
Citation: He, S.; Huang, X.; Yu, P.;

Yun, W. The Investigation on Static

Stability Analysis for Reticulated

Shell with Initial Defect Value Using

Stochastic Defect Mode Method.

Buildings 2022, 12, 615. https://

doi.org/10.3390/buildings12050615

Academic Editor: Emilio

Bastidas-Arteaga

Received: 1 March 2022

Accepted: 26 April 2022

Published: 7 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

The Investigation on Static Stability Analysis for Reticulated
Shell with Initial Defect Value Using Stochastic Defect
Mode Method
Sheng He 1,2, Xinheng Huang 1, Peng Yu 1,* and Weijing Yun 1

1 Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education,
Guangxi Key Laboratory of Disaster Prevention and Structural Safety,
College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China;
hesheng@gxu.edu.cn (S.H.); 1910391025@st.gxu.edu.cn (X.H.); 1910302079@st.gxu.edu.cn (W.Y.)

2 Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
* Correspondence: py@gxu.edu.cn

Abstract: Regarding the effect of the initial geometric defect (IGD) on the static stability of single-
layer reticulated shells, its distribution pattern and magnitude are the main concerns to researchers.
However, the suitable selection of the initial geometric defect magnitude (IGDM) is still a contro-
versial topic. Therefore, it is intended to study the determination of the proper IGDM based on the
structure force state (SFS) and the defect coefficient. In order to find out a qualified IGDM, more
than 5200 numerical cases are carried out for four types of commonly used single-layer reticulated
shells with the span ranging from 40 to 70 m and the rise–span ratio from 1/4 to 1/7, within the
random defect mode method, by taking both geometric and material nonlinearity into account. The
results show that it is more feasible to set the L/500 as IGDM when evaluating the stability of the
single-layer reticulated shell. In addition, an updated criterion to identify the SFS at the stability
critical state (SCS) is developed.

Keywords: single-layer reticulated shells; stability analysis; random defect mode method; initial
geometric defect magnitude; structural force state; defect coefficient

1. Introduction

Highlights:

• An accurate calculation method for the stable critical load of the single-layer reticulated
shell is proposed.

• Put forward the calculation formula to evaluate the structural force state at stable
critical state.

• An updated criterion to identify the structural force state at the stability critical state
is developed.

• The initial geometric defect magnitude is determined by the structural force state and
the defect coefficient.

Due to the light weight, excellent mechanical properties and economic benefits, single-
layer reticulated shells are widely used in long-span space structures [1,2]. In our previous
study, the static stability of single-layer reticulated spherical shells with Kiewitt–Sunflower
type was discussed [3], and the damage constitutive model for circular steel tube of reticu-
lated shells was proposed [4,5]. However, because of the initial eccentricity of member, the
initial bending of member [6,7], the installation deviation of the reticulated shell node [8],
etc., the phenomenon that IGD occurs in single-layer reticulated shells is nearly inevitable.
In the early documented work, it is demonstrated that the single-layer reticulated shell
is quite sensitive to IGD [9–12]. For instance, even a small IGD may lead to a substantial
reduction in bearing capacity of the structure [13–16]. SFS regard as one of the reflections
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of structure stability; the relationship between SFS and IGDM is required for further inves-
tigation. Zhu [17] discussed the non-linear buckling load of aluminum alloy reticulated
shells with gusset joints, and the result showed that the non-linear buckling load is not
highly associated with the bending strain energy ratio and the total strain energy. Shan [18]
examined the effect of joint stiffness on the dynamic response of single-layer reticulated
shells jointed with bolt–column join, and the joint with large stiffness displayed deep plastic
development. In order to exhibit the SFS in essence and ensure the structure safety, it is
essential to consider the IGD in the stability analysis of the single-layer reticulated shells.

The influence of IGD on the stability of single-layer latticed shells are primarily
charactered from two aspects: the distribution and the magnitude of IGD. With respect to
various numerical methods to calculate IGD distribution, the consistent imperfection mode
method [19] and random defect modal method [20] are the most popular. In consistent
imperfection mode method, the lowest buckling mode is used as the IGD distribution
mode, and the stability critical load (SCL) of the structure can be obtained through one
direct calculation. However, the SCL obtained by this approach may not be reliable. Within
the random defect mode method, the IGD can be allocated stochastically on the reticulated
shell structure. Using this strategy, the obtained SCL is more accurate [21,22], though this
approach is more expensive. With respect to IGDM, it was adopted as a certain value in
early work [23–25]. Until recent decades, it was suggested by the current standard [26] that
IGDM should be related to the span of the structure and could be assigned as L/300 (L is
the structural span). Moreover, He et al. [16] investigated the elastic and elastic–plastic
stability of the single-layer inverted catenary cylindrical reticulated shell, then proposed
that it is appropriate to assign IGDM as an amplitude of 1/300 of the structural span in
terms of the stability research on latticed shells. A similar conclusion was presented by Liu
et al. [27] Meanwhile, Cui [28] evaluated the critical load capacity for the global instability
of a spherical latticed shell, the IGDM of L/300 exhibited the ability to prevent the rapid
decrease in critical load factor for a range of values of maximum IGD. Xiong [29] carried
out an elasto-plastic stability analysis of the K6 shell with six different IGDMs, and the
result indicated that when the IGDM was larger than L/300, the ultimate buckling load
of K6 shells tended to be stable. However, according to the standard [26] and refs. [16,27],
the lowest buckling mode is employed as the IGD distribution mode. Therefore, the
obtained SCL of the structure is usually not the most critical, which leads to inaccurate
analysis results. Guo [30] carried out a stability analysis of a single-layer latticed shell and
three type of suspen-dome, then assumed that the installation deviation arranging from
L/500 to L/300 can be regarded as the maximum allowable defect value of the reticulated
shell. Chen et al. [12] conducted an experimental measurement of IGD of a real reticulated
shell and insisted that the designed value of L/300 for IGD appears to be somewhat
conservative. Su [31] proposed a new type of joint with the angled slotted-in steel plates,
and the numerical result illustrated that the amplitude of IGD larger than L/1000 led to a
great loss of its ultimate bucking capacity. Shen and Chen [32] pointed out that if the IGDM
is too large, the structure may become a distorted structure. As mentioned above, a further
discussion on the identification of suitable IGDM is required.

This paper intends to select a more reasonable IGDM which is suitable for reticu-
lated shells with a different type, span, and rise–span ratio. Based on the comprehensive
consideration of the SFS, the influence of IGD on the structural stability and structural
defect coefficient, we intend to suggest L/500 as a more feasible value for IGDM in the
stability investigation of single-layer reticulated shells in this work. This paper is organized
as follows: in Section 2, the governing equation and constitutive model are described.
Meanwhile, the calculation procedure of the SCL and analysis method of a single-layer
latticed shell is introduced. In Section 3, the numerical analysis is carried out. In Section 4,
the stress of the single-layer reticulated shell is analyzed, and the force state of the members
and the structure is defined. Then, an updated criterion to identify the SFS at the SCS is
proposed, and it is applied to determine the suitable IGDM. Furthermore, the IGDM is
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characterized using the defect coefficient. The conclusions are drawn in Section 5, and the
recommendations for future research and engineering practice are put forward in Section 6.

2. Material and Methods
2.1. The Governing Equation and Constitutive Model
2.1.1. The Governing Equation

Motivated by the investigation on elastic–plastic bending of beams conducted by
Štok and Halilovič [33], we assume that a straight circular steel tube with an area of
cross section A(x) is mainly subjected to the bending moment My(x), Mz(x) and uniaxial
force N(x), as shown in Figure 1a. As the tube studied in this work is slender (ratio
l/D > 5, where l is the length of the tube and D is outer diameter for cross section), the
shear stress is too small compared with the normal stress such that it can be ignored
(i.e., τxy(x, y, z) = τxz(x, y, z) = 0). Then the governing equations of stress state distributed
on the cross section can be identified according to the Bernoulli–Navier hypothesis on
planarity and respective perpendicularity for cross section [34], which reads:∫

A(x)

σxxdA = N(x), (1)

∫
A(x)

zσxxdA = My(x), (2)

∫
A(x)

yσxxdA = Mz(x), (3)

∫
A(x)

τxydA = 0, (4)

∫
A(x)

τxzdA = 0, (5)

∫
A(x)

(τxzy− τxyz)dA = 0. (6)

Here, normal stress σ = σxx(x, y, z) is the sum of the stress caused by uniaxial force
N(x), bending moments My(x) and Mz(x), respectively. The stress distribution along the y
and z directions, for instance, is presented in Figure 1b, and it can be observed that before
the stress achieves the yield stress σyield, the mechanical behavior is linear elastic, and it
becomes nonlinear when the material comes to the plastic phase. Thus, the elastic–plastic
response along the y direction can be expressed by the following:

σ(x, z) =


N(x)
A(x) +

My(x)
Iy(x) z, |z| ≤ d

2 + δe, σ ≤ σyield

σp(x, z), |z| > d
2 + δe, σ > σyield

, (7)

where Iy(x) denotes the moment of inertia with respect to the y axis, δe indicates the elastic
zone with the z direction and d is the inner diameter. σp is the plastic stress to be determined
by our proposed constitutive model in the following section.
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Figure 1. Elastic and elastic–plastic stress distribution in a circular steel tube bending problem. (a): 
A straight circular steel tube subjected to the bending moment My(x), Mz(x), and uniaxial force 
N(x). (b): The stress distribution along the y and z directions. 
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Figure 1. Elastic and elastic–plastic stress distribution in a circular steel tube bending problem. (a): A
straight circular steel tube subjected to the bending moment My(x), Mz(x), and uniaxial force N(x).
(b): The stress distribution along the y and z directions.

2.1.2. The Constitutive Model

According to the research over past decades, people have generally used the conven-
tional Prandtl–Reuss material model, wherein the elastic–perfectly plastic stress–strain
relations are derived on the basis of the von Mises yield criterion and its associated flow
rule [35]. The Prandtl–Reuss model is the simplest ideal elasticity model. The material
yield function adopts the Mises yield function, and its expression is

φ(σij)
=
√

J2 − k, (8)

where J2 is the second stress tensor invariant, and k is the hardening coefficient. Then, the
partial derivative of the yield function Φ with respect to the deviatoric stress tensor Sij is
written as

∂Φ
∂Sij

=
Sij

2
√

1
2 SijSij

. (9)

Furthermore, the variation of strain δεij reads such that

δεij =
δSij

2G
+

δσm

3K
δij +

dλSij

2k
, (10)

where G indicates the shear modulus, K represents the bulk modulus, dλ is the plastic factor,
and σm is the average of principal stress. Then, the variation of stress δσij is denoted as

δσij = Kδε
p
kkδij + 2Gδep

ij − G
dλ

k
Sij, (11)

where we have
dε

p
kk = 3dλ

∂Φ
∂σkk

, dep
ij = dλ

∂Φ
∂Sij

. (12)

Thus, dλ, δεij and δσij can be written as follows:

dλ =

Sij
2k δeij

1
2

SijSij/2

(
√

J2)
2

, (13)

δεij =
δSij

2G
+

δσm

3K
δij +

Smnδemn

2k2 Sij, (14)

δσij = Kδε
p
kkδij + 2Gδep

ij − G
Smnδemn

k2 Sij. (15)
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2.2. Methodology

The analysis process on the static stability of the reticulated shell using the stochastic
defect mode method is illustrated in Figure 2. The simulation is carried out based on
the software ANSYS. It can be seen in Figure 2 that the finite element model of structure
is established firstly. Then a reasonable initial geometric defect distribution pattern and
magnitude are applied, and the appropriate numerical iterative calculation coefficients are
set. The main factors to determine the convergence numerical method are the quality of
grids, the reference arc length radius factor and the load steps. Since the grids are fixed
once the finite element model is generated, if the numerical iteration is not convergent,
the calculation coefficients involving the reference arc length radius factor and the load
steps need to be adjusted until the solution satisfies the criterion. Finally, output the
load-displacement result.
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Figure 2. The schematic diagram of static stability analysis for reticulated shell using stochastic defect
mode method.

2.2.1. Analysis Model

For the analysis method, the complicated point is how to propose the hypothesis
to impose the IGDM using the random defect mode method. In this work, two basic
assumptions are adopted in the following:

1. The installation deviation of each node in three directions of the coordinate axis con-
forms to the normal probability density function within the two-fold mean variance
range, that is, the random variable of the installation deviation of each node is δX/2
(δ is the maximum allowable installation deviation, namely, the maximum calculated
value of the initial geometric defect), and the random variable X obeys the standard
normal distribution. The range of the error random variable is [−δ, δ];

2. The random variable of each node installation error for the structure is mutually
independent.

Based on the above assumptions, the installation deviation of each node of the struc-
ture is one multidimensional independent random variable, and each space sample point
corresponds to one initial defect distribution pattern of the structure. Therefore, n sam-
ples can be taken out for nonlinear stability analysis, and the corresponding n SCL can
be obtained.

In order to obtain the reasonable IGDM, it is essential to determine the SCL under the
each IGDM. The calculation steps of the SCL of the reticulated shell within the random
defect mode method are as follows:
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1. The installation deviation with random variable RW/2 is introduced for each node
of calculation model (R is the maximum allowable installation deviation, and W is a
random variable, which obeys the standard normal distribution). For each nonlinear
buckling analysis of the model, a SCL can be obtained.

2. After repeated calculation for n times, n sample space for SCL is generated.
3. The SCL sample space follows the standard normal distribution, and hence the SCL

of each model is determined by the “3σ” principle [36].

The SCL sample space capacity is set as n = 100.

2.2.2. Calculation Model

The difficulty of the calculation model is in computing the structural nonlinear stability
during the development from the stable state to unstable state. It is required to study the
equilibrium routine for the whole computation process. In this work, the arc-length
method [37–39] is used to track the equilibrium path. The method is briefly introduced
as follows. The linear finite element increment equation based on the energy variation
principle can be expressed as

Kt∆U(i) = Ft+∆t −N(i−1)
t+∆t , (16)

and employing the incremental displacement strategy proposed by Batoz and Dhatt [40],
we can rewrite the Equation (16) by following

Kt∆U(i)
= λ

(i)
t+∆tF−N(i−1)

t+∆t , (17)

in which
∆U(i) = ∆U(i)

+ λt+∆t∆U∗(i), (18)

∆U(i)
t+∆t = ∆U(i−1)

t+∆t + ∆U(i), (19)

∆λ
(i)
t+∆t = ∆λ

(i−1)
t+∆t + ∆λ(i), (20)

where Kt is the structural tangential stiffness matrix at time t, ∆U(i) is the iteration displace-
ment increment at current time step, F is the load vector, and λ

(i)
t+∆t is the proportional

coefficient of load at the i-th iteration. There are N + 1 unknown ∆U(i) and ∆λ(i) but only N
linear equations above. Therefore, a constraint equation is demanded. For different types
of arc-length methods, the constraint equations are different. Here, two kinds of constraint
equations are presented, which read as follows:

(1) Spherical arc-length method

(∆λ
(i)
t+∆t)

2
+
(

U(i)
)T

U(i) = ∆l2, (21)

(2) Cylindrical arc-length method (
U(i)

)T
U(i) = ∆l2, (22)

where ∆l is the increment of the arc length at each iteration.

The arc-length method uses an arc-length increment to determine the loading step,
and the calculation is proceeded along the arc direction of the curve so that it is more
adaptable than other methods. Regarding two arc-length methods referred above, the
load increment method is used at the first calculation, and the structure displacement
vector U∆t is obtained after iteration until it is convergent. Starting from the second step
of the calculation, U∆t is substituted into Equations (21) or (22) to calculate the arc-length
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increment ∆l′ . The arc-length increment needs to be calculated before each computation,
which yields the following:

∆l = 4
√
(N1/N2)

3 · ∆l′ , (23)

where ∆l is the arc length increment of the current computation step, N1 is the assumed
optimal number of iterations at each step, and N2 is the number of iterations in the pre-
vious calculation step. Although the arc-length method is quite adaptable, it still has
some limitations to some extent. It is suggested that adopting the iterative strategy flex-
ibly and combining multiple methods reasonably is a good way to achieve an optimal
balanced-path tracking.

2.2.3. Numerical Model

In the present paper, for the four types of commonly used, single-layer reticulated
shells (as shown in Figure 3) are investigated through geometric and material nonlinear
analysis within the random defect mode method, with the magnitude of δ = L/1000,
L/900, L/800, L/700, L/600, L/500, L/400, L/300, L/200, and L/100 (δ is the IGDM).
Parameters of single-layer reticulated shells are shown in Table 1. Steel with the elastic
modulus E = 2.06 × 106 MPa, the Poisson ratio ν = 0.3 and the yield strength f y = 240 MPa
were determined as the material properties of calculation models. The roof static load is
0.8 kN/m2, and the roof live load, which is considered the whole span arrangement, is
0.5 kN/m2.
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Figure 3. The single-layer reticulated shell models. (a) Geodesic; (b) Kiewitt; (c) Sunflower;
(d) Kiewitt 8-Sunflower.

Table 1. Parameters of single-layer reticulated shells.

Type L(m) f /L
Radial and Hoop Members Oblique Members

Outer Diameter ×Wall Thickness (mm)

Geodesic 40

1/7, 1/6, 1/5, 1/4

Φ121 × 5 Φ121 × 5
Kiewitt 8 50 Φ168 × 6 Φ152 × 5

Sunflower 60 Φ180 × 6 Φ168 × 5
Kiewitt 8-Sunflower 70 Φ219 × 7/Φ152 × 6 Φ180 × 6/Φ203 × 6
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3. Results

In this paper, 4000 cases of elastic–plastic stability analysis were conducted. The
numerical results of SCL were based on 100 cases and are presented in Table 2.

Table 2. Maximum SCL under different IGDMs.

δ

Geodesic (f /L = 1/7) Kiewitt 8 (f /L = 1/5) Sunflower (f /L = 1/6) Kiewitt 8-Sunflower
(f /L = 1/4)

∆

(mm)
Fδ

(kN/m2) βδ
∆

(mm)
Fδ

(kN/m2) βδ
∆

(mm)
Fδ

(kN/m2) βδ
∆

(mm)
Fδ

(kN/m2) βδ

0 0 5422 — 0 10.237 — 0 5158 — 0 9.810 —
L/1000 40 3815 0.70 50 6953 0.68 60 3603 0.70 70 6918 0.71
L/900 44 3498 0.65 56 6616 0.65 67 3387 0.66 78 6566 0.67
L/800 50 3222 0.59 63 6255 0.61 75 3154 0.61 88 6123 0.62
L/700 57 3007 0.55 71 5846 0.57 86 3001 0.58 100 5699 0.58
L/600 67 2794 0.52 83 5482 0.54 100 2788 0.54 117 5284 0.54
L/500 80 2540 0.47 100 4869 0.48 120 2497 0.48 140 4886 0.50
L/400 100 2432 0.45 125 4206 0.41 150 2196 0.43 175 4412 0.45
L/300 133 2262 0.42 167 3979 0.39 200 1998 0.39 233 3953 0.40
L/200 200 1958 0.36 250 3532 0.35 300 1656 0.32 350 3217 0.33
L/100 400 1488 0.27 500 2911 0.28 600 0963 0.19 700 2112 0.22

Note: ∆, Fδ, and βδ denote IGD, the maximum SCL in 100 samples with the same IGDM, and the Fδ ratio of the
imperfect model to the perfect model, respectively.

It is documented in the literature [32] that when the IGDM reaches L/300, the SCL
falls to the minimum value. Then, with the increase in IGDM, the SCL performs an increase
trend. Therefore, it is suggested in ref. [32] that the L/300 be regarded as the IGDM of the
reticulated shell. Nevertheless, as it can be seen in Table 2, for all the models, with the
increase in IGDM, the SCL always falls down, even until the end of calculation (δ = L/100).
It is clear that the obtained result in our work is different from that in ref. [32]. The
reasons can be attributed to two points by the following. (1) The random imperfections
modal method is adopted in our work, while the consistent mode imperfection method
is employed in ref. [32]. (2) Only the geometric nonlinearity of the structure is considered
in ref. [32], whereas this paper takes into account the geometric and material nonlinearity.
According to previous research, due to the large span of the reticulated shell, the plastic
response of the member quite affects the mechanical behavior of the structure. He et al. [16]
shows that the elastic–plastic ultimate strength of the structure could be computed by
taking into account a plastic influence coefficient of 0.60 on the basis of the elastic result.
Liu et al. [27] demonstrated that the ultimate bearing capacity of the latticed shell that
considers the influence of material nonlinearity can be determined by multiplying the result
of the ultimate bearing capacity of the latticed shell that does not consider the material
nonlinearity by a reduction factor of 0.742. Hence, in order to find out a qualified IGDM,
the double nonlinearity of the structure is used to analyze the single-layer reticulated shell
structure within the random defect mode method in this manuscript.

4. Discussion
4.1. Stress Analysis

It is well known that the latticed shell structure is developed from a thin shell structure.
In the early stability analysis of the latticed shell structure, the “method of simulated shell”
is used to transform the reticulated shell structure into a continuous shell structure, and
then some approximate nonlinear methods are used to solve the SCL of the reticulated
shell structure. Although the finite element method is widely used, the analysis method of
the thin shell theory can clearly understand the force characteristics of the reticulated shell
structure. The internal forces generated by external forces in the reticulated shell structure
are divided into “film internal force” and “bending internal force”, which correspond to the
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“no-moment theory” and “moment theory” of the thin shell structure, respectively. It can
be seen from the force analysis of the reticulated shell by adopting the bending moment
theory and the non-bending moment theory that the film internal force mainly drives the
axial stress, while the bending internal force mainly triggers the bending stress and shear
stress (including the torsional shear stress and transverse shear stress). In the stability
analysis of the single-layer reticulated shell, the increase in IGDM not only reduces the
SCL of structure, but also changes the SFS at SCS. Although the accepted reticulated shell
structure in actual engineering inevitably has initial geometric defects, it is controlled in
a small range, and hence the SFS is still dominated by the film internal force at SCS. If
excessive IGD is applied in the stability analysis of latticed shell, the SFS may not conform
to its actual working state, and the structure stability cannot be truly reflected. Therefore,
this section puts forward the calculation formula to judge the SFS at SCS.

4.1.1. Analysis of the Member Force State

The identification of the SFS at SCS needs to be based on the analysis of the member
force state. In order to study the member force state at SCS, the ratio of normal stress
produced by the bending moment and axial force (RBA) is defined as

αi = |σMi/σNi|, (24)

where αi, σMi and σNi are the RBA, maximum bending stress and axial stress of the i-th
member, respectively. It should be pointed out that since the torsional and transverse
shear stress of the member are rather smaller than the axial and bending stress during
stability analysis of reticulated shell, the RBA can be used to represent the member force
state directly. In this manuscript, the member with RBA less than 0.50 is defined as the
member in which the force caused by axial stress dominates (MAS); otherwise, it is the
member with the force led by both axial stress and bending stress (MAB).

4.1.2. Analysis of the SFS

Based on the classification of the member force state, the SFS at SCS can be examined
subsequently. As discussed above, the member of the latticed shell structure is either MAS
or MAB. This paper defined the following variables to represent the percentage of MAS
and MAB among all the effective members, which read

γN =

(
j

∑
s=1

αNs

)/
j, (25)

ηN = j/m, (26)

γN =

(
k

∑
s=1

αNs

)/
k, (27)

ηN = k/m, (28)

where γN,
j

∑
s=1

αNs and j are the average of the RBA of the MAS, sum of the RBA of the MAS,

and number of the MAS, respectively, ηN represents the percentage of MAS to effective

member, γN,
k
∑

s=1
αNs and k are the mean value of the RBA of the MAB, sum of the RBA of

the MAB and number of the MAB, respectively, ηN denotes the percentage of MAB to the
effective member, and m is the number of effective members. As the bending stress and
axial stress of the outermost ring member connected with the fixed hinge support are small,
the value of RBA appears abnormal. Moreover, the outermost ring rod connected with the
fixed hinge support has little influence on the overall buckling behavior of the structure.
Therefore, when calculating the percentages of two kinds of members, the ring members
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at the support are not taken into account, which means the number of effective members.
Meanwhile, m is computed by the difference between the number of all members and the
number of outermost ring members.

The random defect mode method requires multiple calculations, and each calculation
can produce a percentage of MAS and RBA of MAS. Therefore, the average of multiple
calculations is applied by the following definitions:

ϕN =

(
n

∑
s=1

γNs

)/
n, (29)

θN =

(
n

∑
s=1

ηNs

)/
n, (30)

ϕN =

(
n

∑
s=1

γNs

)/
n, (31)

θN =

(
n

∑
s=1

ηNs

)/
n, (32)

where ϕN indicates the average of the MAS with RBA, θN represents the average percentage
of MAS to effective member, ϕN expresses the average of the MAB with RBA, and θN de-
notes the average of percentage of MAB to effective member. Hence, the SFS is determined
by the average of percentage of MAS to effective member and the average of RBA.

4.2. Selection of IGDM Based on the SFS
4.2.1. Determination Criteria for SFS

This section uses the same calculation model (four types of commonly used single-
layer reticulated shells) as those in Section 2.2.2 to analyze the SFS under the SCS. The SFS
under different IGDMs are shown in Table 3.

Table 3. The SFS under different IGDMs.

δ

Geodesic (f /L = 1/7) Kiewitt 8 (f /L = 1/5) Sunflower (f /L = 1/6) Kiewitt 8-Sunflower
(f /L = 1/4)

∆

(mm) ϕN
θN
(%)

∆

(mm) ϕN
θN
(%)

∆

(mm) ϕN
θN
(%)

∆

(mm) ϕN
θN
(%)

0 0 0.169 82.8 0 0.141 92.9 0 0.175 89.0 0 0.183 89.3
L/1000 40 0.186 82.1 50 0.165 83.8 60 0.198 80.2 70 0.195 83.6
L/900 44 0.195 80.5 56 0.177 82.2 67 0.204 78.5 78 0.201 82.3
L/800 50 0.206 79.5 63 0.190 79.9 75 0.215 77.2 88 0.211 81.1
L/700 57 0.218 78.3 71 0.203 77.6 86 0.223 75.5 100 0.226 79.8
L/600 67 0.224 75.0 83 0.225 75.3 100 0.234 73.4 117 0.235 78.3
L/500 80 0.235 71.7 100 0.249 72.0 120 0.240 70.5 140 0.244 76.0
L/400 100 0.281 65.3 125 0.279 63.9 150 0.282 65.0 175 0.293 68.5
L/300 133 0.325 54.4 167 0.319 55.2 200 0.306 55.4 233 0.323 54.5
L/200 200 0.411 42.9 250 0.402 41.0 300 0.376 40.2 350 0.409 40.0
L/100 400 0.505 22.2 500 0.498 21.2 600 0.437 20.9 700 0.499 20.5

It is clear in Table 3 that when the IGDM is less than L/500, with the increase in the
IGDM, the decrease in the MAS with percentage and the increase in the MAS with RBA
are slow. While after the IGDM is greater than L/500, with the increase in the IGDM, the
drop of the MAS with percentage and the rise in the MAS with RBA are sharp. It indicates
that with the rise in the IGDM, the SFS at SCS changes from the film internal force to the
bending internal force. In this paper, the dual-control principle is proposed to judge the
SFS at the SCS. To be specific, when the average of the percentage of MAS to the effective
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member is larger than 0.70, and meanwhile, in these members, the average of RBA is not
larger than 0.25, and the SFS is dominated by the film internal force. As it is mentioned in
Section 4.1, the SFS of the reticulated shell can be interpreted to be dominated by either the
internal film force or bending moment, depending on the percentage of the MAS member
(namely, the value of θN in Equation (30)). When considering the allowed IGDM for the
reticulated shell in practical engineering, it is safe to control the SFS of the structure to
perform as an internal film force. As it is illustrated in Table 3, before the IGDM δ reaches
the L/500, the θN for all the four types of reticulated shell structures (Geodesic, Kiewitt 8,
Sunflower, and K8-Sunflower) decreases steadily and the value of it remains beyond 70%.
After that, the value of θN drops remarkably with the rise in IGDM δ, and its value falls
beneath 50%, and to 20% finally. This means that the SFS of the shell structure changes to
be dominated by the bending moment.

4.2.2. Determination of the IGDM

In this section, the value of IGDM is allocated as L/500 and L/300, respectively,
which aims to figure out the effect of IGDM on the SFS at the critical situation. Four
types of single-layer reticulated shells (Geodesic L = 40 m, Kiewitt 8 L = 50 m, Sunflower
L = 60 m and Kiewitt 8-Sunflower L = 70 m) with a rise–span ratio (f /L = 1/4, 1/5, 1/6
and 1/7) are investigated within the random defect mode method and the 100 samples
(n = 100). The SFS under the IGDM with L/500 and L/300 are reported in Table 4. The
average of the percentage of MAS and the average of RBA of MAS are presented in
Figures 4 and 5, respectively.

Table 4. The SFS under the IGDM with L/500 and L/300.

Type L(m) f /L
δ = L/500 δ = L/300

ϕN θN(%) ϕN θN(%)

Geodesic 40

1/4 0.244 79.0 0.326 48.6
1/5 0.240 73.0 0.326 58.9
1/6 0.232 74.3 0.325 56.4
1/7 0.235 71.7 0.325 54.4

Kiewitt 8 50

1/4 0.248 75.8 0.314 51.2
1/5 0.249 72.0 0.319 55.2
1/6 0.236 71.1 0.326 48.5
1/7 0.240 75.1 0.328 43.4

Sunflower 60

1/4 0.236 74.0 0.303 51.5
1/5 0.246 76.4 0.306 42.2
1/6 0.240 70.5 0.306 55.4
1/7 0.238 77.6 0.308 43.6

Kiewitt 8-
Sunflower

70

1/4 0.244 76.0 0.323 54.5
1/5 0.246 72.8 0.325 42.7
1/6 0.242 70.5 0.326 49.5
1/7 0.248 75.6 0.327 45.9
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For each model, when the IGDM is L/500, the average of the percentage of MAS is
over 70%, and the average of RBA is less than 0.25. It demonstrates that the film internal
force is the main SFS. For each model, when the IGDM rises to L/300, the average of the
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percentage of MAS is less than 50%, and the average of RBA is greater than 0.30. It denotes
that the SFS at SCS changes from the film internal force to the bending internal force (from
Figures 4 and 5). Therefore, it can be concluded that it is more reasonable to take the IGDM
as L/500 in the stability analysis of the single-layer reticulated shell.

4.3. Selection of the IGDM Based on the Defect Coefficient
4.3.1. Choosing of the Defect Coefficient

To some extent, the IGD determines the SCL of the structure. In order to quantify this
effect, this paper introduced a defect factor βδ to represent the decreasing amplitude of
SCL on the latticed shell structure, which is expressed as follows:

βδ = Fδ/F0, (33)

where δ is the IGDM, and Fδ and F0 are the SCL of imperfected and perfect structures,
respectively. In this paper, the defect coefficient βδ is utilized to help to identify the IGDM.
As we can see in Figure 6, for each structure, βδ can clearly reflect the influence of IGD on
the SCL. It was suggested by Shen and Chen [32] and Fan et al. [9] that 50% of the SCL of
the perfect lattice shell should be defined as the SCL of the defected latticed shell. It was
proposed in ref. [16] that the ultimate bearing capacity of the structure with considering
the geometric imperfection influence can be obtained through the perfect structure results
multiplied by the reduction coefficient of 0.46. Therefore, it is appropriate to take the defect
coefficient around 0.50. Note that the defect coefficient βδ defined in Equation 33 relies on
the IGDM δ. As it is referred in Sections 4.1 and 4.2.2, the primary factor to identify IGDM
is to guarantee that the SFS of the shell mainly behaves as the internal film force, which is
determined by the key parameter θN defined in Equation (30). Recall the definition of θN;
we find that it derives from the coefficient αi (RBA) in Equation (24). Look at the expression
of αi in Equation (24); we recognize that it involves the performance of bending stress σMi
and axial stress σNi, which is dependent on the material property. Hence, we assume that
our defect model can be extended to different materials.
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As it is plotted in Figure 6, when the IGDM is L/1000, the defect coefficient βδ is about
70% for four kinds of reticulated shell structures, which means that the stability critical load
(SCL) drops around 30%. With the increase in IGDM, the values of βδ decrease gradually
with the nearly linear trend until the IGDM arrives L/300. Afterwards, the βδ falls sharply
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to a small magnitude finally (around 17% for the lowest value). This is because, as we
mentioned in Section 4.2, as long as the IGDM is over L/300, the SFS transfer from the
state is dominated by the internal film force to the situation controlled by the bending
moment, which indicates that the shell structure is not so stable anymore, leading to the
tremendous reduction in SCL. Therefore, in a word, it is assumed that the defect coefficient
βδ is sensitive to IGDM δ in this work.

4.3.2. Identification of the IGDM

The same calculation model as those in Section 4.2.2 was used to figure out the feasible
IGDM under the defect coefficient. The defect coefficient under the IGDM with L/300
and L/500 is shown in Table 5; when the IGDM is L/500, the defect coefficient of each
model is around 0.48. As the IGDM increases to L/300, nearly all defect coefficients of the
calculation model are less than 0.40. Thus, the selected IGDM is equal to L/500, which is
more reasonable for the single-layer reticulated shell; meanwhile, it demonstrates that 0.50
as the defect coefficient is reasonable.

Table 5. Defect coefficient under the IGDM with L/300 and L/500.

Type L
(m)

f /L F0
(kN/m2)

δ = L/500 δ = L/300

Fδ

(kN/m2) βδ
Fδ

(kN/m2) βδ

Geodesic 40

1/4 9598 4650 0.48 3793 0.40
1/5 8829 4527 0.51 3314 0.38
1/6 6802 3396 0.50 2722 0.40
1/7 5422 2540 0.47 2262 0.42

Kiewitt 8 50

1/4 12,077 5997 0.50 4795 0.40
1/5 10,237 4869 0.48 3979 0.39
1/6 9154 4438 0.48 3418 0.37
1/7 8163 3861 0.47 3059 0.37

Sunflower 60

1/4 8179 4012 0.49 3196 0.39
1/5 6050 2972 0.49 2419 0.40
1/6 5158 2497 0.48 1998 0.39
1/7 4545 1996 0.44 1817 0.40

Kiewitt
8-Sunflower

70

1/4 9810 4886 0.50 3953 0.40
1/5 8646 4229 0.49 3371 0.39
1/6 7538 3722 0.49 2963 0.39
1/7 5940 2780 0.47 2484 0.42

5. Conclusions

Based on four types of commonly used single-layer reticulated shells (Geodesic,
Kiewitt 8, Sunflower, and Kiewitt 8-Sunflower), more than 5200 numerical cases of the
elastic–plastic load-displacement of single-layer reticulated shells were investigated within
the random defect mode method. Afterwards, an updated criterion to identify the structure
force state at the stability critical state (SCS) was developed, and the reasonable initial
geometric defect magnitude (IGDM) in the stability analysis of the single-layer reticulated
shell was discussed. The main conclusions can be drawn as follows:

1. Increasing the initial geometric defect magnitude (IGDM) within a rational range
always leads to a fall down of the stability critical load (SCL), and it does not perform
a smooth or increase trend as did the earlier research [32].

2. It is feasible to select 0.50 as the defect coefficient, which is better to describe the
influence of the initial geometric defect (IGD) on the structural stability.

3. The structure force state at the stability critical state (SCS) could be estimated by
the ratio of normal stress produced by the bending moment and axial force. Briefly
speaking, when the average of percentage of the member in which the force caused
by the axial stress dominates (MAS) and is larger than 0.70 and meanwhile in these
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members, the average of the ratio of normal stress produced by the bending moment
and axial force (RBA) is less than 0.25, the structural force state is dominated by the
film internal force.

4. When the initial geometric defect magnitude (IGDM) is adopted as L/300, the struc-
ture force state (SFS) is not the film internal force, and hence in this case, the initial
geometric defect (IGD) on the structural stability is overestimated. Therefore, consider-
ing the structure force state (SFS) and the influence of the initial geometric defect (IGD)
on the structural stability, it is more proper to select L/500 as the initial geometric
defect magnitude (IGDM).

6. Recommendation for Future Research and Engineering Practice

Future research in static stability analysis for reticulated shells is required to consider
the influence of more parameters, including the initial geometric defect of the bar member,
the semi-rigid connection, etc.

It is more reasonable to appropriately relax the requirement of the construction accep-
tance in the maximum coefficient of the initial geometric defect. The defect coefficient with
0.50 is recommended.
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Nomenclature

IGD (∆) R
installation deviation

Initial Geometric Defect Maximum allowable

IGDM (δ)
Initial Geometric

W Random variable
Defect Magnitude

SFS Structure Force State Kt
Structural tangential

stiffness matrix at time t

SCS Stability Critical State ∆U(i) Iteration displacement increment
at current time step

SCL Stability Critical Load F Load vector

RBA (αi)
Ratio of normal stress produced by

λ
(i)
t+∆t

Proportional coefficient of
Bending moment and Axial force load at the i-th iteration

MAS
Member in which the force

∆l
Increment of arc length

caused by Axial Stress dominates at each iteration

MAB
Member with the force led by both

N1
Assumed optimal number

Axial stress and Bending stress of iterations at each step

L Structural span N2
Number of iterations in

the previous calculation step

A
Area of cross section of

E Elastic modulus
straight circular steel tube

My Bending moment with y direction ν Poisson ratio
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Mz Bending moment with z direction f y Yield strength
N Uniaxial force f Structural rise

l Length of the tube βδ
SCL ratio of the imperfect

model to the perfect model
D Outer diameter for cross section σMi Maximum bending stress

τxy Shear stress with y direction σNi Axial stress of the i-th member
τxz Shear stress with z direction γN Average of the RBA of the MAS

σxx Normal stress
j

∑
s=1

αNs Sum of the RBA of the MAS

σyield Yield stress j Number of the MAS

Iy
Moment of inertia with

ηN
Percentage of MAS to

respect to the y axis effective member

δe Elastic zone with z direction γN
Mean value of the
RBA of the MAB

d Inner diameter
k
∑

s=1
αNs Sum of the RBA of the MAB

σp Plastic stress k Number of the MAB

J2 Second stress tensor invariant ηN
Percentage of MAB
to effective member

k Hardening coefficient m Number of effective members
Φ Mises yield function ϕN Average of the MAS with RBA

Sij Deviatoric stress tensor θN
Average percentage of

MAS to effective member
G Shear modulus ϕN Average of the MAB with RBA

K Bulk modulus θN
Average of percentage of
MAB to effective member

dλ Plastic factor Fδ SCL of imperfected structure
σm Average of principal stress F0 SCL of perfect structure
δσij Variation of stress
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