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Abstract: Modular steel construction (MSC) consists of the off-site prefabrication of a fully finished
module and the on-site assembling of the module unit. The popularity of MSC is on the rise,
attributable to its technical advantages of speed and quality of buildings with repetitive units. Inter-
module connection is critical for the overall stability and load-bearing capacity of MSC. An innovative,
fully prefabricated liftable connection (FPLC) using standard corner fittings and long stay bolts is
proposed in this paper. This paper focuses on the axial compressive behavior and design of FPLC.
Five full-scale specimens were tested under axial compression. Local buckling of the column and
shear of the long stay bolts were observed during the test. It can be concluded from the test results
that the load-bearing capacity may decrease as the number and diameter of the stay bolts increase. A
three-dimensional nonlinear finite element model (FEM) was developed and validated against the
test results by general purpose finite element software ABAQUS. Furthermore, a parametric study
was conducted using the verified FEM to provide a better understanding of the axial compressive
behavior of the FPLC. The results of the parametric study indicated that the corner fitting can be up
to 15% lighter for columns with thicknesses of 6 mm and 8 mm without substantial reduction of the
axial load-bearing capacity of the FPLC. Moreover, the location of the column can be adjusted to
achieve a uniform Von Mises stress and equivalent plastic strain (PEEQ) distribution of the connection.
The presented research work provides an engineering-practical inter-module connection on its axial
compressive behavior, which will provide helpful references for further application of MSC.

Keywords: modular steel construction; corner fitting connection; monotonic axial load test; paramet-
ric analysis; design improvement

1. Introduction

As a new style of construction form, modular steel construction (MSC) has attracted
more and more attention from scholars and engineers around the world in recent years.
In contrast to traditional on-site construction, MSC is a kind of highly integrated prefabri-
cated building with various exceptional advantages. Generally, the volumetric modules
and decorations in the units are manufactured in off-site factories and transported to the
construction site [1]. Then, laborers assemble the prefabricated module units and com-
plete the connection of the module units on-site. In this way, the construction with full
building function can be put into use as soon as possible. It brings higher construction
speed, lower construction costs, greener construction for human beings, and less pollution
for society [2–4]. Currently, MSC has been widely used in structural-similar buildings,
especially hotels, schools, apartments, and offices in some European countries [5,6]. The
Chinese built a post-disaster hospital named Huoshenshan Hospital in only 10 days to
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handle the explosive growth of patients because of COVID-19 using MSC, as shown in
Figure 1a [7]. The world’s tallest prefabricated skyscrapers will rise in Singapore and
almost 3000 vertically stacked modules are being made in Malaysia. The three-dimensional
visualization is shown in Figure 1b [8].
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Figure 1. Mid-to-high modular construction: (a) Huoshenshan Hospital [7]; (b) 19 m tall towers [8].

The structural system is critical to guarantee the structural stability and safety of
MSC. Lawson and Ogden [9,10] introduced various connections for light steel modular
construction. Kim et al. [11] verified the applicability and feasibility of MSC. Later, several
structural systems were proposed. Park et al. [12] and Andrade et al. [13] verified the
applicability of the “modular in-fill construction method” where modules can be recessed
in the primary frame. Hou et al. [14,15] verified that precast exterior wall panels with steel
tee energy absorbers can provide more stable behavior in comparison with conventional
exterior walls. A new material model was developed and the reported low-rise moment-
resisting frames were employed and redesigned. It provided a brand-new design idea to
achieve different structural and nonstructural performance objectives in the steel moment-
resisting frame.

The success of a high-performance connection system can ensure efficient load trans-
fer systems [16]. Therefore, the performance of the connection, including the ability to
load-resist, the load-transferring mechanism, and assembling convenience, has attracted
extensive interest from scholars in recent years. Various researchers are devoted to studying
the behavior of the connections using experimental methods, numerical simulations, and
theoretical analyses. Annan et al. [17] provided a semi-rigid welded stringer-to-beam con-
nection in a typical modular construction, as shown in Figure 2a. The seismic performance
of a welded frame was investigated by experimental research. Deng et al. [18] proposed a
bolted connection with a welded cover plate for square hollow section columns, as shown
in Figure 2b, and conducted seven full-scale T-shape connection tests under monotonic and
cyclic load.

However, these connections are inadequate in middle columns because of the lack
of operating space. Chen et al. [19] offered an innovative rotary inter-module connection
for modular steel buildings, as shown in Figure 2c. The mechanical performance of the
connection was studied through two tensile and two shear resistance tests. Dai et al. [20]
introduced a novel plug-in self-lock joint for modular steel construction, as shown in
Figure 2d, and the seismic performance of the plug-in self-lock joints was studied by ana-
lyzing the results of eight full-scale experiments. Sanches et al. [21] proposed a new vertical
post-tensioned connection for MSC, which was comprised of a post-tensioned threaded
rod installed inside hollow structural section columns and a steel box placed between
two modules, as shown in Figure 2e. Dhanapal et al. [22,23] introduced a state-of-the-art
VectorBloc connection that used state-of-the-art cast-steel connectors and hollow structural
members, as shown in Figure 2f. Six full-scale specimens were built and tested under
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axial compression and axial tension. Hou et al. [24] presented a bolted base connection
and investigated the seismic performance of the connection experimentally. Furthermore,
the response of the connection under combined axial compression and weak-axis lateral
load was reported [25]. Chen et al. [26] investigated the seismic performance of an innova-
tive self-locking inter-module connection experimentally, numerically, and theoretically.
Zhai et al. [27] introduced a bolted-cover plate corner connection, and the monotonic
and cyclic loading on five specimens were carried out to investigate the seismic perfor-
mance of the connection. Deng et al. [28] summarized the state-of-the-art inter-module
connections. Most of the inter-module connections use bolt-fastened seal plates [29,30],
internal plates [31], ceiling beams, and floor beams [32,33]. Zhang et al. [34] introduced the
seismic performance of the column-to-corner fitting connection in MSC. However, these
previous connections mentioned above have limitations for practical operation in terms of
the difficulty of assembling on-site and lifting the module unit.
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In this paper, a novel fully prefabricated liftable connection (FPLC) for MSC is pro-
posed. The performance of the FPLC, subjected to axial compression load, was studied
experimentally and numerically. Five full-scale specimens that considered various parame-
ters were tested under axial compression. Then, numerical simulation based on the tests
was conducted. The boundary condition and interactions of the model were established
using commercial finite element analysis (FEA) software ABAQUS. Moreover, parametric
analysis was conducted through 53 FEA models. The effect of the crucial factors that influ-
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enced the axial load-bearing capacity of the FPLC was revealed. The design improvements
for the FPLC were consequently proposed, which would provide useful guidance for the
design of MSC.

2. Conceiving of the Fully Prefabricated Liftable Connection

Figure 3 shows the configuration of the innovative connection and the assembling
process. The FPLC includes upper and lower columns with hollow square structural (HSS)
sections, standard container corner fittings, and a T-shaped gusset plate with reserved bolt
holes and long stay bolts, as shown in Figure 3. The columns are welded vertically on
the corner fittings by butt weld. When the lower modules are installed on site, a gusset
plate is attached to the upper corner fitting using a bolt connector, as shown in Figure 3.
The vertically stacked corner fittings are connected with specially made bolt clamps. The
bolt connector has an internal plate, and the bolts vertically fasten the internal plates of
the upper and lower corner fitting together. After that, the upper modules are hoisted
through the corner fitting to the gusset plate. The locating hole has been prefabricated on
the horizontal gusset plate. During installation, one end of the bolt sleeve was put on the
bolt nut through the operating hole and another end was rotated to drive the nut to rotate
and fasten the connection, as shown in Figure 4. Generally, steel-plate shear walls, braces,
and other lateral-force resisting systems can be combined with this connection to enhance
the lateral resistance of the mid- to high-rise MSC.
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Compared to the previous connections, the PFLC has great potential to be applied
in MSC with some prominent advantages. The characteristics of this connection can be
described in three aspects. (a) Easy to be hoisted: it is easy to lift the module unit by the
corner fitting and this can decrease construction time effectively. Meanwhile, the corner
fitting and the locating hole in the horizontal gusset plate are preferred for locating the
module unit accurately. (b) Easy to be disassembled: the FPLC permits no on-site welding
between adjacent modules to realize a fully prefabricated joint. When the building needs to
be dismantled and reconstructed in a different place, the module unit can be disassembled
by the long stay bolts and bolt connectors quickly, which is favorable for recycling demands.
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(c) Excellent mechanical property: the long stay bolts can fasten vertical module units and
transfer vertical forces. The bolt connector can tie the corner fitting and the gusset plate
together to resist vertical separation.
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Figure 4. Diagram of the assembly process: (a) align vertically; (b) match locating hole; (c) fasten
vertical bolt; and (d) complete connection.

Pretension load is applied to the long stay bolts. A 6 mm thick gusset plate is fastened
to the upper and lower module components by a bolt connector. A 22 mm diameter high-
strength bolt is employed to fasten the 10 mm thick internal plate in each corner fitting. The
schematic of the bolt connector and corner fitting with its outer dimensions is presented in
Figure 5. Three diameters of the long stay bolt (6 mm, 12 mm, and 16 mm) are considered
to investigate the effect on the axial load-bearing capacity of the FPLC.
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3. Experimental Program
3.1. Specimen Design

Five full-scale specimens were designed in this paper. The diameter and number of
long stay bolts were considered as parameters. Specimens were designed with various
parameters and dimensions mostly used in engineering practice, as listed in Table 1. Aiming
to better understand the behavior of FPLC with different diameters and numbers of long
stay bolts when the specimen was subjected to axial compression, a 6 mm thick T-gusset
plate and 150 × 150 × 6 mm HSS column were adopted for all specimens. The reason to
use the section size of an HSS column is that it has been extensively used in steel structures
in China and is appropriate for standardization. The average measured thickness of the
HSS column was 5.86 mm. Steel coupons were prepared following the requirements of
GB/T228.1-2010 [35], as shown in Figure 6a. The average mechanical properties are listed
in Table 2. The corresponding tensile stress-strain curve for the steel was presented in
Figure 6b. In this study, the ultimate strength is considered as the maximum stress that the
coupon exhibited and the yield stress is the strength at the inception of plastic strain of the
stress-strain curve [36]. The geometric details of the test specimens are shown in Figure 7.
The axial compressive load is transferred to the contact surface between the column ends
and the corner fitting. The long stay bolts fasten the gusset plate and column. If the failure
occurs near the bolt hole, bolts will also suffer shear force. In this way, the load capacity
may increase.

Table 1. Summary of the test specimens.

Specimen d/mm n l/mm

SC-1 6 2 448
SC-2 6 6 648
SC-3 12 6 648
SC-4 16 6 648
SC-5 6 10 848

Notes: d denotes the diameter of the long stay bolts; n denotes the number of the long stay bolts; l denotes the
length of the gusset plate.
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Table 2. Material properties of the specimens.

Components Yield Strength/MPa Ultimate Strength/MPa Elongation

HSS members and
gusset plate 394 500 23.2%

Long stay bolt 640 800 5.0%
High-strength bolt 660 930 5.0%

Corner fitting 310 490 -
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by a hydraulic actuator at the bottom of the specimen. Meanwhile, the upper beam and 
frame columns were employed to restrain the vertical movements of the specimens.  

Figure 7. Design of the test specimens (all dimensions in mm): (a) 3D view of Specimen SC-2; (b) front
view of Specimen SC-1; (c) side view of Specimen SC-1; (d) front view of Specimen SC-2~SC-4; (e) side
view of Specimen SC-2~SC-4; (f) front view of Specimen SC-5; and (g) side view of Specimen SC-5.
S = 50 mm is the space of the long stay bolt.

3.2. Test Setup and Loading

In this section, five monotonic axial compressive tests were conducted in the Structural
Laboratory of Zhengzhou University. The schematic diagram of the test is shown in
Figure 8a and the laboratory test setup is shown in Figure 8b. The test specimen was
supported through baseplates at the ends of both columns to ensure full contact between
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the specimens, load sensor, and support plates. The axial compressive load was performed
by a hydraulic actuator at the bottom of the specimen. Meanwhile, the upper beam and
frame columns were employed to restrain the vertical movements of the specimens.
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Figure 8. Test schematic of the FPLC under axial load: (a) schematic diagram; (b) on-site photo.

The test setup was designed considering the axial design force of the specimens. The
specimens were loaded monotonically until the failure occurred. The specimen was placed
on the bottom support plate. To ensure no eccentricity at the contact interface between
corner fitting and gusset plate, the stiffeners on the specimen should be aligned with the
four orientations of the cross graticule in the support plate. The loading protocol was
designed based on Chinese code JJF 1296.2-2011 [37]. The loading increment at formal
loading was taken as 5% of the estimated ultimate load of the specimen and the loading
rate was 0.03 kN/s. The applied load versus the time relationship is shown in Figure 8.
When the specimen underwent local buckling or the load reached 80% of the estimated
ultimate load of the specimen, the incremental value of the load was halved. When the
load was close to the estimated ultimate load of the specimen, the load increment was
halved again. The loading was continued until the load dropped to about 75% of the
ultimate load-bearing capacity of the specimen or a large visible deformation occurred with
a tendency for overturning, and the test was terminated. The end of the top column was
restrained from translating and rotation in all directions. The end of the bottom column
was allowed to move only in the vertical direction.

3.3. Layout of the Measuring Points

Four linear variable differential transducers (LVDTs) were installed at the corners of
the end plate of the bottom column, respectively. Other four LVDTs were installed on the
specimens to measure the horizontal deformation of the specimens, as shown in Figure 9a–c.
LVDT 1 and LVDT 2 were connected to the upper and lower columns between the gusset
plate and the load plate, respectively. These two LVDTs were used to measure the possible
out-of-plane deformation of the column. LVDT 3 was connected between the upper and
lower corner fitting. LVDT 4 was connected to the middle of the gusset plate. These two
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LVDTs were used to measure the relative movement of the specimens. It should be noted
that LVDT 2 was not installed for Specimen SC-5 because the free end of the column was
so short.
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A total of 11 strain gauges were attached at different locations of the components
where local buckling was estimated to occur, as shown in Figure 9. R1, R3, and R5 were
attached to the middle-height of the upper column and R2, R4, and R6 were attached to the
symmetric locations on the lower column. To monitor the strain distribution of the corner
fitting, H1, H2, H3, and H4 were attached near the openings on the corner fitting. H5 and
H6 were installed near the bolt hole where strain concentration may be anticipated.
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4. Experiment Results and Analysis
4.1. Failure Mode

All five specimens presented deformation before failure. Out-of-plane deformation
occurred on the HSS columns when the ultimate load was reached. The local buckling
was generally located at the middle or at the quarter length of the column. There was no
obvious deformation at the beginning of the loading for all specimens. As the loading
continued, the axial displacement increment increased, implying that the specimen entered
an elastic-plastic stage. When the load reached 90% of the ultimate load-bearing capacity of
the specimens, columns experienced significant local buckling. When the load reached the
ultimate load-bearing capacity of the specimen, the buckling of the specimen continued to
increase, leading to failure of the specimen. Meanwhile, the load began to decrease, and the
test was terminated when the load dropped to about 75% of the ultimate bearing capacity
of the specimen. It should be noted that the test was terminated early for Specimen SC-3
because the specimen appeared to have a visible tendency for overall instability.

The deformations of Specimens SC-2, SC-4, and SC-5 were exhibited near the long
stay bolts. In this way, the bolts bear part of the shear force, resulting in the increase of the
ultimate load. The failure mode of Specimen SC-1 was presented in Figure 10a. Specimen
SC-1 experienced local buckling at the quarter of the lower column. The final damage of
Specimen SC-2 and Specimen SC-4 was similar, as shown in Figure 10b,d. Local buckling
was located at the middle of the column, which was near the bolt hole. For Specimen SC-2,
the bolts experienced damage to different degrees because it suffered shear force. The final
damage of Specimen SC-5 was similar to that of Specimen SC-2 and Specimen SC-4 was
expected to have local buckling obvious near the bolt hole and the bolt suffered shear force,
as shown in Figure 10e. Different from other specimens, global instability occurred for
Specimen SC-3, as shown in Figure 10c. Nonetheless, the failure mode of Specimen SC-3
was in essence local buckling. In other words, local buckling occurred on the column early,
leading to the overall instability of the specimen.

4.2. Load-Displacement Curve Analysis

Figure 11a shows the load-displacement curves of the specimens with different bolt
numbers. Figure 11b presents the comparisons of the ultimate load and yield load for
Specimens SC-1, SC-2, and SC-5. In this paper, the ultimate load is considered as the
maximum capacity of axial compressive load and yield load is the load at the inception
of plastic strain. It can be concluded from Figure 11 that the load-bearing capacity may
decrease when the number of long stay bolts increases. The ultimate load increases by
11.74% and 2.79% for Specimens SC-2 and SC-5, respectively, compared to that of Specimen
SC-1, as shown in Figure 11c. The local buckling occurred at the quarter of the column for
SC-2 and SC-5 where long stay bolts suffered the shear force. In this way, the ultimate load
of SC-2 and SC-5 is higher than SC-1, as shown in Figure 11a. The number of bolt holes
of SC-5 is more than that of SC-2. In other words, the total area of bolt holes of SC-5 is
larger than that of SC-2, which weakens the columns. Therefore, the ultimate load of SC-2
is higher than that of SC-5.

Figure 12a presents the load-displacement curves of the specimens with different bolt
diameters. Figure 12b,c show the relationship between bolt diameters and the reduction
in yield and ultimate load capacities. These figures indicated that with the increasing of
the bolt diameters on the column, the ultimate load and yield load apparently decreased.
Compared to Specimen SC-2, the axial compressive-load capacity of Specimen SC-3 de-
creased by 10.06%. Considering the randomness of the location of local buckling, the long
stay bolts could not contribute much to the compressive resistance of the specimens if the
local buckling did not occur near the long stay bolts. In this way, the strength of the column
was weakened, resulting in the decrease of the compressive resistance of the specimen. A
similar phenomenon could be captured for Specimen SC-1, as shown in Figure 10. The axial
compressive-load capacity of Specimen SC-4 with bolt holes of 16 mm decreased by 15.09%
compared to Specimen SC-2 with bolt holes of 6 mm. This is because the shear strength
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of the bolt with a diameter of 16 mm is greater than the bearing strength of the bolt hole.
The diameter of the bolt hole of Specimen SC-4 was larger than that of SC-3, which further
weakened the strength of the column.
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Figure 11. Comparisons of specimens with different bolt number: (a) comparisons of load-
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Figure 12. Comparisons of specimens with different bolt diameters: (a) comparisons of load-
displacement curves with various bolt diameters; (b) yield load and ultimate load with different bolt
diameters; and (c) percentage variation of load capacity with various bolt diameters.

4.3. Strain Distribution and Development

The load-strain behaviors of the specimens were investigated by the three represen-
tative Specimens SC-1, SC-2, and SC-5. Three strain gauges were picked for the three
specimens, two at the top column and one at the lower column. The strain-displacement
curves of the specimens are shown in Figure 13a–c, respectively. The strain data correspond-
ing to ultimate load of the specimens were picked, as shown in Figure 13d–f, respectively.
It should be noted that εy denotes the yield strain of steel.
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Figure 13. Strain gauge values obtained from the test: (a) strain-load curves of Specimen SC−1;
(b) strain-load curves of Specimen SC−2; (c) strain-load curves of Specimen SC−5; (d) strain data of
Specimen SC−1; (e) strain data of Specimen SC−2; and (f) strain data of Specimen SC−5.

It can be concluded from Figure 13 that the strain on the column increases quickly
after the maximum load. A further increase of the axial load causes local buckling in the
HSS column. It can be observed that the top column almost remained elastic during the
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test. These figures showed that stress concentration occurred mainly at the locations of
local buckling and the openings of the corner fittings.

5. Development and Validation of Finite Element Model
5.1. General

The full-scale testing of the specimens has provided key information about the axial
compressive performance of the FPLC. However, finite element models (FEM) could
provide a better understanding of the load-transferring mechanism that could not be
obtained by physical tests. In this paper, the ABAQUS/Standard version, distributed by
SIMULIA Inc. [38], was applied to develop the three-dimensional nonlinear FEM of the
test specimens. Material, geometric, and contact nonlinearities were modeled. The elastic-
plastic material model employing multilinear kinematic hardening principles was utilized
for the cast-steel material [39]. On the other hand, the isotropic hardening principles and
Mises yield criterion were employed for other members of the connection. The elastic
modulus of steel was taken as 2.06 × 105 MPa, and Poisson’s ratio was taken as 0.30. The
corresponding characteristic values of the materials are presented in Table 2.

5.2. Element Type, Boundary Condition, Mesh, and Loading

The FEM developed in this study for Specimen SC-2 is shown in Figure 14. All the
components were modeled using C3D8R-type solid elements. It has been proven to be a
reliable element for investigating the mechanical characteristics of structures, connections,
and components [13,19,40]. The welded components in the connection were modeled using
the “Tie” constraint, including the column end to the base plate and stiffener to the base
plate. The “tied” components moved together with the same displacement and rotation.
The column and the corner fitting were merged to reduce complex interactions in the
developed FEM. A surface-to-surface hard contact interaction with a friction coefficient of
0.3 was employed to simulate the contact interfaces, including bolt to bolt hole, bolt nut to
column wall, bolt nut to gusset plate, bolt nut to inter slab, inter slab to corner fitting, and
so on.
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Figure 14. FEM of experimental specimens.

Figure 15 plots the effect of mesh size on the numerical results of representative Speci-
men SC-2. It shows that the varying mesh size has a quite limited influence on the elastic
stage of the load-displacement curve obtained by FEA of the FPLC. This varying mesh size
does influence the ultimate compressive capacity and stiffness within 5%. However, the
FEM with a coarse mesh mismatched the experimental results after the specimen reached
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ultimate load. Furthermore, it confirmed that fine and intermediate mesh sizes offer better
numerical results. Considering the computing efficiency, the finite element model with an
intermediate mesh size was applied in subsequent investigations. The element sizes are
4 mm for bolts, 12 mm for columns, 15 mm for corner fittings, 20 mm for loading plates,
8 mm for inter slabs, and 15 mm for gusset plates. The mesh was encrypted along the
thickness of the components, as shown in Figure 14.
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Figure 15. Effect of different mesh sizes on finite element simulation results.

Applying preload to the high-strength bolt by “bolt load” mainly included two steps:
(1) applying the preload along the axis of the bolt to simulate a fully tightened state of the
bolt; and (2) fixing the axial length of the bolt. The base plates were kinematically coupled
to the reference points for distributing the concentrated load and applying the boundary
conditions. Rotation and translation were constrained in the X, Y, and Z axes for Point-1
(P-1). Rotation in the X, Y, and Z axes and translation in the X and Y axes were constrained
for Point-2 (P-2). Axial displacement was applied at Point-2 (P-2). In this way, the axial
force-displacement curve can be obtained, and the FEM can simulate the axial behavior of
the connection. It should be mentioned that initial imperfection was considered in each
specimen. The eigenvalue analysis is necessary prior to the axial loading to introduce the
initial geometric imperfection. Such an analysis is a linear elastic analysis performed using
the (*BUCKLE) procedure available in the ABAQUS library [41]. le/1500 is available for
axial flexural geometric imperfection of the columns [42]. le denotes the effective length of
the column.

5.3. Verification of the FEM

The comparison of the load-displacement curves between the FEM and test results is
presented in Figure 16. The initial gaps in the specimens were not considered in the FEM.
Therefore, the elastic stiffness was slightly higher in the FEM than in the test. A comparison
of ultimate load and stiffness for specimens in the experiments and the FEA results are
shown in Figure 16f. In addition to the fluctuation of the individual results, most of the
scattered points are centered around value 1. The comparisons suggest that the FEM can
reasonably predict the axial compressive behavior of the FPLC. Initial stiffness, the ultimate
load, and post-buckling behavior can be accurately predicted by the FEM. The difference
between the FEM and test results is less than 3.5%, which further verifies the reliability of
the FEM.
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Figure 16. Comparisons of load-displacement curves: (a) Specimen SC-1; (b) Specimen SC-2;
(c) Specimen SC-3; (d) Specimen SC-4; (e) Specimen SC-5; and (f) comparisons between results
of FEA and tests.

The failure mode is also a critical evaluation criterion for the FEM. Figure 17 shows
a comparison of the failure mode between the test and the FEA for Specimen SC-3. The
out-of-plane deformation of the column in the test and the FEA was similar. Due to
the randomness of the buckling locations, accurate results were difficult to obtain in the
numerical simulation. The analysis indicated that the failure process of the test and the FEA
was consistent. It can be observed from Figure 17 that the high-level stress was concentrated
at the lower modular column, where severe buckling deformation caused by axial load
was obvious. Compared with the lower modular column, the upper column had a lower
stress level. For the connecting components, such as corner fittings and bolt connectors, the
Von Mises stress level was found to be within a relative safe range. The FPLC can provide
reliable force transmission between components and meet the demand for a “strong joint
and weak member”.
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6. Parametric Study

In this section, the validated FEM was adopted to conduct the parametric analysis to
reveal the influence of the geometric parameters on the axial compressive performance of
the FPLC.

6.1. Details of the Parameters

According to the failure mode investigated above, the failure of the specimens was
caused by the local buckling of the column rather than the corner fitting. Therefore, an
optimization of the corner fitting is needed. In this way, the weight of the corner fitting, the
location of the column, and the strength, length, and thickness of column were considered
as parameters to conduct the parametric study. Table 3 lists the values of the parameters
considered in the parametric study. The weight reduction (WR) of the corner fitting
introduced in this table is calculated with respect to the specimens tested in this paper. It
should be noted that the “0 WR” denotes the original thickness of the corner fitting. The
WR of the corner fitting was achieved by reducing the thickness in three dimensions. The
models are identified with the notations introduced in Table 3. Three different locations
for the column were considered, as shown in Figure 18. The values presented in Table 3
represent the changes in the location and section of the column. The specimens with
different strengths and lengths of the column were based on the verified FEM of Specimen
SC-4. In total, 53 FEMs were considered in the parametric study.

Table 3. Values of the parameters.

Parameter Values Notation

Weight reduction (WR) of the corner fitting 0%, 5%, 10%, 15%, and 20% 0 WR, 5 WR, 10 WR, 15 WR, and 20 WR
Locations of the column 0, 14 mm, and 28 mm Original, Middle, and Corner
Thickness of the column 6 mm, 8 mm, and 10 mm 6 TC, 8 TC, and 10 TC

Material properties of the column Q355, Q390, Q420, and Q460 -
Length of the column 450 mm and 700 mm -
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Figure 18. Locations of columns on the corner fitting: (a) original location; (b) middle location; and
(c) corner location.

For a better understanding of the internal stress distribution and plasticity within the
connection components, the Von Mises stress and equivalent plastic strain (PEEQ) values
at some key points were obtained from the FEM when the ultimate load was reached, as
shown in Figure 19a–c. PEEQ could value the accumulative results of plastic strain, which
was employed in this paper to determine the main bearing components of the connection.
U1, U2, L1, and L2 were around to the opening on the corner fitting. If damage occurred
on the corner fitting, obvious deformation mainly occurred at the opening of the corner
fitting. C1 and C2 were near the contact interfaces between the column and the corner
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fitting. These were the representative points with high stress values. The specific locations
of the reference points were decided based on the mesh size of the FEM.
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Figure 19. Reference points and column location: (a) reference points of original column location;
(b) reference points of column location in middle of the corner fitting; and (c) reference points of
column location in corner of the corner fitting.

6.2. Effect of Location of the Column

Figure 20 shows the influence of different locations of the column on the ultimate load
of the FPLC. It can be found that the column location does not affect the axial load-bearing
capacity of the connection if the thickness of the column and weight of the corner fitting
remained the same, as shown in Figure 20a. As the column is located off the opening of
the corner fitting, the stress distribution in the column reduces and the stress in the corner
fitting increases, as shown in Figure 20.

Moreover, stress in columns is always higher than in the corner fitting. As the column
becomes thicker, the values of PEEQ distribution in the corner fitting increased. A high
value of PEEQ indicates that the corner fitting has already been damaged before the
specimen reached the ultimate load. Since the PEEQ value of Point U-2 and L-1 on the
corner fitting is much higher than other points, the corner column is unfavorable for the
specimen with a column thickness of 10 mm, as shown in Figure 20g. It should be noted
that the trend variation is due to the different behaviors of the material after yielding,
as shown in Figure 20g. Besides, the values of stress and the PEEQ of models with the
column located in the middle of the corner fitting are much higher than other locations for
10 TC models.

6.3. Effects of Weight Reduction of the Corner Fitting

Figure 21 presents the influence of the weight of the corner fitting, taking six TC-
original models as examples. The ultimate load of the FEM increases as the corner fitting
becomes thicker, as shown in Figure 21a. The corner fitting and the columns experienced
axial deformation with the increase of axial load. After reaching the maximum load,
inelastic buckling occurred at the columns. In all results of the FEA, the plastic strain first
occurred at the columns. It can be observed from Figure 21b that the axial load-bearing
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capacity decreased from 2% to 8% and the yield load decreased from 5% to 8.5% as WR
increased from 5% to 15%. There is a dramatic decrease both in yield load and ultimate
load with WR to be 20%.

Buildings 2022, 12, x FOR PEER REVIEW 20 of 28 
 

   
(a) (b) (c) 

Figure 19. Reference points and column location: (a) reference points of original column location; 
(b) reference points of column location in middle of the corner fitting; and (c) reference points of 
column location in corner of the corner fitting. 

6.2. Effect of Location of the Column 
Figure 20 shows the influence of different locations of the column on the ultimate 

load of the FPLC. It can be found that the column location does not affect the axial load-
bearing capacity of the connection if the thickness of the column and weight of the corner 
fitting remained the same, as shown in Figure 20a. As the column is located off the open-
ing of the corner fitting, the stress distribution in the column reduces and the stress in the 
corner fitting increases, as shown in Figure 20.  

 
(a) 

0

200

400

600

800

1000

1200

1400

0.0 2.0 4.0 6.0 8.0 10.0

Lo
ad

 (k
N

)

Displacement (mm)

original
middle
corner

Buildings 2022, 12, x FOR PEER REVIEW 21 of 28 
 

  
(b) (c) 

(d) (e) 

  
(f) (g) 

Figure 20. Comparisons of different column locations: (a) 6 TC models with 0% weight reduction; 
(b) Von Mises distribution of 6 TC with 0% WR model; (c) PEEQ distribution of 6 TC with 0% WR 
model; (d) Von Mises distribution of 8 TC with 0% WR model; (e) PEEQ distribution of 8 TC with 
0% WR model; (f) Von Mises distribution of 10 TC with 0% WR model; and (g) PEEQ distribution 
of 10 TC with 0% WR model. 

Moreover, stress in columns is always higher than in the corner fitting. As the column 
becomes thicker, the values of PEEQ distribution in the corner fitting increased. A high 
value of PEEQ indicates that the corner fitting has already been damaged before the spec-
imen reached the ultimate load. Since the PEEQ value of Point U-2 and L-1 on the corner 
fitting is much higher than other points, the corner column is unfavorable for the specimen 
with a column thickness of 10 mm, as shown in Figure 20g. It should be noted that the 
trend variation is due to the different behaviors of the material after yielding, as shown in 
Figure 20g. Besides, the values of stress and the PEEQ of models with the column located 
in the middle of the corner fitting are much higher than other locations for 10 TC models. 

0

100

200

300

400

500

600

C-1 U-1 U-2 L-2 L-1 C-2

Vo
n 

M
is

es
 s

tr
es

s 
(M

Pa
)

original
middle
corner 0.00

0.02

0.04

0.06

0.08

0.10

0.12

C-1 U-1 U-2 L-2 L-1 C-2

PE
EQ

original
middle
corner

0

100

200

300

400

500

600

C-1 U-1 U-2 L-2 L-1 C-2

Vo
n 

M
is

es
 s

tr
es

s (
M

Pa
)

original
middle
corner

0.00

0.04

0.08

0.12

0.16

0.20

0.24

C-1 U-1 U-2 L-2 L-1 C-2

PE
EQ

original
middle
corner

0
100
200
300
400
500
600
700

C-1 U-1 U-2 L-2 L-1 C-2

Vo
n 

M
is

es
 s

tr
es

s 
(M

Pa
)

original
middle
corner 0.00

0.25

0.50

0.75

1.00

1.25

1.50

C-1 U-1 U-2 L-2 L-1 C-2

PE
EQ

original
middle
corner

Figure 20. Cont.
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Figure 20. Comparisons of different column locations: (a) 6 TC models with 0% weight reduction;
(b) Von Mises distribution of 6 TC with 0% WR model; (c) PEEQ distribution of 6 TC with 0% WR
model; (d) Von Mises distribution of 8 TC with 0% WR model; (e) PEEQ distribution of 8 TC with
0% WR model; (f) Von Mises distribution of 10 TC with 0% WR model; and (g) PEEQ distribution of
10 TC with 0% WR model.
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Figure 21c,d present the relationship of the weight reduction of the corner fitting and
the distribution of Von Mises stress and PEEQ in the connection. Stresses in the columns
increased at first and decreased later for the 20 WR model. Therefore, the yield stage of the
connection occurred, and yield and ultimate compressive-load capacity were reduced. With
the weight reduction of the corner fitting increased, the PEEQ increased slightly. Therefore,
the corner fitting may step into the plastic stage by decreasing its thickness. Stresses and
PEEQ distribution in the corner fitting were more stable when WR varies from 5% to 20%
compared to those in the columns. This is due to the different post-yielding nonlinear
behaviors of the materials of the corner fittings and columns.

6.4. Effects of the Columns

Figure 22 depicts the influence of the length and strength of the columns on the
ultimate compressive resistance of the FPLC (P). It shows that the ultimate load of the
FPLC increases with the increase of the strength of the column. With the increases of the
conditional yield strength of the columns from 355 MPa to 460 MPa, the increments of P for
the connection with a length of 450 mm (700 mm) are 20.5% (19.8%), 30.3% (28.4%), and
42.4% (42.3%), respectively. The ultimate load of the FPLC is closely related to the strength
and thickness of the column, i.e., the increased strength and the thickness of the column
improved the cross-sectional compressive resistance of the connection. The reduction of
P ranges from 1.8% to 3.3% when the length of the columns increases from 450 mm to
700 mm.
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Figure 23 presents the influences of the thickness of the columns on the failure mode
and ultimate load of the connection. The ultimate load of the FEM increased as the column
became thicker. After reaching the inelastic bearing capacity, displacement kept increasing
and load decreased slowly and inelastic buckling occurred on the column. As the thickness
of the column increases from 6 mm to 8 mm and 10 mm, the ultimate compressive resistance
of the FPLC increases by 55.4% and 77.7%, respectively, as shown in Figure 23a. The failure
mode changes from local buckling to global instability, as shown in Figure 23b–d.

6.5. Summary and Discussions

The parametric studies showed that (1) changing the location of the column from
original to the corner had limited influence on the compressive load capacity of the FPLC;
(2) decreasing the weight of the corner fitting from 5% to 15% decreased the ultimate load
capacity of FPLC from 2% to 8%; (3) increasing the strength grade of the column increased
the ultimate load capacity of FPLC significantly; and (4) as the thickness of the column wall
increased from 6 mm to 8 mm and 10 mm, the ultimate compressive resistance of FPLC
increased by 55.4% and 77.7%.
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The results of the parametric studies showed that to satisfy the requirement of uni-
form distribution and low PEEQ values in members, as shown in Figure 20, the original,
middle, and middle models were suggested for 6 TC-0 WR, 8 TC-0 WR, and 10 TC-0
WR, respectively. In addition, increasing the length of the columns may cause instabil-
ity of the connection, resulting in a decreasing of the ultimate compressive resistance of
the connection.

For a cost-effective and lighter FPLC, a weight reduction method was developed for the
6 TC-Original, 8 TC-Middle, and 10 TC-Middle models. It is acceptable if the ultimate load
capacity decreases by less than 10%. Figure 24 presents the comparisons of the maximum
acceptable weight reduction and 0% weight reduction models under compressive load with
the length of the column 450 mm and the strength of the column Q355 and Table 4 lists their
details. To conclude, the parametric study indicates that the 6 TC-Original-15 WR model is
suitable for a low load-bearing capacity requirement. Meanwhile, the 8 TC-middle-15 WR
is suitable for a high load-bearing capacity requirement.
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Table 4. Comparisons of ultimate load-bearing capacity of FEM.

Series
Ultimate Load (kN)

n (%)
0 WR Maximum WR

6 TC-Original 1242.9 1140.1 (15 WR) 8.27
8 TC-Middle 1733.1 1599.5 (15 WR) 7.71

10 TC-Middle 2124.2 1885.1 (5 WR) 11.27
Note: n denotes the reduction percentage of load bearing capacity between maximum WR model and
0 WR model.

7. Conclusions

This paper focuses on a new design for a fully prefabricated liftable connection (FPLC)
with a standard corner fitting for modular steel construction. Five monotonic loading
tests were performed to study the effect of bolt number and diameter on the axial load-
bearing capacity of the FPLC. Three-dimensional FEM was developed to provide a better
understanding of the stress and PEEQ distribution patterns of the connection and conduct
the subsequent parameter research. From what has been discussed above, the following
conclusions can be drawn.

1. The equivalent strain obtained from the test indicated that plastic strain occurred
in columns earlier. The failure mode of the connection under axial compression is
governed by local buckling of the column.

2. Full-scale experiment and nonlinear FEA on the innovative connection showed that
ultimate load and yield load of the connection may apparently decrease with an
increase of the areas of the bolt hole on the column wall. In other words, the axial
load-bearing capacity of the FPLC may decrease as the diameter and number of the
long stay bolts increase.

3. The location of the column on the corner fitting does not play a main role in the
compressive strength of the FPLC. However, the location of the column affects the
Von Mises stress and PEEQ distribution, and the original, middle, and middle col-
umn locations are suggested for columns with thicknesses of 6 mm, 8 mm, and
10 mm, respectively.

4. The compressive resistance of the connection is closely related to the thickness, length,
and strength of the module column. Increasing the conditional yield strength of the
columns increases the ultimate compressive load of the FPLC. Increasing the length of
the column results in a decrease of the ultimate compressive-load capacity. The thick-
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ness of the column occupies a main factor of the load capacity, and the failure mode
may become inelastic global buckling when the thickness of the column increases.

5. The weight reduction (WR) of the corner fitting can be up to 15% in the 6 TC-Original
and 8 TC-Middle models when the axial load-bearing capacity decreases by 8.27%
and 7.71%, respectively. It is not suitable for the model with a column thickness of
10 mm to reduce the weight of the corner fitting because of an unacceptable decline in
the magnitude of the ultimate load, even with a small amount of weight reduction.
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