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Abstract: The estimation of indoor thermal comfort and the associated occupant feedback in office
buildings is important to provide satisfactory and safe working environments, enhance the produc-
tivity of personnel, and to reduce complaints. The assessment of thermal comfort is a difficult task
due to many environmental, physiological, and cultural variables that influence occupants’ thermal
perception and the way they judge their working environment. Traditional physics-based methods
for evaluating thermal comfort have shown shortcomings when compared to actual responses from
the occupants due to the incapacity of these methods to incorporate information of various natures.
In this paper, a hybrid approach based on machine learning and building dynamic simulation is
presented for the prediction of indoor thermal comfort feedback in an office building in Le Bour-get-
du-Lac, Chambéry, France. The office was equipped with Internet of Things (IoT) environmental
sensors. Occupant feedback on thermal comfort was collected during an experimental campaign.
A calibrated building energy model was created for the building. Various machine learning models
were trained using information from the occupants, environmental data, and data extracted from the
calibrated dynamic simulation model for the prediction of thermal comfort votes. When compared to
traditional predictive approaches, the proposed method shows an increase in accuracy of about 25%.

Keywords: building physics model; machine learning; thermal comfort; hybrid modelling; data-driven;
occupant feedback

1. Introduction

The prediction of indoor environmental quality (IEQ) levels in office buildings is im-
portant for providing satisfactory and safe work environments, to enhance the productivity
of personnel, and to reduce complaints [1]. Recent research studies in health, wellbeing,
and productivity in buildings show that satisfaction is affected by many different environ-
mental, physical, and psychological factors [2]. For example, a strong connection between
daylight and student performance was found in [3], and correlations between productivity
levels and indoor thermal conditions for office buildings were found in [4,5]. Studies
show that the overall costs associated to people for companies can be divided following
the 1-9-90 estimation [6]: one percent of the operative cost is associated to energy, nine
percent is associated to building rental costs, and ninety percent is associated to the cost
of personnel. This explains why, in recent years, occupant health, comfort, wellbeing, and
productivity have been considered among influential factors for performance evaluations
from a facility management perspective. Maintaining satisfactory work conditions during
the operation of a building can be difficult, as building control strategies should be able to
account for different factors affecting thermal and visual comfort and air quality as well as
noise, odours, and nuisance. The achievement of holistic control over IEQ is challenging,
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as it requires advanced evaluation capabilities of the current and future conditions for
the occupants and how they interact with the environment [7]. In this context, in order
to optimise IEQ, building control approaches need to take into account direct feedback
from the occupants as well as a variety of additional decision variables of different natures,
which may increase the complexity of the control problem [8].

Thermal comfort is affected by many factors related to the indoor environments and
their occupants, such as the physical properties of a space (e.g., air temperature, humidity,
solar radiation, surface temperatures, and air speed) [9], ambient and human body param-
eters, psychological characteristics of the occupants [9,10], gender [11], background, and
ethnicity [12]. Reliable thermal comfort models should be able to consider a wide range of
inputs and subjective preferences. In recent years, many different techniques have been
proposed for the prediction of thermal comfort, such as: mathematical modelling of the heat
transfer between the human body and the environment [9]; the coupling of human thermal
comfort models with computational fluid dynamics (CFD) analyses [10,13–16]; Fanger’s
physics-based method for the evaluation of the predicted mean vote (PMV) and the pre-
dicted percentage of dissatisfied (PPD) [2]; adaptive models that refer to the behavioural,
psychological, and physiological adaptation of the humans in an indoor environment
over time [17,18]; data-driven applications based on artificial neural networks (ANN) [17];
methods based on fuzzy logic [18]; Bayesian approaches [19]; and methods based on other
machine learning (ML) techniques [20]. Overall, thermal comfort models can be classified as
physics-based or data-driven approaches. These studies show the difficulties in achieving a
holistic approach to thermal comfort and focus on particular areas of interests. Recently,
with the proliferation of light, portable, and easy to access and use IoT devices, a large
amount of data have been collected from the built environment. Data proliferation from
buildings provided the basis for the development of innovative machine learning models.
ML models showed the ability of learning complex interactions among the available data,
surpassing in accuracy the current comfort calculation methods [21,22]. Given the learning
nature of these approaches, they can consider complex phenomena, such as biased deci-
sion, as well as personalised preferences, such as direct feedback, making them flexible
in terms of targeting large audiences [23]. Among the different ML methods tested in the
literature, the random forest (RF) algorithm seems to reach the best performances [24].
Advanced ensemble machine learning (EML) methods have been successfully adopted for
thermal perception prediction [25] as well as more recent studies related to the use of deep
learning techniques [26]. The use of artificial neural network models has been suggested
for thermal comfort and sensation vote prediction in naturally ventilated buildings [27].
Other ML-based methods have been investigated to detect outliers in subjective thermal
comfort campaigns by the means of anomaly detection techniques and by quantifying the
dissimilarity of the occupants’ votes from their peers under similar thermal conditions [28].
From these studies emerged that one of the main limitations of data-driven models is their
dependency on historical data and the challenges in predicting conditions that largely differ
from their training environment. The thermal comfort problem has been addressed not
only with innovative techniques but also with a focus on testing alternative inputs for the
models [29]. As such, a combination of readings of skin temperatures and settings of the
personalized heating system as input parameters in personal thermal comfort models have
been suggested, with a substantial prediction accuracy improvement compared to the more
traditional approaches [30,31]. Nearable and wearable solutions have been implemented to
provide additional inputs to personalized predicted models [32] by extending the range
of measurements that is possible to collect from users and, therefore, facilitating the in-
vestigation and development of personalised scenarios [33]. Individual thermal comfort
levels have been suggested, as opposed to average votes, by leveraging more granular
and precise data that are able to describe environmental and human factors as inputs [20].
Nevertheless, innovative data collection techniques may be expensive as well as intrusive
and require full participation of the occupants.
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The prediction of thermal comfort feedback from occupants of a building is a complex
problem. Recently, several studies underlined the main limitation of traditional methods to
predict thermal comfort, such as the limited accuracy achieved when compared to actual
votes from the occupants (41.68–65.5% [2]); the need for dedicated expensive equipment
for capturing specific environmental variables; the inability to consider non-physics-related
variables (e.g., real feedback, preferences, and behavioural patterns); and the need for time-
consuming, costly, and difficult setups, as in the case of CFD analyses. One explanation for
the identified validation discrepancies is that traditional methods only leverage a limited
set of variables for the calculations. Considering this, several research studies started to
address the thermal comfort satisfaction as a holistic concept that encompasses behavioural,
physiological, and psychological aspects. From a technical point of view, this translates
to the adoption of unconventional methods based on real data, data analysis, and, more
recently, machine-learning techniques. Nevertheless, data-driven approaches rely on the
available data, which, if it is scarce, may affect the prediction capability of the model.
They require expensive equipment and the setup of dedicated data collection campaigns.
Hybrid modelling, intended as the combination of data-driven methods and physics-based
approaches, is rarely adopted, although it could overcome many shortcomings of the most
traditional methods. In recent years, with the rapid diffusion of IoT devices, a large amount
of high-resolution data became available from the built environment [20], facilitating the
creation of accurate digital twins of buildings, defined here as accurate and calibrated
building energy models. When calibrated, digital twin models can be considered as an
additional source of information and a virtual asset to assess the environmental quality of
a building [34] and to generate scenarios. This is performed by extracting virtual sensor
variables from simulations for which the equivalent real variables would be difficult and
expensive to measure by sensors (e.g., operative temperature, mean radiant temperature,
surface temperature, heat fluxes, etc.) [29]. This approach has not been fully leveraged in
the literature. Therefore, the current work contributes to the current literature by focusing
on three main objectives:

• Test the capabilities of ML models when used for predicting the thermal comfort votes
of occupants.

• Combine the use of ML models with physics-based dynamic simulation to leverage
virtual sensor variables and to generate dynamic predictions of relevant thermal
comfort metrics.

• Establish a comparison with traditional normative methods for the evaluation of
thermal comfort.

2. Materials and Methods

The research methodology presented in this work is based on the combination of
data-driven methods and building dynamics simulation techniques for the creation of an
accurate predictive model. First, relevant data are collected by organising an occupant
comfort experiment in a building case study and by installing a network of IoT sensors to
gather relevant environmental information. Then, an accurate calibrated building energy
model is generated. The calibrated model is used to satisfy two objectives: (i) to use
simulation variables (virtual sensors) to extend the set of predictors of the ML model and
(ii) as a client of a co-simulation framework for data exchange between the dynamic energy
model and an ML algorithm that is used for dynamic prediction of thermal comfort values.
As a result, the scenario evaluation capabilities of the physics-based simulation model can
be used to generate data for operational scenarios of the building and can be processed by
the ML model trained for this purpose.

2.1. Methodology Overview and Workflow

Figure 1 shows the different parts of the methodology presented in the current paper.
Three major workflows can be identified: (i) a data-driven part related to the training
and deployment of a machine learning model starting from the occupant feedback; (ii) a
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building energy modelling framework based on a physics-based model and the workflow
relative to its calibration; and (iii) a co-simulation framework that allows for a robust
data exchange between the dynamic simulation model and the ML model. The following
sections describe in detail the different parts of the methodology.

Buildings 2022, 12, x FOR PEER REVIEW 4 of 23 
 

can be used to generate data for operational scenarios of the building and can be processed 

by the ML model trained for this purpose. 

2.1. Methodology Overview and Workflow 

Figure 1 shows the different parts of the methodology presented in the current paper. 

Three major workflows can be identified: (i) a data-driven part related to the training and 

deployment of a machine learning model starting from the occupant feedback; (ii) a build-

ing energy modelling framework based on a physics-based model and the workflow rel-

ative to its calibration; and (iii) a co-simulation framework that allows for a robust data 

exchange between the dynamic simulation model and the ML model. The following sec-

tions describe in detail the different parts of the methodology. 

 

Figure 1. Methodology diagram. 

2.2. ML Framework: Thermal Comfort Experiment and Data-Driven Modelling 

An innovative data-driven predictive approach for thermal comfort estimation is de-

ployed with the following objectives: (i) investigate a novel method to predict actual ther-

mal comfort votes using ML approaches; (ii) evaluate the accuracy of the models and val-

idate the results; (iii) compare the results of different predictive methods; (iv) identify the 

most suitable model for the case study; and (v) enable a data exchange mechanism be-

tween a dynamic simulation software and the ML model. 

The first step to address the research objectives is the setup of a thermal comfort ex-

periment. For this purpose, a data-gathering procedure is required to collect the required 

Figure 1. Methodology diagram.

2.2. ML Framework: Thermal Comfort Experiment and Data-Driven Modelling

An innovative data-driven predictive approach for thermal comfort estimation is
deployed with the following objectives: (i) investigate a novel method to predict actual
thermal comfort votes using ML approaches; (ii) evaluate the accuracy of the models and
validate the results; (iii) compare the results of different predictive methods; (iv) identify
the most suitable model for the case study; and (v) enable a data exchange mechanism
between a dynamic simulation software and the ML model.

The first step to address the research objectives is the setup of a thermal comfort
experiment. For this purpose, a data-gathering procedure is required to collect the required
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inputs for the training of the ML model and for the calibration of the dynamic simulation
model. IoT sensors measuring temperature, CO2, and humidity levels as well as data
coming from BMS systems and local weather stations are employed in this phase for both
the calibration of the energy model and the training of the predictive algorithms. The
target variable of the ML model is the comfort vote; therefore, a data collection campaign
is required to ensure that comfort feedback votes are collected in different parts of the
buildings and during an extensive period. Several thermal comfort devices (tablets) are
installed in different rooms of the building to let the users submit their feedback. Once
the relevant data are collected, each dataset is pre-processed to remove missing values,
to convert/translate different labels, perform imputation, if required, and restructure the
dataset in the desired format. Following this, a data merging procedure, summarized in
Figure 2, is used to combine the IoT sensor data and the thermal comfort votes as well
as the information from the dynamic simulation model. This is achieved by relating the
closest date-time stamp of the IoT sensor measurements with the closest feedback vote and
simulation result; a tolerance of 30 min is used to map and merge the data. Therefore, for
a room, the IoT sensor data, feedback votes, and virtual sensor results coming from the
dynamic simulation model are combined in a unique dataset.
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Next, feature engineering procedures are implemented to generate the set of predictors
for the ML models. The timestamps of the sensor readings are further processed to extract
the hour, the day, the day of the week, and the month as numerical values. The thermal
comfort votes are classified and divided in a seven or three value scale as recommended
by the ASHRAE guidelines for thermal comfort. The thermal comfort scales are reported
in Figure 3. The objective of the ML models is to classify the thermal comfort vote on a
fixed scale; therefore, the problem falls under the multi-output classification methods. Two
different tests are conducted using either seven- or three-value scales to test the accuracy of
the different ML methods, with the objective to identify the best-performing approach.
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The training of the ML model is performed by splitting the total dataset into training
and testing parts. This approach is required to use a part of the historical data for tuning
the parameters of the ML models in order to achieve the best predictive results and to have
a set of unseen values to validate the model. A 70/30% ratio is used to split the dataset
into the training and testing parts. The selection of the best ML model is performed by
testing several ML techniques that are commonly used in the literature. The k-neighbours,
decision tree, random forest, logistic regression, gradient boosting methods are tested, and
their accuracy is recorded for comparison. In order to achieve a more granular evaluation
of thermal comfort and to provide continuous results rather than a categorical scale, a
regression approach is employed. The method is based on Bayesian modelling and enables
the evaluation of the votes of the occupants in a non-deterministic way. This approach
is considered more appropriate to reflect the subjective uncertainties related to thermal
comfort inputs, the actual comfort model, and the subjective votes of the occupants. To this
end, a multi-linear regression method was selected as the right candidate for the problem
formulation. A description of the method is reported below, where v indicates the predicted
vote, a is the intercept, W (b, c, d, e) are the weights in the equation, and X (x1, x2, x3, x4)
are the predictors.

v = a + bx1 + cx2 + dx3 + ex4 + . . . (1)

v = XW + ε (2)

v ∼ N
(

XW,σ2
)

(3)

P(W|v, X) =
P(v|W, X)× P(W, X)∫

P(v, X|W i)dWi
(4)

Equation (4) describes the Bayesian formulation that was adopted. The method in-
volves the use of a resampling approach based on the Markov chain Monte Carlo technique
with the “no-u-turn” algorithm [35]. The training part of the Bayesian method uses the
available historical data to generate the most probable distribution for the weights of the
predictors. In this way, by resampling each distribution and providing input parame-
ters, it will be possible to obtain a prediction of the vote. To reflect the non-deterministic
philosophy of the method, multiple samplings are used to generate a distribution of the
output. This also reflects the idea that it is likely to obtain a distribution of values from
multiple people, rather than a single vote. Further analyses of the results allow for the
estimation of expected maximum and minimum values of the thermal feedback in those
particular conditions.

One of the underlining objectives of the analysis was to simplify the number of
predictors for the model. Therefore, five predictors were used: (i) the dry bulb external
temperature, (ii) the internal air temperature, (iii) the mean radiant temperature, (iv) the
hour of the day, and (v) the month. The mean radiant temperature is a parameter that
considers heat transfer by radiation and can be measured with a sensor called a black-globe
or globe-thermometer. To adequately calculate the thermal comfort, the mean radiant
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temperature would ideally be measured considering all the surfaces in the room; however,
such an exercise would be complex and costly if carried out continuously in every room
of the building. In order to alleviate this issue, the mean radiant temperature is evaluated
with the use of the calibrated building energy model. For this purpose, the calibration of
environmental variables, such as air temperature, is considered fundamental to obtaining
reliable results of other derived measurements for a room. To provide this input to the ML
model, the sensor data are combined with the simulation results for that particular room
and time. The deployment of the model is facilitated in a co-simulation infrastructure where
the dynamic simulation software sends data to the ML model for predictions at each time
step as described in Section 2.4. The comparison with the normative methods is achieved
by calculating the more traditional thermal comfort metrics, such as the PMV index. This is
achieved by leveraging the Python module ‘Pythermalcomfort’. The module is linked to
the dynamic simulation software to extract, at each simulation time-step, metrics related to
the PMV-PPD method. The ‘true vote’ of the occupants is reconstructed for an entire year.
This is achieved by associating the closer value of the vote to the environmental conditions
recorded for the building in the case of data gaps. To this end, outdoor temperature, indoor
temperature, CO2 concentration, and relative humidity have been used to identify the
closest vote to the environmental conditions and remove the data gap.

2.3. Physics-Based Simulation

One of the first steps in the methodology requires the creation of a baseline building
energy model. This can be developed using a dynamic simulation software. An extensive
data gathering campaign is organised to collect all the relevant data for the generation
of the building energy model. This data are leveraged to create a baseline model of
the building. The baseline model undergoes a process of calibration that will deliver a
representative digital twin of the building. The calibration process is carried out in three
major phases: the generation of a baseline model, the development of an operational
model, and improvement toward a calibrated and optimized model. In detail, the overall
calibration process can be described in several sub-steps. First, an extensive data collection
campaign is carried out to gather as much information as possible on the building, with
the intent of collecting all the important parameters for the dynamic simulation software.
Examples of data collected in this first step are geometry, construction properties, thermal
representative templates of the building, schedules of operations, internal gains, occupancy
patterns, system information, ventilation and infiltration rates or estimates, detailed heating
ventilation and air conditioning (HVAC) network layouts and characteristics, hot/cold
water loop components, air side systems, controls, etc . . . When data are not available,
educated guesses and normative values are used in place of default values of the simulation
software. The output of the first phase is a baseline model, the results of which are compared
to the actual building data for accuracy assessment procedures. Following this, another
data collection campaign is performed, this time to define the operation of the building
by gathering operational data from building management systems (BMS), IoT, automated
metering systems, or smart meters. This additional set of data provides information
regarding the dynamic profiles and schedules of systems and occupants. Actual schedules
of operations are included in the baseline model in the form of time series data to generate
an accurate model of the building. A continuous data stream from sensors and metering
systems generates sets of updated schedules and profiles that represent the most recent
operational patterns of the building that can be included in the building energy model.
This generates the operational model of the building. Accuracy assessments are repeated
to establish new accuracy measures for the energy model and to check if they comply with
standards such as ASHRAE Guideline 14 [36]. If a higher level of accuracy is required,
an additional phase of calibration is carried out with advanced optimisation methods.
This is implemented using an optimisation tool that is able to find the best values for a
set of uncertain parameters that are identified through sensitivity analysis. The method
searches values of uncertain parameters in a large parameter space by minimizing objective
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functions that are defined using calibration metrics. The objective function considers
the error between the metered and simulated data. Equations (5)–(9) describe the list of
calibration metrics used by the optimisation tool where the RNRMSE indicates the range-
normalised root-mean-square error, which is the main calibration metric considered; the
CVRMSE is the coefficient of variation of the root-mean-square error; the NMBE indicates
the normalised mean-biased error; and the MAE is the mean absolute error. In the equation,
Y and Ŷ indicate the measured and simulated output variables; µ indicates the mean value,
and n indicates the total number of points. The user defines variables that are considered
of primary importance, such as energy, or secondary importance, such as air temperature
and CO2. In this way, the optimisation method is able to account for the importance
of different sets of variables that will be optimised at once by minimising the relative
objective functions. The use of the RNRMSE variable to perform optimisation provides
the possibility to consider variables characterised by different numerical scales in the same
optimisation problem. The procedure of fine-tuning by optimisation leads to the creation
of a high-fidelity calibrated model that, at this stage, is a reliable emulator of the actual
thermal behaviour of the building and its IEQ characteristics and can be used as predictive
tool for scenario evaluation.

RNRMSE(%) =
RMSE

range(Y)
∗ 100 =

√
∑n

k=1(Yk−Ŷk)
2

n

max(Y)−min(Y)
∗ 100 (5)

CVRMSE(%) =
RMSE
µ
∗ 100 =

√
∑n

k=1(Yk−Ŷk)
2

n−p−1

µ
∗ 100 (6)

NMBE(%) =
∑n

k=1
(
Yk − Ŷk

)
(n− p)∗µ ∗ 100 (7)

MAE(%) =
∑n

k=1|Yi − xi|
n

(8)

RMSE =

√√√√∑n
k=1
(
Yk − Ŷk

)2

n− p− 1
(9)

2.4. The Co-Simulation Framework

The presented machine learning models described in Section 2.2 are developed for the
calculation of comfort metrics. In order to leverage the scenario evaluation capabilities of
the dynamic simulation software, a data exchange mechanism is deployed. To enable this,
a co-simulation framework is developed to incorporate the ML models with the dynamic
simulation software to generate a hybrid physics–ML method. In order to include each
model in the co-simulation infrastructure, a four step process is implemented: (1) each
room considered should be first calibrated on indoor environmental variables, such as CO2
or air temperature; (2) an ML model is trained on a mixture of synthetic and real data;
(3) the ML model is deployed as a stand-alone entity and Python object to be called as
a black box model for predictions; and (4) the deployed model is included in the co-
simulation environment and fed by the dynamic simulation software, which provides,
at each iteration, the required sets of inputs. By using the presented hybrid model, it
is possible to fully leverage the dynamic simulation software for the creation of control
scenarios for the enhancement of the operation of the building.

3. Results

The following section describes the results of the presented methodology. First, the case
study building is described by providing information on the thermal comfort experiment
conducted to gather relevant feedback from the occupants. Then, the steps and the results
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for the creation of the calibrated energy model are described, with particular attention to
the validation and comparison with the real data gathered from the metering systems and
IoT devices in the building. Next, the results of the training/tuning and validation of the
machine learning models are presented.

3.1. The Building Case Study: The Helios Building

The Helios building is located at the southern end of the Savoie Technolac science
and technology park in the city of Chambéry, France. The building is the headquarters
of the National Solar Energy Institute (INES). Delivered in December 2013, the building
houses the institute’s laboratories and the directors’ offices as well as the administrative
services and training departments, covering an area of 7500 sq.m. Figure 4 shows the
building layout. Each room in the building case study is equipped with one or more
CO2/T/S Trend series sensors. The CO2/T/S series sensors monitor the carbon dioxide
concentration, temperature, and humidity of the air. The space sensors operate with the
following technical specifications: a range from 0 to 2000 ppm for the CO2 concentration
measurement with an accuracy of ±50 ppm +2% of the measured value; a range of 0 ◦C to
+40 ◦C with an accuracy of ±3 ◦C for the temperature values; and a range of 0 to 95 %RH
with ±3 % RH accuracy. Each sensor is connected to a Trend IQ3 Controller and to the
BMS of the building. The IoT sensors were used for monitoring the openings in each room
(windows and doors) as well as to monitor the electric consumption of fans. The z-wave
power socket series (Fibaro) was used for electric fan operations.
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and technology park in the city of Chambéry, France. The building is the headquarters of 

the National Solar Energy Institute (INES). Delivered in December 2013, the building 

houses the institute’s laboratories and the directors’ offices as well as the administrative 

services and training departments, covering an area of 7500 sq.m. Figure 4 shows the 

building layout. Each room in the building case study is equipped with one or more 

CO2/T/S Trend series sensors. The CO2/T/S series sensors monitor the carbon dioxide con-

centration, temperature, and humidity of the air. The space sensors operate with the fol-

lowing technical specifications: a range from 0 to 2000 ppm for the CO2 concentration 

measurement with an accuracy of ±50 ppm +2% of the measured value; a range of 0 °C to 

+40 °C with an accuracy of ±3 °C for the temperature values; and a range of 0 to 95 %RH 

with ±3 % RH accuracy. Each sensor is connected to a Trend IQ3 Controller and to the 

BMS of the building. The IoT sensors were used for monitoring the openings in each room 

(windows and doors) as well as to monitor the electric consumption of fans. The z-wave 

power socket series (Fibaro) was used for electric fan operations. 

 

Figure 4. The Helios building. 

3.2. The Thermal Comfort Experiment 

A data collection campaign spanning from July 2018 to June 2019 was conducted to 

gather thermal comfort votes from the occupants of the building. A thermal comfort feed-

back device was installed in ten different rooms and was used to collect votes from the 

occupants. A total of 7430 votes were collected during the duration of the experiment. 

Figure 5 shows the distribution of the collected votes during the period of analysis. With 

reference to the ASHRAE seven-value scale for thermal comfort, from an analysis of the 

collected data, it is possible to summarise that between 1–2% of the total votes were within 

the range (−3, −2), about 16% of the total were in the range (−2, −1), a majority of 65% were 

within the range (−1, 0), 13% were in the range (0, 1), about 3% were in the range (1, 2), 

and less than 1% were in the range (2, 3). The overall distribution is presented in Figure 5. 
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3.2. The Thermal Comfort Experiment

A data collection campaign spanning from July 2018 to June 2019 was conducted
to gather thermal comfort votes from the occupants of the building. A thermal comfort
feedback device was installed in ten different rooms and was used to collect votes from
the occupants. A total of 7430 votes were collected during the duration of the experiment.
Figure 5 shows the distribution of the collected votes during the period of analysis. With
reference to the ASHRAE seven-value scale for thermal comfort, from an analysis of the
collected data, it is possible to summarise that between 1–2% of the total votes were within
the range (−3, −2), about 16% of the total were in the range (−2, −1), a majority of 65%
were within the range (−1, 0), 13% were in the range (0, 1), about 3% were in the range
(1, 2), and less than 1% were in the range (2, 3). The overall distribution is presented in
Figure 5.
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Figure 5. Distribution of the comfort votes collected in the Helios building during the period from
July 2018 to June 2019.

Figures 6 and 7 show the scatterplot of the thermal comfort votes and the relative
temperature ranges for the indoor and outdoor air temperatures. From the graph, it is
possible to evaluate the means and standard deviations of the range of temperatures for
each perceived comfort vote for the indoor air temperature. This is reported in Table 1.
As expected, there is a positive trend between the mean of the indoor and outdoor air
temperature and the comfort vote, while the standard deviation values seem to be larger
for the central classes, underlining that what the occupants think to be a neutral and
comfortable temperature is more subjective than the extreme votes. A quadratic equation
was used to interpolate the data and extract a relationship between the votes and the indoor
and outdoor temperatures. The equations are reported in Figures 6 and 7.
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Figure 6. Indoor air temperature and thermal comfort votes scatter plot.
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Figure 7. (a) Outdoor air temperature and thermal comfort votes scatter plot; (b) Clothing level and
outdoor air temperature.

Table 1. Means and standard deviations of temperatures for each thermal comfort vote range.

Vote Range −3 −2 −1 0 1 2 3
Mean 22.56 23.07 23.50 24.63 27.1 28.21 29.7

Standard deviation 0.56 1.35 1.68 2.04 2.21 2.08 0.93

From the two quadratic equations, it is possible to extract the comfort temperature
for which feedback are equal to value zero. If this is repeated for indoor and outdoor
temperatures, the following temperature can be evaluated: 24.73 ◦C for indoor temperature
and 23.25 ◦C for outdoor temperature. Figure 8 shows the layout of the comfort vote device
used by the occupants to submit feedback during the duration of the experiment. The
additional following variables were collected from information submitted by the occupants:
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The thermal comfort vote, perceived air flux, and current outfit. Figure 7b shows the trend
of the thermal insulation (clothing) of the occupants related to the outdoor air temperature.
From the graph, it is evident that, as the outdoor air temperature increases, insulation levels
decrease, indicating that the occupants wear less heavy clothing. The clothing level is the
sum of the upper body first and eventual second layer, lower body layer, and feet layer.
The clothing level was submitted by each occupant using the feedback app, along with the
thermal comfort vote. A second order polynomial equation was extracted from the data
and can be used to estimate the expected average temperature once the clothing level has
been defined.

Buildings 2022, 12, x FOR PEER REVIEW 12 of 23 
 

Figure 7. (a) Outdoor air temperature and thermal comfort votes scatter plot; (b) Clothing level 

and outdoor air temperature. 

 

Figure 8. UI of the thermal comfort vote device. 

3.3. Building Energy Modelling: The Baseline Model 

The building energy model was created with the Integrated Environmental Solu-

tion’s software Virtual Environment. Building geometry data, such as layout of elevations, 

floor plans, and sections, were used to accurately reconstruct the geometry of the building 

as a first step in the modelling procedure. The result of this operation is shown in Figure 

9. Weather data were collected from the service Athenium Analytics, which is able to com-

municate with IES’s iSCAN platform for data storage and analysis. According to the ser-

vice, the weather station is located 59 km from the building. A variety of additional data 

were collected to recreate a high-fidelity digital representation of the building, such as the 

thermal properties of the construction materials, occupancy patterns, lighting fixtures, 

and equipment usage. The year considered for the simulation was 2018. Air temperature, 

window opening, door opening, louvre opening, carbon dioxide concentrations, and ad-

ditional weather variables were gathered from IoT sensors and were used for the creation 

of the model. 

 

Figure 9. IESVE model of the building. 

Figure 8. UI of the thermal comfort vote device.

3.3. Building Energy Modelling: The Baseline Model

The building energy model was created with the Integrated Environmental Solution’s
software Virtual Environment. Building geometry data, such as layout of elevations, floor
plans, and sections, were used to accurately reconstruct the geometry of the building as
a first step in the modelling procedure. The result of this operation is shown in Figure 9.
Weather data were collected from the service Athenium Analytics, which is able to com-
municate with IES’s iSCAN platform for data storage and analysis. According to the
service, the weather station is located 59 km from the building. A variety of additional
data were collected to recreate a high-fidelity digital representation of the building, such as
the thermal properties of the construction materials, occupancy patterns, lighting fixtures,
and equipment usage. The year considered for the simulation was 2018. Air temperature,
window opening, door opening, louvre opening, carbon dioxide concentrations, and addi-
tional weather variables were gathered from IoT sensors and were used for the creation of
the model.
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All the relevant internal gains in the building were modelled with accuracy, as it
is likely they have a high impact on the resulting air temperature and, therefore, the
perceived thermal comfort of the occupants. Therefore, occupancy, equipment, and lighting
gains were modelled, starting from the information of each room or data analysis of the
IoT sensors, to derive possible schedules of operation. The number of people and their
schedules were gathered from the building documentation provided and by interviews.
Most of the offices had traditional hours of operation (8:30 -> 17:30) for an office building,
with lunch breaks between 12:00 and 13:00 for 50% of occupants and 12:30–13:30 for the
other 50%. For all the offices, the sensible and latent heat gains were based on normative
values for the relative activity conducted in the room: 70 W/person for sensible heat
and 45 W/person for latent heat (as recommended in CIBSE [37], Guide A—Table 6.3—
for seated, very light work). It was assumed that lights and equipment have the same
schedules, they are on all the time while the space is occupied. For internal gains related
to equipment, values of 15 W/m2 were used, while an average value of 9 W/m2 was
adopted for the lights, which are values similar to the recommended threshold set in the
normative values. After this, the HVAC system was modelled using a wood pellet boiler
in combination with a solar heating system to match the current system in the building.
The heating-related profiles and setpoints were applied to the model after an accurate
analysis of the metered data available for the building. Building openings were modelled,
with particular care to reproduce the right amount of fresh air for the naturally ventilated
building. For this, the data collected on window and door operations was integrated
directly into the model to represent occupant behaviour by the means of time series profiles.
Finally, window shadings were modelled for each room in the model. In order to accurately
mimic the use of the blinds, opening and closing data were included in the model. The
operation of the blinds influences the solar radiation values, and it is likely to have a large
impact on the perceived thermal comfort of the occupants.

3.4. Model Calibration Results

The calibration of the Helios building was conducted by targeting the building’s
environmental variables, and it was validated by comparing the measured data with the
simulated data at an hourly timestep resolution. The procedure was conducted as described
in Section 2.3. The mean absolute error (MAE) and the root-mean-square error (RMSE)
were used as the main metrics for the environmental variables, while the range-normalised
root-mean-square error was employed to drive the process of automated parameter tuning
via optimisation. As the calibration was completed for the environmental variables, the
traditional metrics for calibration, such as the coefficient of variation of the root-mean-
square error (CVRMSE) and the normalised mean bias error (NMBE) were not suitable
metrics, as they are intended mostly for energy studies. When calibration is driven by IEQ
problems, it is recommended that the MAE and RMSE are used in the normative TM63 [37].



Buildings 2022, 12, 475 14 of 23

TM63 states that most studies indicate sufficient calibration if metrics are less than ~2 ◦C for
air temperature, while there are no other direct indications for CO2 concentrations. One of
the main final uses of the model is to simulate different operational control options for the
building; therefore, it is essential that the model is as accurate as possible. An optimisation
technique based on evolutionary algorithms (NSGA2) was used to automatically fine-tune
some of the driving parameters identified by the sensitivity analysis of the model. An
example of the results of the calibration by optimisation procedures is shown in Figure 10
below. The triangles indicate the value of the metrics for a given room at the beginning of the
calibration procedure. From the figure, it is evident that the minimisation of the calibration
error progressively reduces the RMSE (◦C) and the MAE (◦C) for all the rooms considered.
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Figure 10. Results of the optimisation procedures and progressive improvements of the calibration
metrics for 5 rooms in the Helios building. The triangles represent the values of the calibration metrics
at the beginning of the optimisation procedure.

Table 2 shows the initial values of the calibration metrics at the end of the manual
calibration procedure. For the results in rooms of the Helios building, at the end of this
procedure, the majority of the values for the metrics MAE and RMSE were below the
threshold recommended by TM63. Table 3 summarizes the results of the fine-tuning
technique for the four rooms considered for the analysis. Comparing the results from
Tables 2 and 3, it is evident that the fine-tuning procedure is able to further improve the
calibration of the model. A visual comparison of the results is provided in Figures 11–14.

Table 2. Calibration results for three rooms of the Helios building for the period January–March 2018.

Room Variable MAE (◦C, PPM) RMSE (◦C, PPM)

3072 Air temperature (◦C) 4.12 2.41

3072 CO2 (PPM) 126.13 83.01

3071 Air temperature (◦C) 3.61 1.16

3071 CO2 (PPM) 186.12 169.93

3033 Air temperature (◦C) 1.33 0.725

3033 CO2 (PPM) 219.2 140.7

3092 Air temperature (◦C) 1.38 0.425

3092 CO2 (PPM) 105.15 20.98



Buildings 2022, 12, 475 15 of 23

Table 3. Calibration metrics after fine-tuning with optimisation for various rooms of the Helios
building for the period January–March 2018.

Room Variable MAE (◦C, PPM) RMSE (◦C, PPM)

3072 Air temperature (◦C) 2.45 2.12

3072 CO2 (PPM) 67.20 53.78

3071 Air temperature (◦C) 0.65 0.51

3071 CO2 (PPM) 129.45 122.13

3033 Air temperature (◦C) 0.74 0.59

3033 CO2 (PPM) 67.01 53.19

3092 Air temperature (◦C) 1.17 0.33

3092 CO2 (PPM) 156.84 34.17
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Figure 11. Mean absolute error for the CO2 concentration: comparison calibrated model vs.
optimized model.
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Figure 12. Root-mean-square error of the CO2 concentration: comparison calibrated model vs.
optimized model.
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Figure 13. Mean absolute error for the air temperature: comparison calibrated model vs.
optimized model.
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Figure 14. Root-mean-square error for the air temperature: comparison calibrated model vs.
optimized model.

Figure 15 shows the time series comparison between the internal air temperature
and CO2 levels for a single room in the building after the completion of the fine-tuning
procedure. Overall, the model is able to accurately predict the two metered variables,
especially during the occupied hours that are more relevant to conducting an IEQ-related
analysis. Improvements could be achieved by gathering more detailed information for
un-occupied hours and the relative schedules and settings of operation of the heating
systems as well as the active equipment and real time occupancy values.
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3.5. The Thermal Comfort Models: Training and Results

The training and testing of the machine learning models was performed using available
methods of the scikit python package [29]. In particular, the available data were split in a
30/70 ratio, where 70% of the total data were used for training, while the remaining 30%
were used for testing. A fine-tuning approach and best algorithm searching method was
performed for each algorithm using a 10-fold cross validation technique on the training
dataset. The grid search method was used for testing many different combinations of the
tuning parameters of each algorithm. The best predictors for each method were selected
and compared to each other to evaluate their performance.

Table 4 summarises the validation results achieved with different ML techniques on
the seven-value scale for the prediction of the thermal comfort votes in the Helios building.
From the accuracy results, it is evident that the random forest approach and the gradient
boosting classifier achieved the best results. The accuracy value was calculated as the
average value across the different classes. A more granular analysis of the results shows
that predictive models in classes with a larger amount of feedback achieved better results,
as there were more historical values for the training. On the other hand, classes with fewer
values, such as the extreme of the scale, were difficult to predict, as there were not enough
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instances to accurately train the model. To address this problem, class balancing approaches
are recommended to unify the prediction accuracy of the model.

Table 4. Accuracy results achieved by different ML techniques.

ML Classifier Accuracy

K-Neighbours Classifier 62%
Decision Tree Classifier 56%

Random Forest Classifier 69%
Logistic Regression 62%

Gradient Boosting Classifier 66%

The results of the ML models evaluated on a three-value scale are reported in Table 5.
The random forest approach and the gradient boosting method achieved higher perfor-
mances in this case as well. Overall, the accuracy of the model was higher across the classes
of the scale, as a less granular classification was required.

Table 5. Accuracy of various ML models in a three-value thermal comfort scale.

ML Classifier Accuracy

K-Neighbors Classifier 78%
Decision Tree Classifier 79%

Random Forest Classifier 84%
Logistic Regression 77%

Gradient Boosting Classifier 81%

Figure 16 shows the results of predictive Bayesian model when compared with the
actual comfort values submitted by the occupants. The predictions are for a continuous
value scale, which constitutes a more challenging task compared to class prediction as
analysed in the examples before. The image shows the expected accuracy of the model
for an acceptable maximum error. The graph can be interpreted considering the following
example: if an error of ±0.4 with respect to the actual vote is accepted on the thermal
comfort scale, the model is able to generate a distribution that can include the actual vote
with 76% accuracy. In this example, an acceptable error of ±0.4 on the ASHRAE scale for
thermal comfort (−3, +3) indicates that the true vote of the occupant lies within a range of
size ±0.4 from the predicted value of the ML model.
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3.6. Accuracy and Comparison

Figure 17 shows the results of the comparison between the reconstructed true vote of
the occupants (as explained in Section 2), the PMV calculations, and the ML prediction for
the thermal comfort for an entire year (2019). The PMV calculations and the ML predictions
were calculated using the co-simulation technique for the year of analysis. An analysis of
the results shows that the PMV–PPD model significantly overestimates the comfort votes
starting in spring and for the entire summer months and underestimates the severity of the
votes in the winter months. It is clear from these results that the PMV–PPD model would
be insufficient for informing control algorithms compared to the developed ML prediction
algorithm. The ML vote predictions effectively follow the true vote trend for the entire year.
In particular, the model is able to predict values on the warm part of the scale as well on
the cold part for each day of the year for the occupied hours. It is also important to note
that the ML model seems to be less accurate at predicting thermal comfort votes on the
extreme hot or cold end of the scale. This is because few training instances were available
for extreme votes from the occupants to accurately train the model. For this reason, the
adoption of balancing techniques may be required to further improve the results. Figure 18
shows the comparison of the predictions of the PMV method and the machine learning
method when compared to the true vote over five working days. In the image, it is possible
to identify the minimum and maximum derived from the distributions generated by the
machine learning model. A comparison of the results shows the overpredictions of the
PMV model for the considered days in April.
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normative PMV approach.

The Bayesian ML model produces ranges of predictions that are comparable to the
actual vote from the occupants. Generally, the maximum and minimum values of the
ML prediction always include the true vote from the occupants for the period of analy-
sis. This information can be used to predict the expected thermal comfort range and to
inform optimum building controls. In the context of optimizing thermal comfort, setpoints
and heating/cooling operation may be controlled in order to maintain predicted thermal
comfort within the predicted ranges.

4. Discussion

The results of model calibration show the reliability of the proposed methodology
to facilitate the creation of digital representations of the real office building. In particular,
the multi-step calibration methodology and the continuous data gathering and integration
into the simulation model allow for the evolution of the baseline model over time to an
operational and finally to an optimized model that accurately represents the actual physical
behaviour of the building. The use of data analysis for the creation of actual schedules of
operations at the building and system levels enables a more accurate representation of the
building. The automatic optimization procedure based on the automatic fine-tuning of the
modelling parameters further shortens the gap between the real building and the simulated
one. The comparison between Tables 2 and 3 reveals the improvements in terms of the
metrics achieved with the final fine-tuning procedure. The final outcome of the procedure
shows that values of the me trics are mostly within the suggested ranges, and, therefore,
the model can be considered calibrated for the variables under analysis. From a visual
perspective, Figure 5 shows the quality of the results when compared to the actual metered
data. The final model is very capable of reproducing the behaviour of the real building for
the considered IEQ variables and, therefore, is suitable to be used as an additional source
of training data for the machine learning approaches.

The validation of the different machine learning models deployed for this study
underlines the capacity of these techniques to produce more reliable results compared
to traditional thermal comfort studies. In this regard, classification models trained on a
seven-value scale show a top accuracy of about 69%, which constitutes an improvement
of about 20–25% with respect to the traditional PMV method (45–50% accuracy). When
the model is trained on a smaller scale (three-value) the top accuracy is about 85%. In both
cases, the random forest approach seems to be the most accurate method of prediction.
A linear Bayesian implementation of the predictive approach allowed the model to consider
a continuous scale rather than a categorical scale, increasing the granularity of the response
of the prediction to the entire spectrum of possible continuous values (−3, +3). In this case,
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the accuracy of the model is dependent on the acceptable range of error. For example with
an error acceptance of ±0.4, the model shows an accuracy of about 76%. In addition, the
Bayesian approach of generating a distribution of possible values intrinsically takes into
account the uncertainties related to the measurements, the model, and subjective decision
of the occupants, providing a much more realistic figure of the thermal sensation of the
room. Moreover, by generating maximum and minimum boundaries, it is suitable to be
integrated into control methods that act on air temperature set points.

The connection between the calibrated energy simulation model and the machine
learning predictive approach allows for generating data in different scenarios. This ap-
proach takes the most useful features of the two methods and combines them together. On
one side, it uses the scenario evaluation approach of the physics-based simulation, and,
on the other, it uses the predictive capabilities of the ML model that was directly trained
on occupant feedback. The result is the possibility to generate realistic thermal comfort
feedback by simulating different scenarios in the energy model. This is very useful for a
control mechanism, as it provides the possibility of changing settings in the model before
performing any change in the operation of the real building. By using this approach, it was
possible to generate thermal comfort data for an entire year of simulation.

5. Conclusions

The prediction of thermal comfort feedback in office buildings is a difficult task
that generally is approached using physics-based calculations derived from a number
of environmental variables. Thermal comfort was found to be related to a number of
subjective and personal judgements of the occupants of the building. Machine learning
models that are trained on actual data inherit personal judgments, skewed preferences, and
personalised feedback as well as historical trends. Therefore, underlining the information
captured in the actual data can be learnt and used for future predictions. In this work,
the capabilities of the ML models when used for predicting thermal comfort votes from
occupants were tested. The results show that different configurations of the ML models are
able to capture personal preferences of the occupant, overcoming the main limitations of
traditional methods. When compared to normative approaches, such as the PMV method,
the ML algorithms reduced the prediction error by at least 25%, reaching a top accuracy
of almost 70% on a seven-value scale and about 85% on a three-value scale. The use of
Bayesian modelling allowed for a more realistic response in terms of the possible ranges
of thermal comfort, with minimum and maximum limits of acceptability, and enabled the
possibility of predicting thermal comfort on a continuous value scale rather than being
discretized in three or seven values. When physics-based simulation and ML data-driven
model are combined, the new modelling technique constitutes a useful predictive tool for
testing different control strategies and operations of the building before applying them
in the real one. In addition, by merging the two modelling techniques, it was possible to
extract additional information for the training of the ML algorithms from the calibrated
building energy model, such as the mean radiant temperature. The use of ML techniques is
important for taking into account many occupant-related variables for thermal comfort.
Nevertheless, some limitations should be taken into account. ML model accuracy and
precision is directly related to the available data. Missing data limits the quality of the
predictive models. For this reason, for extreme vote classes it is important either to gather a
sufficient number of training samples or to use advanced balancing techniques that are able
to generate synthetic data from the available ones. In future work, several pre-processing
techniques could be tested on the training dataset for balancing purposes as well as the
extraction of additional variables from the calibrated building energy model as additional
predictors. In conclusion, the union of building physics modelling and machine learning
techniques generates a hybrid modelling approach that showed several advantages. This
can be leveraged to create tailored predictive models for testing building control routines
as well as optimised operational scenarios as testing options before being applied on the
actual building.
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