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Abstract: Compared with traditional pipe networks, the complexity of air conditioning water 

systems (ACWSs) and the alternation of cooling and heating are more likely to cause pipe network 

leakage. Pipe leakage failure seriously affects the reliability of the air conditioning system, and can 

cause energy waste or reduce human comfort. In this study, a two-stage leakage fault diagnosis 

(LFD) method based on an Adam optimization BP neural network algorithm, which locates 

leakage faults based on the change values of monitoring data from flow meters and pressure 

sensors in air conditioning water systems, is proposed. In the proposed LFD method, firstly, the 

ACWS network’s hydraulic model is built on the Dymola platform. At the same time, a cuckoo 

algorithm is used to identify the pipe network’s characteristics to modify the model, and the 

experimental results show that the relative error between the model-simulated value and the actual 

values is no more than 1.5%. Secondly, all possible leakage conditions in the network are simulated 

by the model, and the dataset is formed according to the change rate of the observed data, and is 

then used to train the LFD model. The proposed LFD method is verified in a practical project, 

where the average accuracy of the first-stage LFD model in locating the leaking pipe is 86.96%; The 

average R2 of the second-stage LFD model is 0.9028, and the average error between the predicted 

location and its exact location with the second-stage LFD model is 6.3% of the total length of the 

leaking pipe. The results show that the proposed method provides a feasible and convenient 

solution for timely and accurate detection of pipe network leakage faults in air conditioning water 

systems. 

Keywords: BP neural network; air conditioning water systems; leakage fault diagnosis 

 

1. Introduction 

With people’s aspirations and pursuit of a better life, the requirements for indoor air 

quality have gradually increased [1], and centralized or semi-centralized central air 

conditioning systems are being more and more widely used in today’s buildings. As an 

important part of air conditioning systems, the pipe network not only plays an important 

role in connecting the unit, the air conditioning terminal device, and the cooling side, but 

also undertakes the key task of transporting and distributing the cold or heat to each 

terminal device. However, as the use of air conditioning systems grows over the years, 

many factors—such as the pipe material, surrounding environment, laying method, 
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construction quality, and operation and maintenance management—affect the reliability 

of the air conditioning water system (ACWS) pipe network, and pipe leakage has become 

one of the most frequent failures in the whole life cycle of air conditioning systems [2]. 

Usually, ACWSs are equipped with water make-up devices, so a small leakage in 

the pipe network is often not obvious, and is often overlooked. However, pipe leakage 

failure often causes immeasurable damage to the actual running of the system. Figure 1 

shows the common forms of damage to ACWS pipe networks. The “Practical Heating 

and Air Conditioning Design Manual” [3] stipulates the hourly leakage and 

replenishment of the ACWS. If a large public building is designed according to this 

standard with a floor area of 20,000 m2, the hourly make-up water to the ACWS due to 

pipe network leakage is 800 L. At the same time, the make-up water is cold or hot water 

treated by high-priced softening; in addition to the large waste of water resources and 

energy consumption, pipe network leakage may also cause the system to deviate from 

the best working operating point [4], thus affecting human comfort. Pipe network 

leakage has become the most common but difficult-to-deal-with problem in ACWS 

failures. In addition, the vast majority of accidents in the pipe network do not occur 

suddenly, but are gradual, slow processes [5]. Pipe network leakage is a precursor to 

major accidents, such as long-term neglect of the leakage problem which, in the event of 

an accident, can seriously threaten people’s lives and the safety of their property. 

Therefore, if the pipe leakage can be detected and solved in a timely manner, one can not 

only avoid the waste of water resources and energy consumption by the system, but also 

prevent the problem before it occurs, effectively reducing the possibility of safety 

accidents such as pipe bursts. 

  
(a) (b) 

Figure 1. Common forms of damage to ACWS pipe networks: (a) leakage causes ACWS 

performance degradation; (b) ACWS water leakage causes mildew. 

The key means of solving leakage problems in pipe networks is to use scientific and 

effective pipe network leakage detection methods to accurately locate the location of the 

leak(s) in the faulty pipe network. Discussion has been made of various pipeline fault 

detection methods, viz., vibration analysis, pulse-echo methodology, acoustic techniques, 

negative-pressure-wave-based leak detection systems, support-vector machine 

(SVM)-based pipeline leakage detection, interferometric-fiber-sensor-based leak 

detection, filter diagonalization method (FDM), etc. It was found that these methods 

have been applied for specific fluids, such as oil, gas, and water [6]. In air conditioning 

systems, the popularity of temperature, pressure, and flow sensors has led many 

scholars to propose diagnostic methods for pipe leakage based on statistical or analytical 

methods, including the pressure gradient method [7], pressure point analysis [8], 

negative pressure wave method [9], and extended Kalman filter [10] (the leakage 

position is determined using the 9-DOF IMU (3D accelerometer, 3D gyroscope, and 3D 

magnetometer) sensor data in the extended Kalman filter), which were found to have 
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limited application scenarios based on examples, or to be more appropriate as auxiliary 

diagnostic tools. 

With the development of artificial neural network technology, more and more 

scholars are exploring the possibilities of this technology for identifying pipe network 

leakage faults [11–13]. Lei et al. [14] established a BP-neural-network-based heating pipe 

network leakage fault diagnosis model based on artificial neural network, and 

introduced the idea of hierarchy into pipe network leakage diagnosis. Duan et al. [15] 

established an adaptive neuro-fuzzy inference system (ANFIS)-based LFD model for 

centralized heating pipe networks. The example verified that the ANFIS-based heat 

network LFD model is stable and has high diagnostic accuracy. Xue et al. [16] proposed 

an XGBoost-based district heating network leakage diagnosis method, using the rate of 

change of observed data from the flow and pressure sensors installed in the system to 

locate the leaky pipe section. A series of studies have shown that the technology applied 

to district heating networks (DHNs) has good diagnostic accuracy and 

stability—especially BP neural networks, which show a strong ability of nonlinear fitting 

and self-sample learning. However, with the increasing volume and complexity of 

ACWS networks, the traditional manual inspection or hardware-based network leakage 

diagnosis methods struggle to meet the requirements of “quick, accurate and steady” 

diagnosis of leakage faults in ACWS networks [14]. 

While there are a few studies on ACWS leakage diagnosis, this study focuses on the 

actual diagnosis effect of a BP neural network algorithm on the ACWS leakage problem. 

In addition, most of the pipe network LFD methods mentioned above regard the leaking 

pipe’s number as the final diagnosis result. When the leaking pipe is long, this causes 

problems with the diagnostic efficiency. Leakage diagnosis of pipelines can prevent 

environmental and financial losses [17], and instability of air conditioning water systems 

can lead to lower energy efficiency of air conditioning systems [18]. This study aims to 

diagnose pipes’ exact leakage location after diagnosing the identity of the leaking pipe. 

Compared with DHNs, ACWSs are more directly customer-facing, and affect the 

customer experience more quickly when they leak. Therefore, compared with other 

networks, it is more necessary to study the leakage diagnosis of ACWS networks, and to 

explore the feasibility of BP neural network technology for practical applications. 

This paper proposes the possibility of applying an Adam-optimized BP neural 

network algorithm to the diagnosis of pipe leakage in ACWSs, establishes a simulated 

hydraulic model of pipe network leakage based on the Dymola platform (a kind of 

engineering modeling platform, detailed in Section 2.2.1), adopts the cuckoo search 

algorithm to identify the characteristics of the pipe network so as to ensure the reliability 

and accuracy of the simulation model, proposes a two-stage leakage diagnosis method 

with the Adam-optimized BP neural network—which not only locates the leaky pipe 

section, but also locates the exact leakage point on the pipe—and demonstrates the 

application of the method based on a practical project. 

The rest of this paper is organized as follows: Section 2 briefly describes the 

research methodology, with practical examples. Section 3 shows and analyzes the actual 

results of the method. Section 4 discusses the case results and implications. Section 5 

presents the main conclusions of this study. 

2. Materials and Methods 

2.1. Research Overview 

Figure 2 shows the research path and design ideas of this paper, and the methods 

used are detailed in the subsequent section. 
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Figure 2. Research path and design ideas. 

Figure 3 shows the detailed diagnosis process. When the ACWS is stable, the 

leakage diagnosis is triggered by monitoring the make-up water’s flow rate (if the pipe 

network system is not installed with a make-up water flow sensor, the difference 

between the water supply’s main flow rate and the return’s main flow rate is used as the 

make-up water flow rate) when the set threshold is exceeded in the duration (which can 

be set). The real-time data (i.e., flow rate and pressure) monitored by the system are 

provided to the pipe network model and the BP neural network for second-stage 

diagnosis, respectively, and the first-stage diagnosis is performed by the sample set of 

leak conditions from the Dymola pipe network water system model, which outputs the 

identification number of its leaky pipe section. At the same time, to determine whether 

the length of the pipe section exceeds the set threshold length, if the length of the pipe 

section is shorter than the set threshold, the second-stage diagnosis is skipped and the 

network fault information is output directly; if the length of the pipe section is longer 

than the set threshold, the second-stage diagnosis is triggered, and the exact location of 

the leakage and the identity of the leaky pipe section are output as the results of the fault 

information to complete the accurate identification of the leakage fault in the ACWS. 

The ACWS network hydraulic model was built on the Dymola platform (detailed in 

Section 2.2.1); the identification of network resistance characteristics by the cuckoo 

algorithm (detailed in Section 2.2.2) helps to improve the hydraulic model and ensure 

that the model is as close as possible to the actual system. Meanwhile, the two-stage 

leakage diagnosis methods of the pipe network were all built using an Adam-optimized 

BP neural network, with different parameters set according to the different output 

variables of the two stages (detailed in Section 2.2.3). 
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Figure 3. Research diagram of two-stage leakage diagnosis in ACWSs. 

2.2. Method Description 

2.2.1. Hydraulic Model of the ACWS Network under Simulated Leakage Conditions 

The Dymola platform is a multidisciplinary system modeling and simulation tool 

based on the Modelica language (an object-oriented physical modeling language) [19]. It 

has a library of models and simulation specialties suitable for multiple engineering 

domains, and has proven its applicability in the engineering field, while 

“Modelica.Fluid” provides the basis for developing the network hydraulic model. 

However, the existing components cannot meet the simulation under leakage 

conditions, so for this paper we developed a hydraulic model that can simulate different 

leakage conditions based on the Dymola platform. 

The model is shown in Figure 4. In the event that a leak occurs at a certain point on 

the pipe, the simulated leakage is divided into two pipes—“pipe1” and “pipe2”—and 

the two pipes are connected by a tee junction without pressure loss, and then connected 

by a “negative flow source” (corresponding to the source module in Figure 4), which can 

be set by the user. All of the above components are “packaged” into a new element. 

By setting the flow rate of the “negative flow source” and the ratio of the length of 

each pipe to the total pipe length (i.e., the simulated pipe leakage volume and leakage 

location), the model is built under different leakage conditions. In order to verify the 

accuracy of the hydraulic model of the pipe leakage, the classical theoretical calculation 

method and the simulation method based on the hydraulic model are used to calculate 

the pressure difference between the inlet and outlet of the same pipe, and the model is 

verified by comparing the calculation results (details in Appendix A). 
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Figure 4. Hydraulic model of pipe leakage on the Dymola platform. 

2.2.2. Cuckoo Search Algorithm for the Identification of Network Resistance 

Characteristics 

The hydraulic model established using Dymola described in Section 2.2.1 is not 

sufficient to simulate the actual pipe network system. In the actual pipe network, there 

are factors such as pipe corrosion, internal wall scaling, etc. The resistance characteristics 

of the pipe network inevitably deviate from the initial design calculation values, and the 

key to establishing an accurate hydraulic model of the pipe network lies in the 

identification of the resistance characteristics of the pipe network. Optimization 

algorithms are a common method for the identification of pipe network resistance 

characteristics. The performance of the cuckoo search algorithm was compared with that 

of the particle swarm algorithm, differential evolution algorithm, artificial bee swarm 

algorithm, and other algorithms based on various test functions [20], showing that the 

cuckoo search algorithm has fewer parameters, simple operation, easy implementation, 

generality and robustness, and excellent local and global search capabilities with 

comprehensive advantages. Meanwhile, the object of this paper is similar to the research 

objects in the literature on the identification of pipe resistance characteristics, so the 

cuckoo search algorithm was used in this study to help improve the hydraulic model. 

Before applying the optimization algorithm, it is necessary to determine the 

objective function of the identification of the resistance characteristics of the pipe 

network in this study. The purpose is that the final identification parameters optimized 

by the algorithm can make the simulated parameters of the hydraulic model as close as 

possible to the actual monitored values. In this study, the sum of the absolute value of 

the relative error between the actual monitored values and the model-simulated values 

of each sensor (pressure and flow rate) in the pipe network system is used as the 

objective function, and the formula is shown in Equation (1): 

  ���(�) = ∑ �∑ �
�����

��
�

��
��� + ∑ �

�����

��
�

��

���
��

���        (1)

where Z is the number of conditions involved in the calibration; NP and NQ represent the 

numbers of pressure and flow sensors installed in the network system, respectively; Pm, 
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and �� represent the monitored and simulated pressures, respectively; and Qm and �� 

represent the monitored and simulated pipe section flow rates, respectively. There are 

also implicit constraints between the simulated pressure �� and the simulated pipe flow 

��, i.e., the hydraulic balance equations (i.e., nodal continuity equation, basic loop 

energy equation, and Bernoulli’s equation) of the network itself need to be met. 

The process of identifying the resistance characteristics of the ACWS network based 

on the cuckoo search algorithm is as follows: 

Step 1: Build a pipe network simulation model based on deterministic parameters. 

Step 2: Set parameters such as population size, discovery probability Pa, maximum 

number of iterations N of the algorithm, and random initialization of bird’s nest 

locations, with each set of bird’s nest locations representing a set of pipe resistance 

characteristic coefficients to be identified. 

Step 3: Substitute each nesting position into the pipe network simulation model to 

calculate the objective function value of each nesting position (i.e., each set of pipe 

resistance characteristic coefficients), and compare them to obtain the current optimal 

nesting position and the optimal objective function value. 

Step 4: Keep the optimal nest location in the previous generation, update the nest 

locations other than the optimal nest using Lévy flight, and calculate the corresponding 

objective function value, compare the obtained objective function value with the current 

optimal value, and update the current optimal objective function value [21]. 

Step 5: Compare the random number r with the discovery probability Pa. If r > Pa, 

change the nest location once randomly; if not, keep it the same. Finally, retain the 

optimal set of nest locations. 

Step 6: If the maximum number of iteration generations has been reached or the 

search precision requirement has been met, continue to the next step; otherwise, return 

to Step 4 

Step 7: Output the global optimal nest location, which is the optimal resistance 

coefficient of the pipe network in this search process. 

The optimal results obtained according to the above steps are used as the pipe 

network resistance coefficients of the hydraulic model, making the hydraulic model 

more accurate and closer to the actual operation of the system. 

2.2.3. Adam Optimization Algorithm for the LFD Model 

“BP neural network” usually refers to multilayer feedforward neural networks 

trained with the error backpropagation (BP) algorithm. BP neural networks have been 

widely used in many engineering fields—such as pattern recognition, intelligent control, 

fault diagnosis, image recognition processing, and optimization computation—due to 

their nonlinear mapping capability, self-learning and self-adaptive capability, and 

generalization capability. 

The Adam (adaptive moment estimation) optimization algorithm is an improved 

algorithm for traditional BP neural networks, which adopts independent adaptive 

learning rates for different parameters by calculating the first-order moment estimation 

and second-order moment estimation of the gradient during the training of the neural 

network [22]. It has been experimentally shown that neural networks based on the 

Adam optimization algorithm not only have faster training speed compared to other 

stochastic optimization methods, but also do not easily fall into local optima, and have 

excellent performance in practice. Therefore, this study uses the Adam optimization 

algorithm as the kernel for the LFD model of the ACWS. 

This paper adopts the concept of hierarchy in the structure of the LFD model [23]. 

On the one hand, the ACWS undertakes the building’s heat and cold load, and there are 

a variety of control methods, such as fixed-flow and variable-flow systems, 

variable-flow systems that contain the supply and return main-fixed temperature control 

systems, supply and return main-fixed differential pressure control systems, and the 

most unfavorable end-fixed differential pressure control systems. The control system is 
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complex; on the other hand, the length of each pipe section in the ACWS is unevenly 

distributed, and the number of stages varies greatly—the long pipes may be hundreds of 

meters, while the short pipes may only be one or two meters. If all the pipes are 

diagnosed with leakage faults, this will affect the diagnosis time and reduce efficiency, 

while there is research showing that two-stage fault diagnosis, compared to single-fault 

diagnosis (a single diagnosis to identify the section of the leaky pipe and the leakage 

location), has higher diagnostic accuracy as well as relatively less training time [24], 

which not only reduces the complexity of fault diagnosis and the training time of 

diagnosis, but can also adjust the fault diagnosis process and improve the efficiency of 

fault diagnosis according to the user’s needs in the actual application process. Therefore, 

this paper uses the two-stage LFD model for fault diagnosis of the ACWS pipe network. 

The leakage conditions are simulated by the improved hydraulic model, and the 

sample datasets under different conditions are obtained. Then, the two-stage LFD model 

is trained by setting the parameters of the Adam optimization algorithm (such as the 

number of hidden layer nodes, the activation function of the hidden layer, and the 

regularization parameter). The training and testing process of the neural network was 

achieved in this study using the Python programming language. 

2.2.4. LFD Model Performance Evaluation Indicators 

In order to verify the application effect of the LFD model, it is also necessary to 

introduce indicators to measure the performance of the two-stage LFD model [25]. Since 

the two-stage LFD models solve different types of problems, different performance 

evaluation indicators need to be used, as shown in Table 1. 

First-stage diagnosis is a typical multiple-classification task, so it uses the model 

performance evaluation indicators commonly used for classification tasks: precision, 

recall, and F1 score. For the binary classification task, the samples can be classified into 

four cases according to the combination of true and predicted categories: TP (true 

positive), FP (false positive), TN (true negative), and FN (false negative). 

Second-stage diagnosis is a typical regression task, so its performance needs to be 

evaluated using different evaluation indicators from first-stage leakage diagnosis. The 

commonly used performance evaluation indicators for regression tasks are shown in 

Table 1, where m denotes the total number of samples, iy  represents the true marker of 

ix , ˆ
iy  represents the prediction result of the learner for ix , and iy  represents the 

average of the m sets of true values. 

Table 1. Model performance evaluation indicators. 
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2.3. Case Study 

Taking a Guangzhou (China) metro station’s ACWS system pipe network project as 

an example, the ACWS form is a primary pump variable-flow system with fixed 

differential pressure control for the supply and return mains. The chilled water system 

has a supply and return water temperature of 10 and 17 °C, respectively. The system 

pressure point is set at the entrance of the circulating water pump, and the pressure is 

32.3 kPa. Pressure sensors are set for the cold source and each terminal device’s import 

and export, and flow sensors are set for the chilled water main pipe and each terminal 

device’s return branch pipe. 

In order to model the actual pipe network system on the Dymola platform, the 

system needs to be reasonably simplified, as follows: ① the chiller, the pump, and other 

equipment in the room are combined into one node (cold source); ② if two pipes are 

connected and there is no node in the middle, the two pipes are combined into the same 

pipe; ③ the local resistance of the fittings in the pipe is expressed using the length of the 

straight pipe section of the same diameter as the connected pipe (i.e., the local 

resistance’s equivalent length). The supply and return water system, with pipe section 

numbers, is shown in Figure 5. 

 

Figure 5. Supply and return of water in the ACWS network. 

The case pipe network includes 1 cold source (S), 9 terminal devices (T1–T9), 30 

pipes (pipe1–pipe30), and 31 sensor monitoring points (11 flow sensors and 20 pressure 

sensors), where the basic parameters of each pipe section are shown in Figure 6. 
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Figure 6. Basic parameters of the case pipe network. 

The cuckoo search algorithm was used to identify the resistance characteristics of 

the case pipe network, and the parameters are shown in Table 2. The training curves of 

the optimization algorithms show that when the number of iterations reaches 100, the 

average and optimal fitness values of the algorithms no longer decrease significantly, 

and the algorithms can be considered to have reached convergence. In order to avoid the 

random error in the single identification process, the algorithm was operated 

independently 10 times, and the average value of the 10 identification results was taken 

as the final result of the identification of the resistance characteristics of the pipe 

network. 

Table 2. Parameter settings of the cuckoo search algorithm used for the identification of resistance 

characteristics. 

Parameter Setting 

Population size of each generation 50 

Discovery probability 0.25 

Maximum number of iterations 100 

A sufficient number of training samples is a prerequisite for a satisfactory 

diagnostic performance of a pipe network LFD model, and the more comprehensive the 

leakage conditions contained, the more abundant the training data, and the better the 

performance of the final training diagnostic model. However, it is very difficult—almost 

impossible—to obtain a large and comprehensive set of fault condition data via 

experimental testing or historical data logging for the ACWS network in this case. 

Therefore, the Dymola model simulation was used to obtain the data samples required 

for the training of the LFD model. The simulated leakage conditions were as follows: for 

each pipe leak point setting in the case study, the ratio of the distance from the start of 

the pipe section to the total pipe length was selected as 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 

0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, or 0.95, while the ratio of the possible 

leakage volume from the total circulating water volume was selected as 1%, 1.5%, 2%, 

2.5%, 3%, 3.5%, 4%, 4.5%, or 5%. 

According to the above setting conditions, for the 30 pipes in the case pipe network 

system, each pipe has 19 possible leakage points, and each leakage point can have 9 

different degrees of leakage. For each leakage working condition, 5130 sets of simulated 

data samples can be obtained, one by one. At the same time, taking into account the 

random error of the sensor measurement process in the actual case, a certain amount of 

artificial noise is added to the original data generated by the simulation model, and the 

artificially added noise X follows a normal distribution with a mean of 0 and a standard 

deviation of σ. The accuracy level of the case pipe network sensor is 0.2%FS (full-scale, 
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range), and according to the “3σ” criterion of normal distribution, σ is taken as 1/3 of 

0.2% FS. 

In the settings of the first-stage LFD model, all data samples are randomly divided 

into a training set and a test set at a ratio of 9:1. The random partitioning process takes 

the form of stratified sampling. The training set is used to train the BP neural network 

model, while the test set is used to replace the fault data monitored in the actual case. 

The neural network adopts a single-hidden-layer structure. The parameter settings of 

the Adam optimization BP neural network algorithm used for the first-stage LFD model 

are presented in Table 3. 

Table 3. Parameter settings of the Adam optimization BP neural network algorithm used for the 

first-stage LFD model. 

Parameter Setting 

Number of hidden layer nodes 31 

Activation function of hidden layer Identity function 

Regularization parameter 0.0001 

Maximum number of iterations 3000 

Convergence precision 1 × 10−4 

In the settings of the second-stage LFD model, the length threshold θL = 50 m is set 

as the basis for determining whether to perform secondary diagnosis of leaks according 

to the conditions of the case system. The output of the second-stage LFD model is the 

exact location of the leakage point in the ACWS, which is expressed as the distance of 

the leakage point from the beginning of the pipe section/the total length of the leakage 

pipe. Due to the fact that the second-stage LFD model is also based on the BP neural 

network model, its training and testing methods are essentially the same as those of the 

first-stage LFD model. Some of the settings are different, as follows: the training and 

testing sets are randomly divided at a ratio of 7:3, and the activation function is a ReLU 

function. 

3. Results 

3.1. Results of Identification of the Case Pipe Network’s Characteristics 

The flow and pressure parameters of four groups of case pipe networks under 

regular conditions were selected as the original data for solving the objective function of 

pipe network resistance characteristic identification, and another set of flow and pressure 

data were selected to verify the effect of identification of the pipe network resistance 

characteristics based on the cuckoo search algorithm. In order to avoid the accidental 

error of the single identification process, the algorithm was operated 10 times 

independently, and the average value was taken as the final result, as shown in Table 4. 

Table 4. Results of identification of the case pipe network’s characteristics. 

Pipe 

Number 

Coefficient of Pipe Resistance 

Characteristic (s2/m5) 

Pipe 

Number 

Coefficient of Pipe Resistance 

Characteristic (s2/m5) 

1 53.3 16 588.0 

2 24.0 17 6188.9 

3 267.4 18 6749.5 

4 277.5 19 32,186.2 

5 487,138.3 20 32,118.5 

6 344,413.0 21 119,729.4 

7 2257.2 22 115,777.9 

8 2249.1 23 426,030.6 

9 11,666.6 24 383,965.0 
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10 11,909.8 25 52,034.0 

11 12,438.9 26 43,475.3 

12 12,068.8 27 7121.1 

13 4295.8 28 7064.7 

14 4421.0 29 347,589.0 

15 718.9 30 414,020.7 

As shown in Table 4, from the identification results of the pipe network’s resistance 

characteristics, we found that the resistance characteristic coefficient of each pipe section 

was quite different; the smallest was 24 s2/m5, and the largest was 487,138.3 s2/m5. The 

main reason for this was the large difference in the pipes’ length in the case system, and 

the internal situation of the pipe network was also different. 

Due to the fact that the actual monitored values of the pipe network contain only 

two parameters of flow and pressure, it was necessary to substitute the results of the 

optimal pipe network resistance characteristic coefficients identified by the algorithm 

into the hydraulic model of the pipe network, and to evaluate the identification accuracy 

and precision of the algorithm by comparing the simulated values with the actual 

monitored values of flow and inlet/outlet pressure at each terminal, the results of which 

are shown in Figure 7. 

It was found that the optimal identification of the pipe resistance characteristic 

coefficients based on the cuckoo algorithm was largely consistent with the actual 

monitored values after being substituted into the original hydraulic model. As depicted 

in Figure 7a, the minimum difference in flow rate was 0.04 m3/h, while the maximum 

difference was 0.63 m3/h. As depicted in Figure 7b, the minimum difference in pressure 

was 0.02 kPa, and the maximum difference was 0.3 kPa. Further discussing the 

identification results of the pipe network’s resistance characteristics, it can be observed 

that the average relative error between the monitored and simulated values of the flow 

rate at each terminal was 1.358%, the average relative error between the monitored and 

simulated values of the water supply pressure at each terminal was 0.057%, and the 

average relative error between the monitored and simulated values of the return water 

pressure at each terminal was 0.089%. 

The above data show that the hydraulic model optimized by the cuckoo search 

algorithm to identify the resistance characteristics achieves an acceptable error range for 

the actual project. This verifies that this method can be used for the calibration and 

optimization of the ACWS hydraulic model, and also provides technical possibilities for 

application in other complex pipe networks, such as heating and municipal pipe 

networks. Due to the leakage condition dataset used to train the two-stage LFD model 

being generated from the hydraulic model simulation, the hydraulic model has a 

significant impact on the LFD model simulation results. 
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(a) (b) 

Figure 7. (a) Comparison of monitored and simulated flow values. (b) Comparison of monitored 

and simulated pressure values. 

3.2. Results of the First-Stage LFD Model 

Before testing the model, it is necessary to set the neural network’s number of 

hidden layer nodes, because the number of nodes affects the performance of the LFD 

model. It has been shown in the literature [26] that if the number of hidden layer nodes 

is too small, the neural network will lack the necessary learning ability and information 

processing ability. If the number of hidden layer nodes is too large, it will not only 

greatly increase the complexity of the neural network structure, and make the neural 

network more likely to fall into local minima during the learning process, but also make 

the learning speed of the neural network very slow. The range of node numbers is 

determined with a commonly used empirical formula, and then tested and adjusted to 

obtain the optimal number of hidden layer nodes for the neural network. 

According to the settings of the first-stage LFD model (detailed parameter settings 

are shown in Table 3), we used the Python programming language for the training and 

testing of the neural network. A total of 100 experiments were repeated to avoid the 

random error caused by a single experiment. Each time, the dataset was resampled to 

obtain a new training set and test set, and the average of 100 experiments was taken as 

the final result of the first-stage LFD model. 

Table 5 presents each pipe’s average precision, recall, and F1 score from 100 

experiments. The average precision was 87.26%, and the average recall was 86.96%. The 

first-stage LFD model’s precision and recall were above 85%. However, there were still 

some pipe categories with poor diagnosis results such as pipe numbers 1, 2, 3, 4, 7, 8, 15, 

and 16 in the case network (discussed in Section 4.1). 

Table 5. First-stage LFD model’s average performance metrics. 

Pipe 

Number 
Precision (P) 

Recall 

(R) 
�� Pipe Number 

Precision 

(P) 

Recall 

(R) 
�� 

1 62.40% 66.53% 0.6440 16 66.07% 66.65% 0.6636 

2 64.85% 66.18% 0.6551 17 92.39% 85.90% 0.8902 

3 51.19% 51.55% 0.5137 18 95.58% 90.14% 0.9278 

4 57.51% 60.86% 0.5914 19 96.08% 95.91% 0.9599 

5 99.47% 98.19% 0.9882 20 93.68% 95.21% 0.9444 

6 99.64% 97.90% 0.9876 21 99.06% 98.54% 0.9880 
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7 72.19% 73.08% 0.7263 22 99.52% 97.13% 0.9831 

8 84.09% 84.98% 0.8453 23 99.11% 98.24% 0.9868 

9 93.16% 91.86% 0.9251 24 97.60% 97.49% 0.9755 

10 95.38% 92.93% 0.9414 25 97.85% 92.82% 0.9527 

11 93.41% 92.10% 0.9251 26 96.50% 91.98% 0.9418 

12 94.61% 95.67% 0.9514 27 92.54% 98.01% 0.9520 

13 89.31% 89.67% 0.8949 28 89.66% 96.37% 0.9289 

14 91.69% 91.80% 0.9174 29 98.44% 96.48% 0.9745 

15 57.31% 60.13% 0.5869 30 97.47% 94.62% 0.9602 

At the same time, in order to further evaluate the performance of the first-stage LFD 

model, two evaluation indicators—accuracy and macro-F1—were selected to evaluate the 

overall performance of the model in 100 test sets. Figure 8 shows the accuracy and 

macro-F1 of the BP-neural-network-based leak-stage diagnosis model for the ACWS 

network on the 100 test sets. The horizontal axis is the accuracy of the LFD model on the 

test set for each group of experiments, while the vertical axis is the macro-F1 of the LFD 

model on the test set. 

As shown in Figure 8, the performance of the Adam-based LFD model was 

relatively stable in 100 sets of test experiments, and the classification accuracy of the LFD 

model for the case network was between 84.41% and 89.47%, while the macro-F1 was 

between 0.8458 and 0.8966. After the final calculation, the average accuracy of the 

BP-neural-network-based LFD model was 86.96%, and its average macro-F1 was 0.8709. 

The results show that the first-stage LFD model performs satisfactorily. 

 

Figure 8. Performance metrics of the Adam-based LFD model on the test set. 

3.3. Results of the Second-Stage LFD Model 

In this case, a total of eight pipes exceeded the threshold of 50 m. According to the 

settings of the second-stage LFD model (detailed parameter settings are shown in Table 

3), the Python programming language was also used for the training and testing of the 

neural network. 

Figure 9 presents the average MAE, MSE, and R2 values for each of the eight pipes 

under 100 test experiments, with a stable overall performance. The minimum MSE was 

0.00518 and the maximum was 0.01117, with the average value being 0.00708, which is 

less than 0.01; the minimum R2 value was 0.85 and the maximum was 0.93, with the 

average value being 0.90, which is greater than 0.9. 
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Figure 9. Second-stage LFD model performance in 100 sets of test experiments. 

Taking the pipe13 leakage model as an example, the experimental results are 

presented for one randomly selected group out of 100 test experiments. Figure 10 shows 

the exact leakage locations and the model-predicted leakage locations in the test set. 

Except for a few outliers, the majority of the predicted values are close to the actual 

values, and it can be intuitively inferred that the BP-neural-network-based second-stage 

LFD model is able to predict the pipe leakage location accurately. Thus, the second-stage 

LFD model has good diagnostic efficacy. 

 

Figure 10. Distribution of simulated actual leakage locations and LFD-predicted locations for 

pipe13. 
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4. Discussions 

4.1. Two-Stage LFD Model Discussion 

The simulation results of the first-stage LFD model show that the diagnostic 

efficacy of some pipes is poor—such as pipe numbers 1, 2, 3, 4, 7, 8, 15, and 16—and the 

precision and recall rates are less than 85%. Therefore, the first-stage LFD model is prone 

to classification errors, resulting in incorrect diagnosis. 

According to Table 4, the pipes with poor diagnostic efficacy of the first-level 

diagnosis model of pipe network leakage have the common characteristics of mutual 

connection and small resistance characteristic coefficients. Therefore, when these pipes 

have leakage failures, the parameter amplitude of the pipe network caused by leakage is 

limited—especially when the sensor reading itself has a certain random error—and the 

parameter change caused by the leakage of a pipe with a small resistance characteristic 

coefficient is easy to cover with noise, so it is difficult for the first-stage LFD model of the 

pipe network to achieve a diagnosis. 

In response to the problem that the pipe network’s LFD model is prone to 

misdiagnosis when leakage occurs in pipes with small resistance coefficients, this paper 

also seeks solutions from the following four perspectives: 

(1) Improving the accuracy of sensors: Sensors with high accuracy should be 

installed and used as far as possible within the allowable range of conditions. The higher 

the accuracy level of the sensors, the less likely the reading error of the sensors to cover 

up the impact of pipe leakage, resulting in improved diagnostic accuracy of the LFD 

model. 

(2) Cooperative diagnosis of multiple working conditions: In the event that it is 

difficult to make a diagnosis in a single working condition, the system’s operating 

conditions can be switched to re-diagnose the leakage, and the fault diagnosis results of 

multiple working conditions can be used to collaboratively locate the leaky pipe section. 

(3) Checking the second-ranking pipe based on probability distribution: Since the 

kernel of the LFD model is the probability distribution of the neural network algorithm, 

the second-ranking pipe in the probability ranking is checked, and if no fault occurs in 

this pipe, the pipes in the next ranking are checked by analogy. 

(4) Combining pipe categories: Since the pipe categories prone to misclassification 

often have characteristics of low resistance and interconnection, it is useful to combine 

such pipes into one category and then carry out fault diagnosis, and when a fault is 

found in this category in practical application, all pipes within its combination should be 

inspected. Since the resistance characteristic coefficients of such pipes are small, and the 

pipe lengths are usually not too long, this does not theoretically increase the work 

difficulty of the maintenance personnel significantly. 

In this case study, if pipes 1, 3, 7, and 15 and 2, 4, 8, and 16 are respectively 

combined into one category and other settings remain unchanged, the average accuracy 

of the BP-neural-network-based LFD model will be increased to 94.86%, which is 7.89% 

higher than the average accuracy before combining, It can be seen that the diagnostic 

effect of the first-stage LFD model can be improved by combining the pipe categories. 

The simulation results of the second-stage LFD model show that the predicted 

value of the model is close to the simulated actual value under the leakage condition. 

The threshold set by the secondary leakage model in this paper is 50 m, and the average 

deviation between the predicted leakage point position and its actual position is 6.3% of 

the total length of the leaky pipe. This is acceptable for pipes over 50 m long. Applying 

the second-stage LFD model in engineering practice can help locate the exact leakage 

location of long pipes quickly, even if there are deviations, and when human initiative is 

exercised, maintenance workers can quickly locate the leakage point in the area near the 

resultant value, which plays an important role in reducing labor costs and improving 

time efficiency. 
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4.2. Limitations 

In this paper, 11 flow sensors and 20 pressure sensors were installed in the ACWS 

network. The number of sensors in the case network is relatively complete, but in other 

projects, the number of sensors in many ACWSs is lower [27], which may reduce the 

performance of the LFD model, so the performance of the LFD model with different 

numbers of sensors should be explored in subsequent research. 

At the same time, due to climate overheating [28], more passive design strategies 

are being added to buildings, which will lead to increased complexity and reduced 

reliability of air conditioning systems [29]. This directly affects the stability of ACWSs, so 

this factor should be considered in future research. 

In addition, this paper is devoted to the study of pipeline leakage faults, which 

account for more than 80% of ACWS faults [30]. However, there are still blockage and 

junction problems in actual running water systems, which will be another direction for 

further research. Moreover, the ACWS pipe network leakage diagnosis method 

proposed in this paper only accounts for single-point pipe network leakage problems. 

Although the phenomenon of multiple simultaneous leakage failures is rare in the 

normal operation of running pipe network systems, there still exists a certain degree of 

possibility of this situation occurring. Therefore, the problem of multiple leakage faults 

occurring at the same time in ACWS pipe networks needs to be investigated in the 

future. 

5. Conclusions 

This paper proposes a leakage diagnosis method for ACWSs using an Adam 

optimization BP neural network algorithm, which is able to provide fault diagnosis. 

When a leak occurs in the actual pipe network system, the method locates the leaky pipe 

in the network and then locates the exact leakage location on the pipe. The main 

conclusions are summarized as follows: 

(1) A hydraulic model that can simulate pipe network leakage was developed on 

the Dymola platform. In order to ensure the accuracy and reliability of the hydraulic 

model, a method of identifying the pipe network’s resistance characteristics based on the 

cuckoo search algorithm was proposed, and the identification results of the algorithm 

were applied to the case of an ACWS pipe network. The average relative error of the 

flow rate at each terminal was 1.358%, the water supply pressure at each terminal was 

0.057%, and the return water pressure at each terminal was 0.089%. The results show 

that the average relative error between the simulated values and the actual monitored 

values obtained using the method was no more than 1.5%. The hydraulic model was 

consistent with the real system, and it is practicable to generate the dataset under 

leakage conditions with this model. 

(2) A two-stage LFD model based on the Adam-optimized BP neural network 

algorithm was proposed. The case study shows that the average accuracy of the 

first-stage LFD model for locating leaky pipes was 86.96%, and when the method of 

combining some pipe categories with smaller resistance characteristic coefficients was 

used, the average accuracy of the model increased to 94.86%. The second-stage LFD 

model of pipe network considers pipe’s with a length of over 50 m in the ACWS system; 

the average R2 of the second-stage LFD model was 0.9028, and the average error 

between the predicted location of the leakage point and its simulated actual location was 

6.3% of the total length of the leakage pipe. 

It should be noted that the hydraulic model of pipe network leakage built on the 

Dymola platform can be applied not only in ACWSs, but also in leakage studies of pipe 

networks of other engineering water systems (e.g., district heating pipe networks and 

municipal water supply networks). In addition, the proposed cuckoo search algorithm 

performs excellently in the identification of resistance characteristics of the pipe network, 

making the hydraulic model closer to the actual operating system, and providing a 
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method to achieve an accurate hydraulic model. Meanwhile, the proposed 

Adam-optimized BP neural network algorithm for the two-stage fault diagnosis model 

shows accuracy in practical engineering applications, providing a promising and 

sustainable solution for actual ACWS leakage problems. More importantly, the design 

concept of hierarchical diagnosis opens up the possibility of complex water system 

diagnosis, and the operation and maintenance of water systems will be more intelligent 

and efficient in the future. 
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Appendix A 

The theoretical calculation method is the most commonly used method for hydraulic 

calculation of pipe networks under leakage conditions. Based on the constant flow 

condition of the pipe, the import and export pressure difference of the pipe under 

leakage conditions can be calculated using the Darcy formula. 

Example: In a straight pipe with a total length of 10 m, the nominal diameter of the 

pipe is DN65, the absolute roughness of the inner wall of the pipe is 0.2 mm and the 

distribution is uniform, the water temperature in the pipe is 10 °C, the inlet flow of the 

pipe is always maintained at 10 L/s, and the flow rate of the fluid in the pipe is 3.0 m/s 

without leakage. 

In order to avoid the influence of contingency on the results of a single experiment, a 

total of 10 different sets of experiments were set up. Each experiment was set up with a 

different leakage volume and leakage location (the leakage location was expressed as the 

ratio of the distance of the leakage point from the starting point of the pipe to the total 

pipe length). The experimental results are shown in Table A1. 

Table A1. Pressure difference between the inlet and outlet of a pipe, as determined by two 

methods. 

Number 
Leakage 

Volume (L/s) 

Leakage 

Location 

Pressure Difference between the Inlet 

and Outlet of the Pipe (kPa) 
Relative 

Error (%) 
Theoretical Value Simulated Value 

1 0 0 19.011 18.962 −0.257 

2 0.1 0.1 18.675 18.627 −0.260 

3 0.5 0.1 17.365 17.318 −0.273 

4 1.0 0.1 15.802 15.757 −0.289 

5 0.1 0.5 18.825 18.756 −0.365 

6 0.5 0.5 18.097 18.049 −0.266 

7 1.0 0.5 17.288 17.181 −0.273 

8 0.1 0.9 18.974 18.925 −0.258 

9 0.5 0.9 18.828 18.780 −0.259 

10 1.0 0.9 18.655 18.606 −0.261 
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The results show that under different leakage conditions, the simulation results of 

the inlet and outlet pressure difference of the experimental pipe are very close to the 

theoretical calculation results. The maximum absolute value of the relative error is 

0.365%, and the average error is −0.276. The error is usually within the acceptable range 

of hydraulic calculation, so the developed leakage hydraulic model is suitable for 

simulating the actual pipe leakage. 
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