM had also occurred as a topical FM, while the damage to
the concrete substrate had been governed by the destruction mechanism. As a matter of
fact, there was a shift in the fracture mechanism from the fiber rupture to the damage to
the concrete substrate due to suitable mechanical interlock and overlapping in multiple
layers [30]. By increasing the number of layers, the shear capacity had improved, which
was not proportionate due to the FRCM debonding by two layers of the externally bonded
FRCM system [55]. Considering the textile geometry, it could alter the FMs because of
different textile geometries, the dense mesh patterns of the textile, and the smaller mesh size,
contributing to better mechanical interlock between the textile and the matrix; however, the
presence of the anchors had reduced the effectiveness of textile geometry. In fact, the FM in
the specimens had overshadowed the behavioral anchors [51]. The strengthening system
in TRM was also slightly more effective than the FRP one in boosting the shear capacity of
the concrete beams, depending on both the strengthening configuration and the number
of layers. Furthermore, the TRM jackets had shown better performance in enhancing
the deformation capacity of the specimens than FRP [54]. The role of the strengthening
configuration had similarly revealed that the beams retrofitted with side-bonded and U-
wrapped FRCM had followed the same trend in two different items, namely, strength and
FMs. Additionally, U-wrapping was not required due to suitable bonding between FRCM
and the concrete substrate, despite the fact that the FRP strengthening system needed
U-wrapping because of the adequate bond [53]. The U-wrapping strengthening scheme
could thus have a significant impact on the TRM jackets than side-bonding, while the
U-wrapping configuration was less effective than the side-bonded one. Regarding the
FRP jackets, full-wrapping had a considerable effect on both strengthening configuration
systems [40].

Wakjira et al. [55] investigated the shear strengthening configuration of reinforced con-
crete beams using FRCM exposed to shear stress. The results indicated that the failure mode
of the strengthened specimens was sensitive to the type of strengthening configuration of
FRCM. Notably, the full strengthening configuration (i.e., discontinuous U-wrapped strips)
outperforms the continuous U-wrapped strip design [44,45]. This is because continuous
U-wrapped strips are activated to contribute to shear resistance, whereas all U-wrapped
strips remain inactive to limit their contribution to shear resistance [56].

3.2.1. FMs of Strengthened Beams under Shear Behavior

Regarding the FM of the TRM jacket, when one textile layer had been assigned for
upgrading the specimens, partial rupture and slippage through the matrix had governed
as a FM [54]. By increasing the number of layers, the FM could change. Three different
scenarios might thus occur, i.e., debonding at the interface between the jacket and the
concrete substrate, the interlaminar shear failure between the layers, and the concrete
substrate peel-off. In addition, two scenarios had come about due to the low values of
mortar tensile strength, as typically premature FMs. Then, they could be prone to bond
failure; hence, the third scenario had been followed. As a matter of fact, the second layer
could play a key role in providing better mechanical interlocking characteristics; therefore,
transferring the forces from the reinforcement to the mortar in the TRM systems had
significantly improved. The failures in the near-surface embedded and externally bonded
method (NSEB-FRCM) using the FRCM system to repair the specimens had been further
followed by the FRCM delamination [55]. It should be noted that debonding had occurred
at the interface between the concrete and the matrix for the full configuration of externally
bonded FRCM, while debonding was not observed in the NSEB-FRCM strengthening
system. An increase in the percentage of the transverse reinforcement meant steeper
diagonal crack angles; hence, the crack angle had been recorded by 45◦ based on recent
studies by Rizwan Azam et al. [57]. With respect to the strengthened beams under shear
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behavior, increasing the ratio of load-carrying capacity with the same number of layers had
not experienced a change in FMs (Figure 4a). On the other hand, by augmenting the ratio of
the load-carrying capacity and the number of layers in some available data (experimental
tests), it had been detected that the FM had changed by the difference in the strengthening
scheme and the composite textile. Tables 7–9 show that debonding and shear failure are
among the much more common FMs. Table 8 illustrates the percentage of FMs based on
the number of layers. Delamination is also the governing FM for the beam strengthened
with the two-layer FRCM system. Similarly, the changes in the composite type do not affect
the type of FMs with the same textile layers (Figure 4b).
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Table 7. The percentage of FMs in strengthened beams under shear behavior in terms of the number
of layers.

The Percentage of FMs in Strengthened Beams under Shear Behavior in Terms of the
Number of Layers

FMs
Slippage Fiber rupture Delamination Debonding Shear crack

4.9% 20.7% 7.3% 22% 33%

Table 8. The percentage of FMs based on the number of layers.

FMs Slippage Fiber Rupture Delamination Debonding Shear Crack

1 layer 6.9% 13.9% 0% 23.2% 55.8%
2 layers 5.6% 16.7% 33.3% 22.2% 22.2%
3 layers 0 50% 0 50% 0
4 layers 0 33% 0 25% 42%

Table 9. The Percentage of FMs in strengthened beams under shear behavior in terms of
composite type.

The Percentage of FMs in Strengthened Beams under Shear Behavior in Terms of
Composite Type

FMs
Slippage Fiber rupture Delamination Debonding Shear Crack

4.8% 20.5% 7.2% 26.5% 40.9%
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3.2.2. Theoretical Formulations
Shear Strength of Beams Strengthened with FRCM (i.e., Concrete, Steel, and Composite)

In order to design beams retrofitted with TRM, Equations (6) and (7) are presented for
calculating the shear strength of the beams, where VC, VS, and Vf are the shear strength
in terms of concrete, steel, composite, and ∅v refers to the strength-reducing coefficient
calculated using the following Equation (6). Accordingly, Vf is calculated by:

Vn = ∅v

(
VC + VS + Vf

)
, (6)

Vf = n
(

A f + f f V + d f

)
, (7)

where n is the number of textile layers and A f denotes the reinforcement area, f f v and d f
also represent the tensile strength as well as the effective depth, respectively. To calculate the
design tensile strength and strain of the shear FRCM reinforcement, Equations (8) and (9)
are presented:

f f v = ε f v · E f , (8)

ε f v = ε f u ≤ 0.004, (9)

where f f v stands for the tensile strength of the FRCM reinforcement and ε f u refers to more
than 0.004 (ultimate deformations) [58].

Shear Strength of Shear-Critical Beams Strengthened with FRCM (Namely, Concrete,
Mortar, and Composite)

Shear Strength of Shear-Critical Beams Strengthened with FRCM is represented via by
Equation (10) accordingly, as follows:

Vn = Vc + F
(

Vm + Vf

)
, (10)

where F shows the ratio between the strengthening length and the critical shear span and
Vm indicates the mortar shear strength. Additionally, Vm and F are computed by:

Vm = 2
(

0.17
√

fcm tm d f

)
(N), (11)

F =
Nws

Lcr
, (12)

where fcm refers to the compressive strength of the mortar, tm represents the thickness,
thickness, and d f shows the effective depth of the FRCM system [59].

Shear Resistance with Anchored TRM/U-Jackets

The effect of the anchor on the shear strength of the beam strengthened with the
TRM/U-jacket is calculated by Equation (13), and the effective strength of the anchors is
presented by Equation (14) accordingly, as follows:

Vf = Aanc f f e,anc
hw

s
cot θ, (13)

f f e,anc = ηe f f ,anc, (14)

where Aanc is the area of two anchors (one anchor per beam’s side), f f e,anc is the effective
strength of anchors, hw

s is the ratio of the height of the T-beam’s web to anchors spacing,
and θ is the angle between the shear crack and the axis of the beam. Additionally, f f e,anc
is the reduced value of their tensile capacity, ηe shows the strength reduction, and f f ,anc
stands for the local concentration stress [51].
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Fiber Axial Stiffness

The fiber axial stiffness contributes to increasing load-carrying capacity, and obtained
by Equation (15), wherein k f is the fiber axial stiffness, ρ f represents the reinforcement
fiber percentage, and E f stands for the cracked modulus of the fiber, and then ρ f is
calculated using Equation (16) [40]:

k f = ρ f E f , (15)

ρ f =
N A f

d f
, (16)

where N represents the number of the fiber yarns, A f and d f are the fabric area and the
effective depth of the fabric, respectively.

3.3. Torsional Behavior

The effectiveness of FRCM systems as torsional retrofitting materials for RC struc-
tures is investigated, and the significant aspects of structural elements with composite
materials are reviewed in this study [60–63]. In the case of the effect of the strengthening
configuration, a series of experimental tests have been thus far conducted on concrete
repaired with PBO-FRCM composites as well as various wrapping configurations, and it
has been revealed that the configuration of retrofitted beams with four-sided bonds can
have significant performance in terms of the cracking torque and the torsional strength than
the baseline beam, while the three-sided wrapping configuration does not follow an effec-
tive trend in the case of improving the torsional performance owing to fiber slippage [64].
A hydraulic actuator with a 130-kN capacity was used to conduct a test on the beam via a
loading arm. An eccentricity of up to 508 mm normal to the longitudinal axis of the beam
was provided. The test setup has a torsional capacity of 65 KN-m (Figure 5) [65].
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Regarding the impact of the FRCM materials on examining the torsional behavior
of specimens, materials strengthened with PBO-FRCM have also been compared with
C-FRP and G-FRP composites, suggesting that PBO-FRCM composites have followed an
increasing trend in enhancing torsional strength than C-FRP and G-FRP composites as
shown in Figure 6 [64].
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beams [64].

Considering fiber orientation, according to the recent studies by Alabdulhady et al. [66],
the 90◦ fiber orientation significantly improved the torsional strength as compared with
the 0◦ orientation of the PBO-FRCM system; however, the 45◦ fiber orientation could be
proper in comparison with the 90◦ orientation for the C-FRP system. Figure 7 depicts a
strengthened beam with a 4-sided wrapping (discontinues wrapping) configuration of
PBO-FRCM, indicating that the growing twist widened and increased the number of cracks
on the surface of the composite.
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With respect to the effect of the number of textile layers, the torsional strength had
boosted by enlarging the number of composite layers from one to two; as a result, the rise
in the torsional strength was not always proportional to the number of textile layers, and
the amount of ρ f could alter the fracture mechanism from fiber rupture to debonding [27].

In the case of strengthening configurations subjected to torsional behavior, experi-
mental studies demonstrate a distinction in failure modes between full wrapping (4-sided
wrapping) and partial wrapping of strengthened beams subjected to a torsion load using
an FRCM system. It can be stated that concrete crushing is a failure mode for strengthened
beams with partial wrapping configurations, whereas debonding of the fibers from the
concrete substrate is a failure mode for strengthened beams with full wrapping [66]. In
addition, Alabdulhady [27] indicated that partial wrapping (3-sided wrapping) contributes
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less to torsional strength than full wrapping (4-sided wrapping). Moreover, 2-sided and
1-sided wrapping had little effect in increasing torsional strength [67,68].

3.3.1. FMs of Strengthened Beams under Torsional Behavior

The FMs of strengthened beams under torsional behavior can be classified into three
categories, viz.: concrete crushing, debonding, and fiber rupture. It should be noted
that concrete crushing has been the dominant FM under torsion for unrepaired beams,
while the FM of strengthened specimens has been governed by debonding. Fiber rupture
is also a FM for the beams repaired with full-wrapped specimens [27]. Though concrete
crushing is typically a FM in unstrengthened beams and strengthened ones with three-sided
wrapping configurations, fiber rupture is recorded for specimens upgraded with two-layer
four-sided specimens with one-layer four-sided 90◦ fiber orientation. Hence, the number
of sided wrapping configurations can change FMs. As a result, different strengthening
configurations, ρsl , and ρst, can play an important role in the torsional strength ( Tu ),
increasing Tu, as reported in Tables 10 and 11 [66].

Table 10. An increase in torsional strength Tu versus ρsl and ρst.

An Increase in Torsional Strength
Tu(%) vs. ρs

Remarks Type of FM

If 0 ≤ ρst ≤ 0.5
If 0 ≤ increase in Tu(%) ≤ 180

ρsl = The volumetric ratio of the internal
longitudinal reinforcement There are no reports on FMs in FRCM systems.

If 0.5 ≤ ρst ≤ 1
If 1 ≤ ρsl ≤ 1.5

If 0 ≤ increase in Tu(%) ≤ 120

ρst = The volumetric ratio of the internal
transverse reinforcement

Debonding, fiber rupture, and concrete
damage are FMs in FRCM systems.

If 1 ≤ ρst ≤ 2
If 0 ≤increase in Tu(%) ≤ 120 Tu = Torsional strength There are no reports on FMs in FRCM systems.

Table 11. An increase in torsional strength Tu for various strengthening schemes.

The Effect of Types of Strengthening
Configuration Type of FM

Type of strengthening configuration =
Three-sided strips

If 0 ≤ increase in Tu (%) ≤ 20
Concrete damage in the FRCM system

Type of strengthening configuration =
Three-sided continuous

If 0 ≤ increase in Tu (%) ≤ 20
Concrete damage in the FRCM system

Type of strengthening configuration =
Four-sided continuous

If 0 ≤ increase in Tu (%) ≤ 120
Fiber rupture and debonding in the FRCM system

3.3.2. Theoretical Formulation

The torsional strength of the beam retrofitted with externally bonded composite Tn
can be calculated by Equation (17): where TRC represents the torsional strength of the
control beam and Tf shows the torsional strength of the strengthened beams with the
contribution of the externally bonded composite, as follows:

Tn = TRC + Tf , (17)

Tf = 2·ε f e·E f ·b·h·
t f .b f

S f
cot θ, (18)

where ε f e stands for the effective strain of the composite , E f is the modulus of elasticity of
the composite, t f denotes the composite thickness, b f refers to the width of the composite
sheets, S f shows the center-to-center spacing of the composite sheets, and h and b are
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the width as well as the height of the cross-section and the angle of the diagonal crack,
respectively [64]:

ρ f =
n f t f p f

AC

b f

s f
. (19)

4. Reducing the Catastrophic Effect of FMs on Columns

To enhance the function of RC columns, their repair using textiles has been recently
suggested and propagated due to its advantages in improving the load-carrying capacity,
ductility, as well as compressive strength [69–75]. TRM has also been provided in regions
where additional load-carrying capacity has been critical. There are also three categories of
strengthening techniques for columns, viz. confined, wrapped, and strengthened columns
on the tensile face, as shown in Figure 8. In addition, Figure 8 depicts concrete columns
strengthened with partial wrapping and full wrapping (TRM system) under eccentric and
monotonic loading.
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Confinement in specimens has also altered the property of loading strain behavior
of concrete specimens under pressure. The distribution of the confining pressure is also
uniform on the entire cross-section of the specimen. Figure 9 displays the non-circular
cross-section under the confining impact, which is called the confined or active area.
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Figure 9a demonstrates that an axial load applied to a circular section causes radial
dilation of the confining elements. Next, the pressure exerted by the jacket and transferred
to the concrete as a result of its dilation is uniformly distributed. Thus, the increased
stress state in a circular section is uniform. In this section, however, the confining element
improves the concentration of stresses, especially at the corners, where it improves the
structure’s full capacity. Thus, a non-uniform confining stress state is formed in the concrete
section, as observed in Figure 9b.

The significant motivation of confinement can accordingly arise from:

• Preventing spalling in the concrete cover;
• Providing lateral support to the longitudinal reinforcement;
• Improving specimens in the form of concrete strength and deformation capacities [76–78].

Rectangular confining reinforcement is also less efficient as the confinement action
compared with a circular one. Strengthening the tensile face is thus much more common
to use because of the economy. Repairing the column can be summarized as follows.
Cylindrical and square specimens confined with PBO-FRCM can be significantly effective
if subjected to monotonic uniaxial compression in the form of compressive strength and
ductility, taking account of the number of confining layers and overlapping length. The
stress-strain curve in this line demonstrates a reduction in stiffness after the first maximum
stress, as illustrated in Figure 10, which means it corresponds with delays in the initiation
of the confinement system owing to some slips between the fiber and the mortar. Likewise,
wide vertical cracks are observed at the collapse mode in the overlap zone due to telescopic
jacket textile failure, and such matters prove the effectiveness [79].
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Figure 10. Stress vs. (a) radial and (b) axial strain for cylindrical specimens with two layers of textile
reinforcement [74].

The effectiveness of the FRCM system in confined concrete columns subjected to
eccentric compression loading in the form of strain also revealed that the value of strain
overshadowed the rehabilitation technique and the eccentricity value [45,80–82]. The
load-carrying capacity of the strengthened with PBO-FRCM confinement under eccentric
loading also increases from 20 to 39%. As depicted in Figure 11a, the ductility of the RC
column can be noticeably enhanced by the PBO-FRCM confinement if unfavorable failure
is avoided, like rupture failure (RC-I-2-e24), and the lateral displacements of two-layer
specimens are greater in comparison with those of one-layer cases due to ductile failure
(Figure 11b). Figure 12 depicts the FMs of their columns strengthened with 1 and 2 layers
of FRCM composite under different eccentric loadings of 30 and 50 mm, as well as the FM
for the control column. In the case of the RC-I-2-e27 column, failure at the bottom of the
specimen with the yields of steel bars is followed by the concrete crushing without the
break of the PBO FRCM (Figure 12) [83].
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Figure 12. The fracture of strengthened and unstrengthened columns subjected to different scenarios
in the form of different load eccentricity and strengthening schemes.

Although composite materials such as specific FRPs are a suitable method for the
rehabilitation of columns to prevent more cracks, it is not a proper technique to repair
columns in humid environments. Therefore, columns strengthened with TRC have a
better function in harsh environments, e.g., during chloride corrosion. Additionally, TRC
has an anti-erosion ability as a type of cover in specimens to decelerate brittleness and
enhance the ductility of strengthened columns under corrosion [84]. FMs in strengthened
columns depend on technical retrofitting, including entire confined column, partial entire
confined column, strengthened column on the tensile face with respect to parameters
such as the number of layers in TRM/FRCM, the type of composite (PBO-C), mesh size
(grid), the type of mortar, etc. [79,85]. Abdo et al. [86] had also investigated that FRP
composites in the case of PP could be cheaper and lighter than C- or G-FRPs. In addition,
FMs in concrete columns could alter from ultimate collapse in the control column to partial
damage with respect to the strengthened column. Figure 13 reveals FMs of four different
masonry columns strengthened with the FRCM system and unstrengthened columns under
monotonic loading. As observed in Figure 13a, a brittle fracture occurred due to the release
of a level of high energy at peak axial strength. Next, an expulsion of material happened in
the middle of the height of the column. Figure 13a–e depicts the specimens with different
mortars and the number of textile layers carrying ductile fractures, in particular, slippage
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failure, owing to the gradual release of energy. Based on the experimental tests, five FMs of
the plain masonry and the FRCM-confined columns can be recorded (Figure 13) as follows:

(a) Crushed longitudinal crack throughout a column;
(b) Slippage between fiber and grid;
(c) Fiber rupture at the cross-section corner;
(d) Detached/separated FCRM external layer;
(e) Telescope failure (the insufficient penetration of the matrix into the roving) [74,87–91].
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In the case of telescopic failure, C-FRCM jackets (consisting of a fiber mesh net in the
inorganic matrixes, and which is not usually well impregnated) can have positive effects
in comparison with FRP jackets owing to a more ductile failure mechanism. It is also
considered as a type of ductile failure because it causes pullout failure at higher stress
levels, rather than a sudden fracture of the fibers [79]. The primary factors are further
evaluated in this study. Trapko [80] investigated several cylindrical and cuboid specimens
of experimental tests subjected to compression loading. Accordingly, a wide vertical crack
in the overlapping textile region occurred, and these FMs did not depend on the length
of the final overlap and the type of load, such as eccentric load. Trapko [92] also obtained
the same results for cylindrical and cuboid specimens. Similarly, no fiber rupture had
been observed. Furthermore, a slow loss of adhesion of the PBO mesh had been seen in
the eccentric confined column, affecting the overlapping length. Other factors could also
affect the FM, including the insufficient lap length, the curved shape of wrapping, and the
inadequate penetration of the matrix into the rovings. In other research, experimental tests
had been carried out by Ombres [93] on cylindrical specimens confined with PBO-FRCM
system, and the fiber-matrix separation had occurred in the external reinforcement of
the test specimens as FMs and specimen rupture or fiber debonding as FM sheets had
happened with the configuration; however, for specimens with configuration θ = 45

◦
and

θ = 30
◦
, the FM was the progressive reduction of the confining action and the damage of

the confining jacket after the peak strength had been obtained. Colajanni et al. [94] also
examined the behavior of columns strengthened with C-FRCM under cyclic and monotonic
loads. The amount of fiber had not been influenced by the change in the FMs. Likewise,
the slip between the fiber and the cementitious matrix could play a key role in delaying the
activation of the confinement on the whole overlapping region prone to telescopic jacket
textile failure. The results of experimental tests in concrete columns confined with FRCM
had further shown no clear difference between the FMs of the column confinement; as a
result, the rupture was the FM for all C-FRCM confined specimens [79].

Other research had reported that the confinement ratio could have a vital role in pro-
viding FMs, whereas the eccentricity values were not important for single-wythe confined
specimens. Fiber rupture and concrete crushing had also been introduced as the main FMs
in these tests [93]. Five strengthened columns had been additionally tested with TRC in a
chloride environment, which could delay the FMs, change the damage from the upper to
the central region of the column, and improve the load-carrying capacity by increasing the
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number of layers [84]. Ombres [95] had similarly investigated that increasing the tempera-
ture in PBO-FRCM confined specimens had not affected FMs, and all specimens had failed
in the external layer due to separation. In addition, Minafò et al. [96] studied that mortar
grade could influence FMs, especially in the cases of slippage and fiber rupture, taking into
account the number, spacing, and opening of the cracks. It is noteworthy that slippage
occurred between the fabric and the mortar, leading to the rupture of G fiber yarns in the
critical crack. Additionally, upgrading the mortar compressive strength had changed FMs
from slippage to fiber rupture, increasing the ultimate capacity according to the ductile
FM [85]. Figure 14 depicts the load-deflection curves for masonry columns strengthened
with the FRCM system and one unstrengthened column (i.e., control column). The control
column has a smaller dissipation of energy than others because of the area under the load
deflection. Due to the slippage failure as a governing failure mode, this column experienced
the highest energy dissipation. A debonding failure occurred in one of these columns,
resulting in a rapid decrease in its strength. The rupturing failure occurred in the last
column and indicated that the fiber faced the most strength and subsequently led to failure.
Figure 15 depicts the load-deflection curves of an RC concrete column strengthened with
FRCM and a control column subjected to eccentric loading with respect to corrosion. As
expected, the control column exhibited a brittle failure. Figure 15 shows a strengthened
column with higher absorption energy than another, which sequentially lost strength at
peak load due to fiber rupture. Therefore, the results of the impact of different parameters
on FMs as well as load-deflection curves in terms of masonry- and concrete-strengthened
columns are summarized in Figures 14 and 15 and Table 12.

Table 12. An overview of studies on concrete columns strengthened with FRCM.

Researchers Strengthening
System

Number and Type
of Specimens Type of Load FM (Destruction

Mechanism) Remarks

Shi-ping et al.
[84]

TRC (alkali-free G
fiber and C fiber

bundles).

Five columns
(small eccentric

compression
degradation

columns).

Eccentric
compression. Fiber rupture.

In a chloride
environment, there

was a change of FM in
the columns due to an
increase in the number

of layers.

Minafò and
Mendola [96] G-FRCM 11 columns

(masonry).
Monotonic

compressive. G fiber rupture.

The mortar grade was
influenced by strength
enhancement and axial

capacity.

Ombres [95] Concrete confined
with PBO- FRCM. 25 columns. Compression

load.

Debonding
reinforcement due to

fiber matrix
separation.

The peak strength of
the specimens reduced
with the increase in the

temperature.

Ombres and
Verre [83]

PBO-FRCM
wrapping system.

Eight rectangular
concrete columns.

Eccentric
compression.

For one-layer confined
columns:

Concrete crushing,
fiber break, and

buckling of
compressed internal
reinforcement bars

Double-layer confined
columns:

Concrete crushing.

Confinement ratio
could influence FM,
whereas eccentricity
values did not affect
single-layer confined

columns.
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Table 12. Cont.

Researchers Strengthening
System

Number and Type
of Specimens Type of Load FM (Destruction

Mechanism) Remarks

Trapko [80] PBO-FRCM. 15 RC square
columns.

Axial
compression
on eccentrics.

All the repaired
specimens failed by

the tearing of the bond
on the composite
external overlap

length. The failure also
occurred in the

concrete inside the
jacket, and then it was

crushed.

The damage led to
concrete crushing

upon an increase in the
FCRM strengthening.

Trapko [92]
PBO-FRCM

confined concrete

Cylindrical
specimens and the
ones with square

cross-sections.

Axial
compression.

The propagation of a
wide vertical crack in
the textile overlapping
and crushing concrete.

The system proved to
be more effective for

low-strength concrete.

Ombres [93]

Concrete
confinement using

the PBO-FRCM
strengthening

technique.

20 cylindrical
concrete

specimens.

Uniaxial
compression.

Debonding
fiber-matrix.

The number of the
PBO layers and fiber

orientation used inside
the confining jacket
were the effective
parameters in the

PBO-FRCM confined
concrete system that
affected axial strain
and peak strength.

Colajanni et al.
[79] PBO-FRCM.

22 medium-sized
samples with

square and circular
cross-section.

Uniaxial load
(monotonic).

Textile rupture at the
corners of the column.

PBO-FRCM confining
system provides a

considerable increase
in ductility and

compressive strength
by changing the

number of confining
overlapping layers
and length. It also

alters the destruction
mechanism.

Colajanni et al.
[94]

CFRCM confined
concrete columns.

30 columns with
circular,

rectangular, and
square

cross-sections.

Monotonic and
cyclic axial

loads.
Jacket rupture.

The CFRCM confining
boosts a series of
parameters, viz.

compressive strength,
absorbed energy, and

deformability, but
increasing the number

of layers is not a
suitable technique to
have more efficiency.

The major results and observations accordingly showed that increasing the number
of textile layers could lead to the growth in the ratio of load-carrying capacity in columns
strengthened with the FRCM system; however, strengthened columns did not experience
any changes in the FMs with respect to the available data and experimental tests (Figure 16a).
Although debonding is known as a common FM in beams strengthened with the FRCM
system, fiber rupture is a more significant one (Table 13) because the confinement system
or full wrapping in strengthened columns provides a noticeable increase in the form of
strength and ductility. Likewise, low mechanical fiber leads to fiber rupture. Given the
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difference in the type of loading between columns (the FRCM system under axial load)
and beams (the FRCM system under flexural and shear forces), the axial load can create a
brittle failure, such as fiber rupture. Furthermore, Table 14 shows the percentage of FMs
with regard to the number of layers.
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Table 13. The percentage of FMs in strengthened column in terms of the number of layers.

FMs Slippage Fiber Rupture Telescopic Failure Debonding

13% 54% 7.5% 25.3%
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Table 14. The percentage of FMs based on the number of layers.

FMs Slippage Fiber Rupture Telescopic Failure Debonding

1 layer 21.9% 39% 0 39%
2 layers 14.7% 52.4% 9.8% 22.9%
3 layers 3.1% 62.5% 15.6% 18.7%
4 layers 0 90% 0 10%

On the other hand, the available data shows that the use of different types of com-
posites is likely to change the failure mechanism of strengthened columns (Figure 16b).
In addition, PBO has more use in confinement columns than other fibers, according to
Table 15, because of the considerable gain in compressive strength and ductility. As illus-
trated in Table 16, the FMs with PBO can be divided into four categories with respect to
their percentage.

Table 15. The percentage of composite type in strengthened column.

Composite type
PBO C G Basalt

37.8% 22% 28.6% 11%

Table 16. The percentage of composite type in the strengthened column.

FMs Slippage Fiber Rupture Delamination Debonding

Type of fiber

PBO 15% 28.3% 20.7% 35.8%
Carbon 25.8% 74% 0 0
Glass 0 70% 0 30%
Basalt 0 62.5% 0 37.5%

5. Reducing the Catastrophic Effect of FMs on Walls

Serious damage to unreinforced masonry walls can result in financial and human
losses [34]. Human-made hazards, natural events including earthquakes and tornados,
and some changes in applications from apartments to offices, as well as weaknesses in
construction or implementation, are thus assumed as the noticeable causes in the retrofitting
of unreinforced masonry or existing structures [97,98]. Figures 17 and 18 show the FMs of
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walls under earthquakes [99]. Additionally, one of the big challenges is related to infill walls
in some structures because they do not have suitable performance under in- and out-of-
plane loading. In this sense, Soltanzadeh et al. [100] had demonstrated that infill walls had
boosted the seismic behavior of structures due to an increase in the damping ratio as well
as stiffness and strength, which could give rise to structural collapse because they were not
regularly placed in a plan [101]. Experimental and theoretical studies had further proved
that FRCM masonry wallets had proper performance if subjected to in-plane shear and out-
of-plane flexural loads. Similarly, mechanical properties (viz. strength, deformability, and
energy dissipation) of the FRCM-strengthened specimens had augmented some specific
anchors and assisted in improving fabric tensile capacity. The application of TRM jackets as
a method of enhancing the out-of-plane performance of masonry infill walls in RC frames,
using the variable configuration between the masonry infill wall and RC frame elements,
under out-of-plane performance with the load being monotonic and diffused at four points,
had also revealed that the risk of the fraction had dramatically mitigated [97].
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According to the loading and the out-of-plane displacement (Figure 19), in the case
of S-FRN (two layers on both sides of the specimen), two types of drop loads can be
reported due to the local rupture of the fibers and the fiber rupture in reducing the load.
Upon minimizing the load, the TRM jacket has activated, and there is a delay in the
TRM activation due to the slippage of fiber through mortar; however, this behavior is not
observed in bare specimens such as S-CON (control specimen) and S-NOC (two layers
on both sides of the specimen with different connections). As TRM or FRCM are highly
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effective in enhancing the mechanical properties and seismic behavior of walls, more than a
50% rise in the lateral strength and deformation at the top of the structure was recorded [97].
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Koutas et al. [102] examined a technique for strengthening RC infill frames to study
the effect of textile-based anchors at the interface between masonry wallets and concrete.
Debonding was thus the dominant FM in the region between the concrete-wallet interface,
and the flange of the concrete slab, followed by a rupture in the second group, whilst the
first group (all specimens) failed when one anchor ruptured at the concrete-wallet interface
without debonding. In addition, Kariou et al. [103] conducted a series of experimental
tests on the effectiveness of masonry walls strengthened with the textile mortar system
with respect to different parameters, including textile reinforcement, materials, and layers.
The coating on the textile was thus an effective parameter, leading to some changes in the
FMs from slippage to tensile rupture. Premature failure had not further occurred due to
the beneficial impact of coating fabric on improving mechanical interlocking conditions.
Furthermore, increasing the number of layers could be the main parameter for enhancing
interlocking mechanisms between the textile fiber composites in FMs from a brittle to a
ductile one (Figure 20).
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bricks or joints (mortar) the below the load points; (b) failure mode in the wall: shear failure.

Figure 20 depicts the wall strengthened with the FRCM system and a control wall.
Based on experimental tests, shear failure is identified as the major failure mode in
Figure 20a. It can be stated that failure mode depends on the number of layers, type
of composite, and percentage of coating. In the specimen depicted in Figure 20, the wall is
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strengthened with seven layers of coated basalt. The control wall failed as a result of its
own weight.

The effect of variable parameters, including loading direction and grid spacing size
using basalt fiber mesh, was also studied, indicating a partial difference in the pattern of
failure mechanism for unreinforced masonry wallets. A sudden brittle was also obtained
due to the weak interfacial bond and debonding of the mortar in the brick. In the case of
increasing the grid basalt mesh by 25–50 mm, the sequential failure of the fiber yarns was
experienced by the rupture of fiber mesh under ultimate load, as one type of flexural failure.
Although the grid spacing does not have a significant effect on the capacity of strengthened
specimens, a smaller grid with an equal number of strands is proper in terms of uniform
stress distribution as well as better bond [104].

The effect of wall thickness and the changes in the configurations of the connection
between the RC frame members and the infill wall were also evaluated. Four types of failure
patterns for single-wythe infill walls were initial crack and prorated crack toward four
corners of specimens, failure detachment from the middle region of the top beam, textile
fiber slippage through the mortar at the lateral faces of the two columns, and debonding at
the surface between the concrete substrate and FRCM and fiber rupture due to ultimate
load; hence, the connection configuration had no significant role in detachment as a typical
FM, while the strengthened specimens enhanced in the form of load capacity and energy
absorption [97].

In the unretrofitted walls, the crack pattern can also be sorted into two types, i.e.,
diagonal crack in the tensile face and horizontal crack in the compression face. The crack
pattern in an unretrofitted wall is a brittle failure. In the retrofitted wall specimen, the
detachment of the reinforcement system accumulated on the diagonal crack is assumed
as the predominant FM. The difference in the crack pattern is also due to stress-specific
double bending, loading, and boundary condition. The experimental tests showed that
the externally bonded strengthening was able to prevent and delay a fragile failure, which
was not influenced by debonding [105]. Facconi et al. [106] investigated the frame-to-infill
interaction by using a layer of mortar coating, wherein two types of FMs as the detachment
of the brick face shell and the local collapse of brick in the bare specimen with a substantial
reduction in stiffness were observed. Furthermore, the FMs in the strengthened specimens
consisted of three types classified as crack, coating over detachment, and detachment
of the brick face shell. Additionally, there was a pinching behavior in the strengthened
specimens due to plastic deformation. In other research, openings in existing buildings
had led to weaknesses of structures, so using composites was optional to improve existing
and historical structures [98]. In this line, Sabau et al. [98] examined the effect of openings
strengthened with FRCM composites and illustrated that strengthened specimens failed by
crushing at the bottom of the east pier due to a loss of panel stability. FRCM detachment
also happened after concrete crushing. Finer cracks were accordingly related to PBO-FRCM-
strengthened panels, not C-FRCM, and this was a sign of a ductile failure. On the contrary,
the control specimen failed due to inelastic buckling. Consequently, the FM of the panels
changed from inelastic plate buckling failure to concrete crushing at the bottom of one pier.
Sagar et al. [101] correspondingly evaluated several experimental half-scale masonry works
in filled RC frames using different configurations, the orientation, fabric application mode,
and presence of anchors. To study the effectiveness of FRCM, the samples were tested,
and it was reported that some of the masonry fragments of the control specimens had
been lost due to stress concentration at the column ends. The FM of the anchor specimen
(strengthened species) was also ductile, caused by the detachment of the infill panel from
the bottom beam, and that of the non-anchor specimen (strengthened species) was the
fabric ruptured along the diagonal cracks, as a ductile failure. It is noteworthy that oblique
orientation was not suitable due to the premature fabric rupture. Papanicolaou et al. [107]
investigated textile reinforced mortar (TRM) versus FRP as the strengthening material of
URM walls under out-of-plane cyclic loading. The results of the FMs in previous research
are reported in Table 17.
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Table 17. An overview of experimental tests of strengthened walls with inorganic mortar.

Researchers
Number of Specimens

FM Remarks Type of LoadDetails of
Specimens

Strengthening
System

Koutas et al.
[97] Five specimens. C fiber TRM jacket.

Shear sliding by
detachment,

debonding, fiber
rupture, and

crushing of bricks.

Wrapping of the
infilled frame with
two FRCM layers.

Monotonic
loading.

Koutas et al.
[108] 19 specimens. Glass-fiber textile.

Anchor rupture,
textile rupture,

anchor debonding,
and brick crushing.

At the end of the
fanned part over the

concrete.

Monotonic tensile
loading.

Kariou et al.
[103]

Nine specimens
(Single-layer
specimens).

C, G, and coated
basalt.

Slippage between
textile fiber-mortar,
textile rupture, and

shear failure.

N.A. Bending load.

Eight specimens
(Double-layer
specimens).

C, G, and coated
basalt (coating

with epoxy resin).

Textile rupture,
shear-flexure, and

shear failure.

Partial fabric rupture
and brick sliding

(shear-flexure), TRM
debonding

(shear-flexure),
textile rupture

(shear-flexure), and
diagonal tension
(shear failure).

Padalu et al.
[109] 24 specimens. Basalt CFRM.

Debonding, splitting
of bricks, and
flexural crack.

N.A.

Two perpendicular
directions under
two-point (line)

out-of-plane
loading.

Sabau et al.
[98] Five specimens. C-FRCM and

PBO-FRCM.

Inelastic buckling
and concrete

crushing.
N.A. Axially loaded.

Papanicolaou
et al. [107] 12 Specimens.

Resin-based
matrix, inorganic

mortar.

Flexure-shear (push),
sudden FRP fracture
(pull), flexure, TRM

fracture (pull),
flexure and
debonding,

flexure-shear, and
debonding.

N.A. Cyclic out-of-plane
loading.

It can be summarized that basalt and G account for nearly 44 and 38% of textile fibers
than other composites used to strengthen walls, as shown in Figure 21. In spite of the low
tensile strength of basalt than C, basalt fibers have heat resistance and high thermal stability.
The low cost of G fibers to strengthen historical buildings such as walls makes it a suitable
fiber when the application of high-performance material is not important. Slippage is also
a FM for G textiles because of its interaction with the matrix and the strength of the textile.
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6. Reducing the Catastrophic Effect FMs on Slabs

Repairing existing concrete structures has become a significant need in recent years
due to imitated material resources. TRM can be accordingly introduced and recognized as
noticeable progress in the field of rehabilitation of existing concrete and historical structures,
since it can retrofit concrete slabs in current concrete structures. Various configurations of
strengthened slabs are depicted in Figure 22.
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Figure 22. The different configurations of strengthened slabs at their tensile face [110].

Figure 22 depicts a slab without strengthening as a control specimen, and other
specimens strengthened using the FRCM system in horizontal and vertical strips. In fact, a
carbon textile was employed as external reinforcement in three slabs. It should be noted that
all slabs were subjected to monotonic flexural loading and were tested as simply supported
elements with perimeter supports. To evaluate strengthened specimens compared with the
reference ones in slabs, the bending moment vs. deflection curve is an appropriate criterion
to estimate the value of strengthened specimens based on increasing the number of layers;
for example, the research study shown in Figure 23 [110] indicates that slabs strengthened
with TRC have a greater flexural capacity in comparison with control slab because of the
higher number of layers. Meanwhile, TRC reinforcement creates more cracks with finer
patterns of cracks.
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TRM also has a significant effect on controlling local damage to RC slabs under
accidental or deliberate events. Strengthened RC slabs also decline the local damage in
RC slabs from the front and back faces, specifically with the same impact velocity. The
value of the ejected weight of the slabs in two faces also proves the effectiveness of TRM in
strengthening slabs over bare ones (Figure 24). TRM reinforcement accordingly boosts the
ballistic limit velocity by approximately 21% [111]. The effect of three various composites
of FRCM, C-FRP, and silane modified graphene (SGr) as a method to strengthen one-way
RC slabs indicated that such materials boosted the flexural strength of RC slabs around
1.3–2 times than unstrengthened ones. Additionally, the composite material affected the
displacement ductility performance of the one-way slab system. The exposed FRCM slab
also had a 13% increase in its displacement compared to the unexposed specimens [112].
The impact of TRM on various parameters, strengthening configurations, and different
textile fibers of material groups (C vs. G) was investigated, and the initial cracking in the
slab revealed that covering the full face in the slab was the most effective way to increase
the flexural capacity than other ways. Additionally, in pre-cracked slabs, the effectiveness
of TRM in improving the flexural capacity was low, but there was a proportional ratio
between stiffness and the number of TRM layers in post-cracking slabs despite the presence
of initial cracking. It was thus concluded that flexural resistance at the serviceability limit
state (SLS) and cracking load for one and two C-TRM layers increased with the number
of TRM layers in a non-proportional manner [100]. Besides, Gao et al. [113] found that
two types of the cementitious matrix of engineered cementitious composite (ECC) and
polymer-modified mortar (PMM) were used to examine the flexural strengthening of the
fire-damaged RC slabs and to repair them. The results accordingly depicted that the
fire-damaged RC slabs improved in flexural strengthening approximately by 68.9–193.4%
compared to the unstrengthened fire-damaged specimens. It was also established that
ECC was an ideal option for the strengthening of slabs owing to the proper results in the
cracking control, ductility, ultimate load, and energy dissipation. Fire tests can also result
in the formation of concrete temperatures and mid-span deflection responses of the slabs
subjected to cooling and heating stages, as depicted in Figure 25. During the cooling stage,
the deflections decreased in the specimens. The maximum deflections of B2-3 and B2-2
were also greater in comparison with those of B1-2 and B1-3 because fire damage could
result from the longer heating period [113].
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Figure 24. Ejected weights from the front and back faces of slabs at the impact velocity of
135 m/s [111].
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Abbaszadeh et al. [114] also reported that debonding was the dominant FM; hence, it
was necessary to delay or prevent it. Near-surface mounting (NSM) using high-performance
fiber-reinforced cementitious composite (HPFRCC) was thus a new technique of bonding,
which could improve the bending load capacity more than the conventional method called
externally bonded reinforcement (EBR). In fact, NSM was considered as a type of inherent
anchor because of its advantages. Therefore, NSM shows better behavior in the form of
a failure mechanism than EBR. Consequently, the effectiveness of an advanced material
(a type of composite), the number of TRM layers, the type of configuration, and the type
of bonding between TRM and concrete can contribute to the high quality of retrofitting
and damage mitigation such as cracking control. The rehabilitation of slabs with FRCM
for monitoring FMs has received less concentration in research work, albeit some studies
have recently investigated slabs strengthened with the FRCM system [46,115]. In this
respect, Loreto et al. [116] tested and evaluated one-way slabs with the number of fabric
plies (i.e., one and four) and the concrete compressive strength. On the whole, an increase
in the fabric amount led to a rise in strengthening and reducing ductility. The number
of plies also changed the FM from slippage to delamination for one- to four-ply FRCM,
respectively. No debonding FM was also observed in the one-way slabs. Then, six-scale RC
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two-way slabs were investigated under monotonic loading. The FM and crack pattern of
the strengthened with one layer of textile was thus similar to the control slab, but there was
more flexural strengthening due to the presence of TRM. Additionally, partial FMs such as
rupture and slippage were assumed as the destruction mechanisms under flexure, while
the slab strengthened with two layers failed by punching shear due to its brittle nature and
different crack patterns. It is noteworthy that covering the full face of the slab and the main
direction of the fiber were the effective parameters in the configuration in order to enhance
flexural capacity (Figure 26) [117].
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Figure 26. FMs in unstrengthened and strengthened slabs with different textile layers [117]:
(a) unstrengthened slab failed by flexural cracks; (b) strengthened slab failed by partial rupture
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matrix across two cracks, followed by the concrete punching shear.

Figure 26 depicts two slabs strengthened with FRCM and one unstrengthened slab.
Figure 26b–c depicts a slab strengthened with one textile layer (carbon) covering the
whole tensile face, and another one strengthened with two textile layers under monotonic
flexural loading. The unstrengthened slab (Figure 26a) failed in flexural, and once steel
reinforcement yielded, substantial deflections appeared. Figure 26b depicts a few significant
cracks and some minor cracks on the face of the textile layer. Consequently, the fibers’ partial
rupture and the slippage within the matrix layer are the results of induced progressive
failure. The last strengthened slab failed due to partial fiber slippage within the matrix
across two cracks, followed by the concrete punching shear (Figure 26c). In similar research,
several two-way slabs had been assessed, and a new technique had been further proposed
to augment the flexural capacity and prevent brittle FM-specific debonding, whereas the
two-way EBR strips cast of slab type E had led to debonding [114].

Aljazaeri et al. [112] consistently indicated that the composite reinforcement ratio
and composite material type could be important in the effectiveness of FMs, since they
could change FMs from slippage (for one layer of the C-FRM composite) to debonding (for
two-three layers of the composite) failure in the specimens. Hence, debonding occurred
due to the higher load. In addition, for the C-FRP composite, rupture failure was one of the
FMs due to the material nature. Abbaszadeh et al. [114] also demonstrated an innovative
basalt fabric-reinforced shotcrete system for the flexural upgrading of fire-damaged RC
slabs for the first time, which substantially improved the flexural behavior of fire-damaged
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RC slabs after cracking. Furthermore, the FM of all specimens was flexural, but one of
the specimens was under shear failure as the second failure due to the weakening of the
cross-section at the plate end.

7. Reducing the Catastrophic Effect of FMs on Arches and Vaults

Geometry and mechanical characteristics directly contribute to the safety of arched
structures. In order to maintain stability in arched masonry, repairing arched masonry is
vital to utilize. It is noteworthy that the rehabilitation of arches using steel profiles at the
arches, reinforced concrete hoods, and added cementitious mortar, are not proper due to
their disadvantages, viz.: more weight, high brittleness, and aesthetic effects [118–123]. On
the other hand, masonry arches may fail due to the formation of hinges that correspond to
a mechanism of collapse. In fact, before forming a plastic hinge, section cracks and high
deformations occur. Meanwhile, the failure mechanism is based on the formation of four
hinges at the intrados and extrados of the arches [124]. There is also a difference in the
line of thrust in the form of extrados and intrados strengthening (Figure 27). Although a
structure strengthened at the intrados results in a static specimen similar to extrados, the
distribution of the stress is different [125]. Therefore, the TRM system can play a role in
delaying the formation of hinges at the strengthening of arches.

Buildings 2022, 12, x FOR PEER REVIEW 35 of 44 
 

Finally, the formation of these hinges plays a key role in reducing damage. Considering 
Figure 27a, extrados strengthening permits a fall outside the lower edge of the arch with-
out progressive collapse. In Figure 27b, the strengthened arch at the intrados avoids the 
formation of the fourth hinge close to the load point because of the reinforcement and the 
thrust line (outside the upper edge of the arch). Figure 28 reveals that the unstrengthened 
arches failed with four alternate (intrados/extrados) hinges. The first hinge happened at 
the arch extrados at the loaded cross-section, whereas the second hinge occurred at the 
intrados. Consequently, the third and fourth hinges appeared on the left and right abut-
ments, respectively. The location and order of formation of the hinges on the control 
arches are depicted in Figure 28. 

Figures 27 and 28 show the sequence of the hinges created with the increasing load. 
The values of the load also coincide with three phases, namely, the range of the liner (first 
hinge), peak load (second hinge), and the collapse load (third and fourth hinges) [118,126]. 
The application of the FRCM system for repairing masonry elements accordingly de-
mands more research in this field. The structural performance of masonry arches repaired 
both at intrados and extrados (Figure 29) using PBO can also modify the failure mecha-
nism, so FMs are different at intrados and extrados [127]. Debonding has further occurred 
for intrados, while the latter is shear sliding at the right abutment as a FM (Figure 28) [121]. 

Figure 29 demonstrates two arches strengthened with basalt composite by a grid em-
bedded in a lime-based hydraulic matrix. The grid consists of a balanced bi-axial mesh 
with low-density basalt fibers spaced at 17 mm in the center in both directions. The results 
showed that the use of basalt FRCM strip boosted load-carrying capacity and proved to 
be the most effective solution. 

FY

 FY

(a) 

 

(b) 

Thrust Line 

Hinges

 
Figure 27. The thrust line and static scheme of arches strengthened at: (a) extrados, and (b) intra-
dos [126]. 

FY

1

2

3 4

 
Figure 28. Sequence of hinges formation on the unrepaired arches [118]. 

Figure 27. The thrust line and static scheme of arches strengthened at: (a) extrados, and
(b) intrados [126].

In fact, these arches were subject to vertical loading at one-quarter span. The formation
of four hinges may prevent the brittle collapse mechanism of such structures. Finally, the
formation of these hinges plays a key role in reducing damage. Considering Figure 27a,
extrados strengthening permits a fall outside the lower edge of the arch without progressive
collapse. In Figure 27b, the strengthened arch at the intrados avoids the formation of the
fourth hinge close to the load point because of the reinforcement and the thrust line (outside
the upper edge of the arch). Figure 28 reveals that the unstrengthened arches failed with
four alternate (intrados/extrados) hinges. The first hinge happened at the arch extrados at
the loaded cross-section, whereas the second hinge occurred at the intrados. Consequently,
the third and fourth hinges appeared on the left and right abutments, respectively. The
location and order of formation of the hinges on the control arches are depicted in Figure 28.

Figures 27 and 28 show the sequence of the hinges created with the increasing load.
The values of the load also coincide with three phases, namely, the range of the liner (first
hinge), peak load (second hinge), and the collapse load (third and fourth hinges) [118,126].
The application of the FRCM system for repairing masonry elements accordingly demands
more research in this field. The structural performance of masonry arches repaired both
at intrados and extrados (Figure 29) using PBO can also modify the failure mechanism,
so FMs are different at intrados and extrados [127]. Debonding has further occurred for
intrados, while the latter is shear sliding at the right abutment as a FM (Figure 28) [121].
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Figure 29 demonstrates two arches strengthened with basalt composite by a grid
embedded in a lime-based hydraulic matrix. The grid consists of a balanced bi-axial mesh
with low-density basalt fibers spaced at 17 mm in the center in both directions. The results
showed that the use of basalt FRCM strip boosted load-carrying capacity and proved to be
the most effective solution.

In order to evaluate the stability of masonry arches and predict collapse load, thrust
line and limit analysis were the influential tools before computer programs. This method
is still replaced by finite element (FE) simulation [128]. There is also a suitable technique
to achieve adequate validity of the deformability of the arch, which cannot be acquired
via limit analysis. This method shows the sequence of hinge formation based on the force-
vertical deflection. Once the determination of the exact place of the hinges is made, initial
stiffness and ultimate displacements can thus be assisted to prevent further hinges and
improve the safety and stability in arches. The study of failure mechanisms in arches and
vaults is one of the most noticeable issues in relation to increased efficiency. The collapse
mechanism in masonry arches and vaults can thus give rise to the formation of several
hinges. Some efforts have been thus made as follows. Alecci et al. [118] tested several
masonry arch models (unstrengthened and strengthened) loaded vertically in terms of
intrados and extrados with PBO and C-FRP. The use of PBO-FRCM retrofitted composite at
the intrados or extrados of the arches had shown a ductile failure owing to more warnings
before reaching collapses, while arches strengthened with C-FRP system could always
show a brittle failure. In the case of the application of PBO-FRCM, there was a difference
in the ductility index between intrados and extrados due to variations in the pattern of
failure mechanism. In addition, there was debonding at the PBO textile mortar interface
in the intrados of the arch, while debonding at the composite-to-masonry interface in the
extrados of the arch was observed. Incert et al. [129] also studied arches repaired with the
FRCM composite, including basalt fibers surrounded in the lime-based hydraulic mortar
with three different configurations. It was inferred that the application of the FRCM strips
delayed the formation of the first hinge, while the stiffness and load capacity increased in
the strengthened arches. Although FMs did not improve or modify the FRCM strips, the
mechanism of failure directly depended on the formation of hinges, and then all the arches
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collapsed after the appearance of four hinges. In order to study the structural performance
of masonry arches retrofitted with the FRP and TRM composite systems, experimental
tests have been recently conducted at Milan University, indicating that FMs in TRM vaults
consisted of two categories—textile rupture and structure collapse—taking account of the
number of hinges. The latter was created with the appearance of four hinges, specifically
two hinges at the abutments; however, the textile rupture occurred with the formation of
the second hinges due to tensile break and slippage of the external filaments of the yarns.
The FRP system in vaults also improved FMs by preventing the first hinge, which had not
been created at the extrados at the opposite quarter of the span. On the other hand, the
complete detachment of the fiber was detected, and the second hinge appeared at the left
abutment. Hence, debonding happened at the abutment. Consequently, three hinges were
recorded with the FRP vault system. As a result, the TRM system had the best performance
and then significantly boosted the FRP system in terms of stiffness, ductility, and capacity
load. The FRP system also transformed FMs due to the prevention of the second hinge
formation at the extrados in the third quarter of the span (Figures 30–32) [128,130]. The FMs
of the arches also directly depended on the formation of the hinges at extrados and intrados.
Of note, such FMs are much more common in masonry arches, debonding, tensile rupture,
and crushing. It is noteworthy that collapses occur by the formation of four hinges [124].
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Figure 32. FMs in the strengthened vault, including the formation of four hinges: (a) at extrados and
(b) intrados and rupture TRM [130].

It can be observed that the highest rate of FMs in strengthened arches is recorded
for debonding by approximately 32%. In addition, C has also been used to repair about
29% compared with other fibers, as shown in Figure 33. There are also plenty of cases
to occur during debonding in strengthened arches. The structural behavior of retrofitted
arches is thus one of the reasons. Additionally, the opening of the hinges at the intrados of
strengthened arches during loading and the gradual loss of adhesion at the matrix-textile
interface may cause debonding. Additionally, types of composites play a significant role
in the brittle failure mechanism because of differences in the values of kinematic ductility
between the two composites, such as C vs. PBO.
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8. Recommendations for Future Studies

There is little research on work considering the repairing concrete columns retrofitted
with FRCM systems, especially the damage to columns strengthened with the FRCM
system and subjected to different scenarios such as the effects of freeze-thaw cycles or
the negative effect of reinforcement corrosion on the mechanical characteristics of the
FRCM-strengthening systems; hence, these are fundamental gaps, whose effectiveness in
terms of FE analysis and empirical investigations under their fracture mechanism should
be evaluated. More experimental research is also needed on beams, columns, arches,
and slabs strengthened with the FRCM system. There are no enormous experiments that
have investigated the effect of the changes in temperature on the variety of strengthened
structural elements. With more experiments, the FRCM system can be introduced as a
promising technique in harsh environments during high adaptability. Research manuscripts
reporting large datasets that are deposited in a publicly available database should specify
where the data have been deposited and provide the relevant accession numbers.
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9. Conclusions

This study investigated and presented several techniques to study the efficiency of
the FRCM system in strengthening concrete and masonry structures. In fact, the FRCM
system has a noticeable impact on flexural, shear, torsional, and axial capacities in concrete
structures. Meanwhile, this method has a suitable performance in terms of enhancing the
efficiency of masonry structures and is even used in the strengthening of different structural
elements such as beams, columns, walls, arches, and slabs.

Besides, fracture mechanics is very sensitive to the main parameters, including tex-
tile layers, composite type, configurations, and anchors. It should be noted that such
parameters have changed and improved FMs; for example, coated fabric converts ductile
into fragile failure. Fiber rupture is also a significant fracture mode due to the bucking of
longitudinal steel reinforcement in columns strengthened with the TRM system, which is
considered as a typical ductile failure, while debonding and concrete crushes are fragile
failures in strengthened columns with no damage to the jacket.

In fact, structures strengthened with C and G fibers usually include the fiber rupture
phenomenon because of the low mechanical fiber and the differences in the values of
kinematic ductility than full PBO; however, debonding failure has been observed in PBO
materials with respect to the available data.

Debonding is also the much more common FM in beams strengthened with the FRCM
system, which is sensitive to the bonded-length FRCM system. In general, an insufficient
bonded length of the FRCM system in the strengthened beam has led to a catastrophic
failure and fragile fracture. Meanwhile, available data illustrate that PBO and C are more
frequently used in fiber for flexural and shear strengthening of beams because of their
high mechanical fiber and difference in the values of kinematic ductility than other fibers.
In addition, for the PBO-FRCM composite, debonding has occurred in the fiber-matrix
interface surface, and the increase in the number of layers leads to some changes in the
debonding mechanism on the weakest fiber-matrix surface. Additionally, changing the
type of composites in flexural strengthening of beams causes a change in FMs, whereas the
shear strengthening of beams has a constant FM.

In the case of strengthened walls with the FRCM system, a suitable bond length and
equivalent thicknesses of the composite are assumed as the effective parameters to avoid
sudden and catastrophic failure, especially significant fracture in walls, called premature
debonding. Diagonal in-plane shear failure is also the typical in-plane failure of masonry
walls. Flexural failure is thus common in out-of-plane loaded masonry walls, which can
be sorted into two categories of flexural and horizontal flexural failures because of the
formation of three hinges at the top, bottom, and in-between of masonry walls. Accordingly,
the out-of-plane collapse mechanism in masonry walls is a significant failure mechanism. G
and basalt are also applied at around 34 and 47%, respectively, and can be useful when the
application of high-performance composite materials is not often noticeable. In addition,
boosting the load-carrying capacity in repaired arches does not alter the failure mechanism,
especially for G and basalt.

For the case of arches retrofitted with the TRM system, the type of FM depends on the
reinforcement position, especially arches retrofitted at the extrados or intrados, whereas
FM is independent of the type of reinforcement, reinforcement width, and arch parameters.
Shear sliding is also the critical FM in retrofitted arches. In addition, debonding contributes
to 32% of failure mechanisms with reference to the databases. C fiber currently uses about
28% of fibers to repair arches.

For slabs strengthened with the FRCM system, an ideal FM has occurred for strength-
ened specimens with the FRCM system. With respect to one textile layer of the FRCM
composite, a sudden failure such as fiber rupture is often caused by changing the type of
materials, such as C-FRP or steel-reinforced polymer. It should be noted that punching
shear failure is predominant in the failure mechanism in two-way slabs strengthened with
full-wrapping FRCM composite.
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On the other hand, the FRCM system is not applicable to all structures, such as steel
structures. Likewise, the effectiveness of FRCM strengthening was lower than that of
FRP strengthening, considering the limitations imposed by the ultimate strength design.
However, FRCM outperforms FRP in terms of increasing the flexural and shear capacities
of RC beams exposed to high temperatures, whereas FRP loses efficacy. As a result, the
FRCM system can be employed for special targets, as previously stated.

More research is required to assess the performance of FRCM composites in different
scenarios of loading and deficiency, e.g., progressive collapse under gas explosion, excava-
tion, and excessive loading. Additionally, the experimental works, including those detailed
in this paper, are limited in scope. Further research is required to investigate the uncertainty
in both input parameters and models.
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