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Abstract: The energy performance prediction of buildings plays a significant role in the design phases.
Theoretical analysis and statistical analysis are typically carried out to predict energy consumption.
However, due to the complexity of the building characteristics, precise energy performance can hardly
be predicted in the early design stage. This study considers both building information modeling (BIM)
and statistical approaches, including several regression models for the prediction purpose. This paper
also highlights a number of findings of energy modeling related to building energy performance
simulation software, particularly Autodesk Green Building Studio. In this research, the geometric
models were created using Autodesk Revit. Based on the energy simulation conducted by Autodesk
Green Building Studio (GBS), the energy properties of five prototype and case study models were
determined. The GBS simulation was carried out using DOE 2.2 engine. Eight parameters were
used in BIM, including building type, location, building area, analysis year, floor-to-ceiling height,
floor construction, wall construction, and ceiling construction. The Monte Carlo simulation method
was performed to predict precise energy consumption. Among the regression models developed,
the single variable linear regression models appear to have high accuracy. Although there exist
some limitations in applying the equation in EUI prediction, the rough estimation of energy use
was realized. Regression model validation was carried out using the model from the case study
and Monte Carlo simulation results. A total of 35 runs of validation were performed, and most
differences were maintained within 5%. The results show some limitations in the application of the
linear regression model.

Keywords: Green Building; BIM; regression analysis; Monte Carlo simulation; building energy
performance; DOE-2 simulation

1. Introduction

The construction and operation of buildings contribute significantly to the consump-
tion of resources and waste production [1]. More than 40% of energy consumption and
correspondingly 30% of the CO2 emissions are caused by buildings globally [2]. Since the
energy consumption dominantly depends on the energy performance of the building, con-
ducting energy simulation in the early design phase is essential. Since the beginning of the
21st century, the design of low-energy and zero-energy buildings has become an important
topic. Academics and building designers have conducted several types of research related
to building energy system design [3]. The Australian National Construction Code provides
energy-saving rules and regulations that first-class buildings should comply with.

The energy performance prediction of buildings [4–6] plays a significant role in the
design phases. Theoretical analysis and statistical analysis are typically carried out to
predict energy consumption. However, due to the complexity of the building characteristics,
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precise energy performance can hardly be predicted. Recent studies have indicated that
parametric analysis could improve the accuracy of energy performance prediction [7,8].
Nevertheless, the simulation process is relatively complicated, where various parameters
need to be involved. The regression approach could further reduce the energy consumption
intensity difference [9]. It is becoming desirable as a simplified approach. Therefore,
the combination of parametric analysis [10] and regression approach [11–15] precision
was adopted in the project. It is expected to improve the accuracy of the simulation. To
realize building energy optimization in the early stage, analyzing the building envelope
is considered an essential step [16–18]. Low-energy buildings [19,20] and zero-energy
buildings can be designed after energy optimization in the early design phase.

Building energy performance measurement can be realized by utilizing the energy
efficiency index [9,21] and energy simulation software such as EnergyPlus and DOE2.

Egan and Finn [22] stated data that can be gathered and provided for BEPS tools could
be unlimited. However, the gathering of data can be expensive and time-consuming. The
sensitivity of input parameters was analyzed quantitatively. By defining and modeling only
based on the influential parameters with a high degree of accuracy, time spent on collecting
and defining input parameter data and modeling can be significantly reduced [3].

As an innovative technique, BIM can assist with efficient building design by analyzing
building massing and the form of building, then optimizing its envelope. Thermal and
cooling loads can be managed by evaluating the heat transfer. Then, energy modeling can be
performed to estimate the total energy cost of a building before construction [23]. The cost
estimation can be performed in early-stage design [24]. Compared with EnergyPlus [25],
the simulation can be performed in a more user-friendly way.

Significant time savings can be achieved by importing geometric models from the BIM
software into the energy simulation tool without recreating the building geometry. Revit
and Green Building Studio were chosen because both can communicate seamlessly via
gbXML [26]. Building geometry can be exported from Revit to Green Building Studio for
analysis of energy assessment.

Articles indicated that BIM simulation could provide the chance to explore alternative
solutions in the early building design stage [23]. It could provide insight into the energy
consumption of buildings based on alternatives selected. However, there exist some limita-
tions, updates between models require additional operations, and real-time simulation and
feedback are not available [26]. The accuracy of BEPS results can hardly be ensured in some
cases. There is still a discrepancy between the actual data and the results calculated by BEPS.
Recent studies have made contributions to improve simulation accuracy. The difference
between the theoretical result and measured data is reduced to as low as 4% [27,28].

For the parametric analysis, the HVAC system, lighting system, façade [29], glaz-
ing system [30], and occupancy pattern [31] are considered to be key parameters. The
Abercrombie Business School (ABS) was constructed in 2015. It is located on the Darling-
ton campus at the University of Sydney (See Figure 1). There are numerous innovation
and energy-efficiency designs in this building, which saves 50% annual carbon footprint
compared with the benchmark.
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Figure 1. Case study building: Abercrombie Business School.

2. Literature Review

This section compares research conducted on building energy performance. The
review is as presented using the Aim–Method–Findings and Limitations form and is
tabulated in the table below (Table 1).

Table 1. Summary of the review of selected articles.

Aim Method Findings and Limitations

Providing a more comprehensive
approach to benchmarking building

energy [32].

The clustering concept based on Fayyad’s
model (feature selection, clustering

algorithm adaptation, results validation
based on the data from the national

database CBECS and local actual
buildings, and interpretation).

Compared with the Energy Star approach,
the clustering approach can incorporate
all the statistically significant building
characteristics affecting energy usage.

Developing a building energy
performance analysis tool based on

regression model for internal air
temperature prediction [33].

Simulation modeling analysis based on
the EnergyPlus software; multivariate

regression model analysis based on the
EnergyPlus software.

Utility of building energy performance
analysis based on regression model can

provide high accuracy results for internal
air temperature prediction in the

circumstances with numerous internal
and external influential factors.

Offering a new simple estimating tool for
building energy consumption-based
linear regression model without an

expert user [34].

Comprehensive analysis with TRNSYS
software and the multiple linear

regression method; sensitivity analysis
using the Pearson coefficient.

The use of multiple linear regression can
simply and immediately determine

building energy balance for evaluation
phases in energy planning.

Evaluating the impact on building energy
analysis due to the variations of the

thermo-physical property of building
envelopes and occupancy [35,36].

Data analysis using gbXML-based on
BIM; regression analysis.

The impact and the relative sensitivity of
occupancy variations may become greater
in the warmer location as the number of
occupants increases. This research is still
needed for the normalization of variables

in further studies. In addition, the
reference model is also required to use
through various simulation engines to

improve the accuracy comparison on the
building energy performance.
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Table 1. Cont.

Aim Method Findings and Limitations

Providing an optimizing measure for the
building windows system through

integration operational efficiency with
comprehensive life cycle assessment

(LCA) and life cycle costing
(LCC) [35,36].

Life cycle assessment and life cycle
costing analysis based on the FirstRate5

software; multiple linear regression
analyses; Monte Carlo simulation;

thermal energy simulation; simulation
and modeling based on BIM.

1. The minimum opening of windows on
the wall is an energy-saving option. 2.

Comparing the windows’ opening and
solar aperture can determine that larger

windows will cause excessive energy
consumption in the cold-temperate zone.
3. Solar aperture on energy consumption

is more significant than the U-value in
the warm-temperate zone. 4. The major
environmental impacts at various life

cycle stages are usually identified by the
LCA of different framed windows. 5.
Optimum performance of windows

varies with climate, longitude, latitude
and solar radiation.

Evaluating the capacity of BIM
technology design and address zero-net

energy houses (ZEHs) [37].

Building information modeling analysis
based on BIM and a simulation analysis

based on BPS tools.

The interoperability of the BIM system
with BPS tools shows that BIM plays a
key role be in achieving net-zero levels

for an existing residential house.
However, BIM is still not good at

determining the storage capacity of phase
change materials (PCMs).

Presenting an efficient method integrated
with building information modeling,

energy simulation, and energy
consumption prediction for building
energy performance evaluation [38].

3D building energy modeling based on
generic modeling (GM) approach;

simulation analysis via the EnergyPlus
software; Genetic Algorithm-Neural

Network (GA-NN) for building energy
consumption prediction model.

This building energy prediction method
based on generating models and data
depending on parametric modeling is

more effective, user-friendly, and reliable
for building projects. Limitations: (1) this

approach still need to be improved for
the design phase in complex building

structures; (2) there is still a gap between
the actual data and the result calculated

by EnergyPlus.

Investigating the effects of roof shapes
and buildings directly on the energy

consumption of the residential
buildings [39].

Modeling simulation analysis based on
REVIT Autodesk Solar Analysis software.

Compared with flat roofs, gable and hip
roofs are more stable regarding energy
consumption in terms of orientation.

Building orientation will provide a more
significant impact on building energy

performance than flat roof shape.

Investigating the availability of
integrating the BIM and BEM

methodologies for building energy
performance analysis [40].

Experimental design via Autodesk
Insight; modeling analysis based on

AutoCAD and Autodesk REVIT

The energy performance can be
effectively improved by the application of

the linkage between the BIM and BEM
methodologies in one environment:

REVIT on Autodesk, Insight, and Green
Building Studio. More information of the
materials’ thermal properties still needs

to be added; the accuracy was not
verified for the climatic conditions in the

database of Autodesk REVIT.

A case study to assess the validity of BIM
in the building design phase for

sustainable buildings [41].

Building modeling by Revit Architecture
2018; simulation analysis based on the

Green Building Studio.

BIM can effectively assist in evaluating
the energy efficiency and cost of the

building using Green Building Studio
and Autodesk Revit 2018.
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Table 1. Cont.

Aim Method Findings and Limitations

Developing life cycle BIM engaged
framework for addressing the building
energy performance gap (BEPG) [42].

Literature review; semi-structured
interview; qualitative analysis based on

Nvivo® software.

BIM can be used as a functional enabler
to address the building energy

performance gap (BEPG). However, the
real BIM platform still needs to be
developed and validated in actual

projects in future studies.

To analyze the impact of the existing type
of lighting (Ao) and glazing materials for

the energy performance of commercial
building [43].

Virtual modeling by the ArchiCAD
software; manual observation; the energy
evaluation via the ArchiCAD software.

BIM can effectively address various
issues in the construction industry; the
building energy consumption will be
impacted by different types of frame

materials; energy-efficient lighting such
as LEDs can reduce building

energy consumption.

As the attention of global warming has increased in recent years, building energy
performance has become a topic of many researchers. In order to provide more accurate
results from comparing the energy consumption, Gao and Malkawi [32] developed a new
approach based on the clustering concept. This approach can compare buildings from a
multi-dimensional domain of building features rather than the single dimension of the
use type. Compared with the Energy Star approach, the clustering approach can offer the
result by incorporating all major building characteristics which will affect the building
energy consumption.

Bilous and Deshko [33] also analyzed the building energy performance through the
regression model for internal air temperature prediction. The EnergyPlus software was
utilized by them to create a room dynamic simulation model. After numerous simulations
are carried out based on the model, it is proven that the regression model can be used
on building energy performance analysis to provide high-accuracy results for internal air
temperature prediction.

Except for the inner temperature prediction, Ciulla and D’Amico [34] devoted their
effort to a new measure to evaluate the building energy needs based on the linear regres-
sion model. The authors of [34] operated comprehensive analyses by TRNSYS software
and sensitivity analyses using the Pearson coefficient and found the use of multiple lin-
ear regression can simply determine building energy balance for evaluation phases in
energy planning.

Build information modeling (BIM) has also attracted the attention of many researchers
in building energy analysis. The authors of [35] implemented the data analysis and re-
gression analysis using gbXML-based on BIM to evaluate the impact on building energy
analysis due to the variations of the thermo-physical property of building envelopes and
occupancy; they then found the number of occupants and the relative sensitivity of occu-
pancy variations are positively correlated in a warmer location. BIM has also proven that it
plays a key role be in achieving the net-zero level for existing residential houses in [37]. The
author of [37] used building information modeling analysis based on BIM and a simulation
analysis via building performance simulation (BPS) tools to address zero-net energy houses
(ZEHs) in their research. The authors of [41] suggested that BIM can provide an effective
contribution to support decision-making for sustainable buildings through a case study
that examined an institute building located in the city of Alexandria (Egypt). In order to
overcome the problem of building energy performance gap (BEPG), a life cycle framework
was developed by A based on BIM. In the developing period, the Nvivo® software was
used to develop the BIM-based framework via the qualitative analysis, and functions such
as “information exchange”, “design review”, “energy-related quality control”, “life cycle
commissioning”, and “real-time operation and maintenance management” were achieved.
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As discussed above, many researchers indicate that BIM, indeed, can effectively
improve the building energy performance analysis in the design phase. Nevertheless, the
energy modeling simulation still needs to be implemented on other platforms. In order
to solve this obstacle, [40] delivered new solutions via integration of the BIM and BEM.
The BIM and BEM were combined within one environment through Insight and Green
Building Studio, performing the energy model, and REVIT, performing the physical model,
to reduce the energy consumption of the appliances via implementing the experimental
design. In light of the result from the experimental design, authors of [40] believed that
the energy performance could be effectively improved by the application of the linkage
between the BIM and BEM methodologies in one environment.

3. Methodology

This section describes the modeling procedure of geometric modeling and energy mod-
eling. The modeling procedure, building properties, and simulation outputs are explained.

Based on the energy simulation conducted by Autodesk Green Building Studio, the
energy properties of seven prototype models and five case study models were determined.
The impacts of individual design variables were implemented in the energy equations
through DOE 2.2 engine.

The study was conducted in four phases: data collection, geometric and energy
modeling, data analysis, and validation. Asadi and Amiri [27] proposed an effective
method that analyzes seven outside perimeter shapes. Five of those shapes were matched
in the ABS building. Respective geometric modeling and energy performance simulation
were carried out.

Therefore, in this paper, a total of five prototype building shapes were studied, and
related case studies were presented. BIM played a key role in the geometric modeling
and energy performance simulation configuration. Five building shapes were studied, as
shown in Figure 2 [27].

Figure 2. Sketch of five studied shapes.

3.1. BIM Modeling

At the beginning of the modeling phase, all five studied building shapes were modeled
using Autodesk Revit. Idealized geometric models were created for each shape where
building energy information was included. A Revit modeling workflow is shown in
Figure 3.

In the Revit energy simulation, spatial and surface energy models were majorly
considered. The spatial model presents the amount of discrete air (mass) subject to heat
changes. At the same time, the surface energy model considers the heat transfer path
through the analytical space boundaries. In the Revit modeling, the spatial model was
used to create an analytical energy model. The analytical energy models for the respective
shapes are shown in Figure 4 [27].
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Figure 3. Revit modeling workflow.

Figure 4. Revit analytical energy model.

The Appendix A contains BIM models of the five case study shapes (Figures A1–A5)
and lists some related settings in Autodesk Revit (Figures A6–A9). The contents are
supplemental to the main text.

3.2. Building Elements and Properties

In order to ensure the accuracy of the geometric model as well as the energy model,
some constant variables were set in the modeling process of this research. Table 2 summa-
rizes the constant parameters included in the geometric modeling. A 0.5% difference is
allowed in the floor area.

Table 2. Summary of model constant parameters.

Constant Parameters

Building type School or University
Location Sydney, NSW

Building area 100 m2

Analysis year 2021
Floor-to-ceiling height 3 m

Floor construction Floor-Grnd-Susp_65Scr-80Ins-100Blk-75PC
Wall construction Basic wall (wall-Ext 102Bwk-75Ins-100BlK-12P)

Ceiling construction Compound ceiling—Plain R2

The energy consumption of buildings is greatly influenced by the energy configura-
tions. The energy settings could otherwise control the use of additional data defined in
the Revit model, including material properties and thermal space properties. The specific
energy settings of the models are tabulated in Table 3.
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Table 3. Summary of building energy settings.

Energy Settings

Energy analytical model mode Use building elements
Building service VAV-Single Duct

Building infiltration class None

HVAC default system Central VAV, HW Heat, Chiller 5.96 COP, Boiler
84.5 eff

Export Category Rooms

The energy consumption of buildings is also related to the thermal properties of com-
ponents such as walls, roof, ceiling, slabs, floor, and glass. The following table summarizes
the thermal property of some significant building components (see Table 4).

Table 4. Summary of material thermal properties.

Material Thermal Properties

Roofs 4 in lightweight concrete, U = 1.2750 W/(m2·K)
Exterior Walls 8 in lightweight concrete block, U = 0.8108 W/(m2·K)
Interior Walls Frame partition with 3⁄4 in gypsum board, U = 1.4733 W/(m2·K)

Ceilings 8 in lightweight concrete ceiling, U = 1.3610 W/(m2·K)
Floors Passive floor, no insulation, tile or vinyl, U = 2.9582 W/(m2·K)
Slabs Un-insulated solid, U = 0.7059 W/(m2·K)
Doors Metal, U = 3.7021 W/(m2·K)

Exterior Windows Large, double-glazed windows (reflective coating)—industry,
U = 2.9214 W/(m2·K), SHGC = 0.13

Interior Windows Large single-glazed windows, U = 3.6898 W/(m2·K), SHGC = 0.86

Skylights Large, double-glazed windows (reflective coating)—industry,
U = 2.9214 W/(m2·K), SHGC = 0.13

3.3. Energy Simulation in Green Building Studio

Green Building Studio uses the DOE-2.2 simulation engine to simulate the energy
performance of the input energy model. After the energy options are configured in Revit,
the cloud server automatically calculates the energy model. The results of the energy
simulation are shown in GBS. For each building model, GBS automatically performs about
250 simulations. If the parameters change, the results obtained for each simulation are
displayed in detail.

3.3.1. Energy Simulation Workflow

The following figure shows the workflow of GBS modeling (see Figure 5).

Figure 5. Green Building Studio modeling workflow.
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As a plug-in for Revit, the GBS requires no additional information. On the one hand,
gbXML input files contain relevant building energy data. On the other hand, most energy-
related data reside in cloud-based servers and can be accessed instantly. Therefore, both
conceptual and detailed information can be analyzed conveniently.

3.3.2. Energy Simulation Outputs

The following diagram shows the simulation results in the GBS simulation (see
Figure 6). Those results were exported to RStudio for further statistical analysis.

Figure 6. GBS simulation results.

The outputs of GBS energy simulation include:

• Customizable charts of heat or cooling loads;
• Energy use intensity (EUI);
• Electric cost and fuel cost;
• Customizable parametric studies;
• Annual carbon footprint;
• Building properties summary of construction areas, equipment capacities;
• Design review file.

3.3.3. Assumptions and Default Values in GBS

The Autodesk GBS could realize automatic energy analysis by reading the gbXML file.
However, the default values are applied if the specific parameters were not specified in
the gbXML file. The default values are different from those in Revit. These defaults were
defined based on ASHRAE90.1, ASHRAE90.2, ASHRAE62.1, and CBECS data (see Table 5).
Additionally, regional codes form the baseline for where ASHRAE does not apply.

Table 5. Summary of building energy settings.

Energy Settings Baseline

Schedule California Non-residential New Construction Baseline Study 1999
Thermal parameters of the envelope ASHRAE 90.1 2007 and ASHRAE 90.2 2007

Equipment power density and DHW loads California 2005 Title 24 Energy Code
The density of occupancy and ventilation ASHRAE 62.1-2007

HVAC system 2003 Commercial Buildings Energy Consumption Survey
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3.4. Case Study

In this study, five of the studied shapes were identified in the ABS building (see
Figure 7). All shapes are highlighted in red. In the ABS building floor plan, the L shape (left
top), U shape (left bottom), H shape (middle), diamond shape (right-top), and rectangular
shape (right bottom) were modeled and simulated. The energy performance obtained from
the simulation was used for validation.

Figure 7. Five shapes (perimeter marked in red) identified in the ABS building.

All models are made to the original scale and area. The building structure, including
the window area, was maintained with maximum effort. However, in the modeling process
of the case study, some simplifications were made to the realistic model:

• The curved glass curtain walls are simplified to curtain walls with angles in the
diamond shape model.

• Complex interior spaces in H shape and U shape were simplified to main walls only.
• The perimeter gaps of the H shape and U shape were filled with walls.

3.5. Design Variables

Design variables specify the range of variation in the properties and shape of the
model and are crucial to energy design studies.

In this study, the variables were determined by Green Building Studio automatically.
Parameters including wall construction, roof construction, infiltration, lighting efficiency,
and plug load efficiency were considered most relevant to the building energy consumption
in energy performance simulations. Moreover, the building material of the studied variables
was strictly selected under ASHRAE90.1.

In the data analysis conducted in this study, the variables were divided into indepen-
dent and dependent variables, following the principles of statistics. The variables related
to building envelope, shape, and orientation were identified as independent variables.
However, some design variables required additional processing or dummy code, including
infiltration, lighting efficiency, and plug load efficiency.

The summary of design parameters and related analysis methods are tabulated in
Table 6.
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Table 6. Summary of Design Variables.

Parameter Analysis Methods

1 Wall Construction (U-Value) Tried to carry out linear regression analysis with
U-value and R-value. Analysis with U-value accepted.

2 Roof Construction (U-Value) Tried to carry out linear regression analysis with
U-value and R-value. Analysis with U-value accepted.

3 Infiltration (ACH) ACH (air change per hour) was used in the regression
analysisRanges from 0.17 to 2 L/s/m3.

4 Lighting Efficiency Lighting efficiency ranges from 0.3 to 1.9 w/sf,
equivalent to 3.23 to 20.44 W/m2.

5 Plug Load Efficiency Ranges from 0.6 to 2.6 W/sf, equivalent to 6.46 to
27.98 W/m2.

3.6. Monte Carlo Simulation

Monte Carlo simulation analyses the model statistically utilizing repeated random
sampling. This technique is based on the principle of random in statistics. The probability
distribution is used to determine the uncertainty of the model during the simulation.
Moreover, it can be used to help explain the effects of uncertainty in forecasting and
prediction models.

In this study, the Monte Carlo simulation method was performed to predict precise
energy consumption. The simulation was applied to five ABS building models. To be
specific, each design variable in each shape was simulated 4000 times. A total of 100,000
simulations was performed. Finally, complete simulation results (including EUI only) were
provided for each design scenario.

3.7. Regression Analysis

In this study, regression analysis was performed to predict the relationship between
five variables and energy use intensity (EUI). This technique incorporates single variable
regression only for simplicity. The process thermal loading calculation is therefore short-
ened. Single variable regression focuses on the analysis of the association between a single
dependent variable and its independent variables.

For the five prototype models and related case study ABS building models, 10,000
linear simulations were performed on each building model. The impact of the parameters
on the annual energy use intensity was then analyzed. Approximately 40% of the data
were used to test the developed case study models. The regression equation used for linear
regression is shown as follows:

y = α + βx (1)

where y is the predicting EUI, α and β are the coefficients, and x is the variable.

3.8. Goodness of Fit

The coefficient of determination R2 represents the goodness of fit of linear regression
models. Chicco and Warrens [44] stated that R2 is more informative in evaluating regres-
sion analysis compared with other frequently used statistical values, including MSE and
RMSE. It visualizes the degree of similarity between the actual model and the regression
model. Finally, the difference between observed and predicted values in the simulations
could suggest if the regression models fit the data well. The equation for coefficient of
determination is shown as follows:

R2 = 1 − ∑i(ŷi − ŷ)2

∑i(yi − ŷ)2 (2)

yi is the value of observation i;
ŷi is the predicted value of y for observation i;
ŷ is the mean of y value.
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4. Results

This section shows the data analysis based on the building energy simulation, then
presents regression models. The developed regression models were validated using several
models of the ABS building. The lines of best fit are shown, and the accuracy of the
regression model is discussed.

4.1. Linear Regression Models

Single variable linear regression models were established as the linear behavior was
evident in the study of wall construction, plug load efficiency, infiltration, roof construction,
and lighting efficiency. The results are tabulated in Tables 7–11.

Table 7. Summary of wall construction regression equations.

Wall Construction: y = α + βx
S1-Rec S2-L S3-H S4-DMD S5-U

α 668.36 667.86 668.59 662.01 665.27
β 14.62 21.31 25.87 15.27 26.20

R2 0.896 0.881 0.875 0.893 0.875

Table 8. Summary of plug load efficiency regression equations.

Plug Load Efficiency: y = α + βx
S1-Rec S2-L S3-H S4-DMD S5-U

α 491.45 497.96 501.40 486.75 498.96
β 11.77 11.64 11.67 11.71 11.63

R2 0.999 0.999 0.999 0.999 0.999

Table 9. Summary of infiltration regression equations.

Infiltration: y = α + βx
S1-Rec S2-L S3-H S4-DMD S5-U

α 668.98 672.33 675.86 662.72 672.70
β 21.97 26.35 28.00 23.70 28.74

R2 0.853 0.907 0.919 0.871 0.920

Table 10. Summary of roof construction regression equations.

Roof Construction: y = α + βx
S1-Rec S2-L S3-H S4-DMD S5-U

α 646.74 649.29 652.85 640.60 649.82
β 25.33 25.40 25.10 24.91 24.72

R2 0.998 0.999 0.999 0.998 0.998

Table 11. Summary of lighting efficiency regression equations.

Lighting Efficiency: y = α + βx
S1-Rec S2-L S3-H S4-DMD S5-U

α 528.71 534.52 538.343 523.53 535.74
β 11.87 11.67 11.67 11.71 11.64

R2 0.999 0.999 0.999 0.999 0.999

Tables 7–11 show the summary of regression equations associated with each shape.
The accuracy of the models is judged by the coefficient of determination (R2). Regression
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models for lighting efficiency, roof construction, and plug load efficiency have a high R2

value, close to one. Nevertheless, regression models for wall construction and plug load
efficiency have relatively lower R2 values. The scattered data points are slightly dispersed
around the line of best fit.

4.2. Regression Models Validation
4.2.1. ABS Case Study—Base Run Result

Figure 8 shows the comparison of EUI across five validated shapes for the original
geometric model. A significant difference of EUI between the diamond shape and the other
four shapes is observed.

Figure 8. ABS Case study EUI comparison.

4.2.2. ABS Case Study—Validation

The following figures show the comparison between ABS case study models and the
regression models. Errors are indicated as a percentage in absolute value (See Figures 9–13).

Figure 9. ABS Case study validation—Rectangle shape.
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Figure 10. ABS Case study validation—H shape.

Figure 11. ABS Case study validation—U shape.

Figure 12. ABS Case study validation—Diamond shape.

Figure 13. ABS Case study validation—L shape.

A total of 35 runs of validation were performed. The validation results indicate the
accuracy and feasibility of regression equations. It can be observed from the H shape,
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Rectangle shape, L shape, and U shape validations that most errors values were maintained
within 5%. The maximum difference was found at infiltration at the L building shape. At
the same time, the lowest error tends to be zero.

Notably, the differences between ABS simulation results and a regression model
are exceptionally high. The error ranges between 16% and 26%. The error range is not
considered acceptable.

5. Discussion

Based on the results of the energy model simulations, the degree of influence of each
design variable on the energy consumption was deduced. Regression model validation
was carried out using the model from the case study and Monte Carlo simulation results.
As a simplified solution, the accuracy is acceptable for most of the shapes.

The coefficient of determination demonstrates a good fit for single variable linear
regression models. The regression equations for plug load efficiency and lighting efficiency
both have an R2 value close to one. No symmetric dispersion from the fitted line is observed
in the figures (see Figures 14 and 15).

Figure 14. Plug load efficiency fitted line diagrams.

Therefore, it can be predicted from the accuracy of the regression model that simulation
formulae for these two variables follow a perfect linear relationship.

The regression model for roof construction also has a high value of the coefficient of
determination. The R2 ranges from 0.998 to 0.999. However, there are several data points
found in the graph that are symmetrical about the best-fit line. It can be judged that the
values of the coefficients of determination are unreliable due to the nature of how they are
calculated (see Figure 16). Therefore, there is a slight discrepancy between the regression
model and the actual accuracy.
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Figure 15. Lighting efficiency fitted line diagrams.

Figure 16. Roof construction fitted line diagrams.

The wall construction regression models have relatively lower R2 values. The data
points are scattered on both sides of the line of best fit but not too discrete, as shown in
Figure 17. Overall, the fit of the regression model is good, and the accuracy is reliable.

Notably, the regression equation for infiltration has several data points below the
best-fit line (see Figure 18). Even though the model is strongly linear in the interval of study,
from the pattern of data point distribution, it can be expected that the entire equation is
likely to be non-linear.
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Figure 17. Wall construction fitted line diagrams.

Figure 18. Infiltration fitted line diagrams.

In summary, the five univariate linear regression models developed were all highly
accurate. A few characteristics of the data were found not reflected by the R2 values. The
accuracy of the regression model was therefore further validated by the observation of the
respective best-fit lines.

Model validation generally meets objectives. Since Monte Carlo simulation was used
to create new data sets, the accuracy of validation was ensured.

A significant error was observed in the validation of the diamond shape model. The
error ranges between 16% and 25% (see Figure 19).
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Figure 19. Case study ABS diamond shape error.

To further explore the causes, a series of reviews on the modeling process and data
analysis were conducted. Finally, the cause of the error was determined to be the charac-
teristics of the architectural model. The case study model and real building space for the
diamond shape are shown in Figures 20 and 21.

Figure 20. Case Study—ABS diamond shape BIM model.

Figure 21. Case Study—Photo of ABS diamond shape, ground level, learning hub.

The window–wall ratio for the modeled diamond shape is 71%, which is much higher
than typical buildings. The large window area causes an increase in energy consumption.
In addition, the floor-to-ceiling height is 1000 mm higher than the other shapes. As a result,
the model has a large bias. Even though it is not apparent, a phenomenon similar to this is
seen in other models. The WWR for the L shape is 26%, resulting in an error of up to 8%.
The case study building data were tabulated in the Table 12.



Buildings 2022, 12, 449 19 of 25

Table 12. Summary of case study building data.

Floor Area (m2) EUI (MJ/m2/Year) Floor-to-Ceiling Height (mm)

H shape 2824 671.0 3000
Rectangle shape 440 687.7 3000

L shape 342 646.7 3000
U shape 1119 651.8 3000

Diamond shape 604 829.7 4000

In the process of validating the model, it was confirmed that no significant correlation
existed between energy consumption and floor layout. The difference of EUI between the
other four validated shapes was not significant.

This section showed a series of simulations and data analyses for the idealized energy
model. Limitations identified from the results were discussed, then regression models and
equations were demonstrated. The case study model and validation results for the case
study indicate the high accuracy of the regression model. An analysis of the errors that
occurred in the simulation validation was carried out.

6. Conclusions

The study developed several regression models based on the results of building energy
simulations. We highlighted a number of findings of energy modeling related to building
energy performance simulation software, particularly Autodesk Green Building Studio.
The strengths and limitations of employing BIM software in energy modeling were explored
in the article. Based on the simulation results, the influence of design parameter change
was confirmed.

The modeling and simulation process is relatively performable. A basic energy model
can be built in half an hour. The energy model settings are simplified in Autodesk Revit.
However, the running time is long, as simulations are run using a cloud-based service.
For idealized conditions, Autodesk GBS conducts simulations based on either building
element or conceptual massing element. Simulation results are acquirable, understandable,
and workable.

Among the regression models developed, the single variable linear regression models
appear to have high accuracy (R2 > 0.99). Although there exist some limitations in applying
the equation in EUI prediction, the rough estimation of energy use is realized. Most
case study validations obtained error less than 5%, which further verified the feasibility
of prediction.

Several issues were found as limitations of this study when carrying out a parametric
analysis on building energy performance using the regression approach. Meanwhile, the
existing simulation methods and the regression model building process were shown to
have great potential for development.

The following suggestions can be made for future research:

• Due to the uncertainty and complexity of real-world models, models that include
more significant parameters are recommended.

• The prototype model approach in this study has achieved success to some extent and
can be used in future studies.

• Future modeling using BIM software could consider the energy setting and compare
the influence of energy setting on the energy performance.

• Life cycle energy cost and other cost-related data generated by GBS can be further
explored. A likewise regression analysis can be employed to develop equations.

• Cost-efficient alternatives need to be further identified based on the analysis of life
cycle cost for the energy model.

• Due to the impact of COVID, measuring data comparison is not conducted. Acquiring
the measured date is essential to improve the accuracy of the energy performance model.

• Further research could compare the current building design with BCA/Green Star regulations.
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Appendix A

Figure A1. Case Study—Diamond shape BIM model.

Figure A2. Case Study—L shape BIM model.
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Figure A3. Case Study—Rectangle shape BIM model.

Figure A4. Case Study—U shape BIM model.

Figure A5. Case Study—H shape BIM model.
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Figure A6. Case Study—Energy setting in BIM.

Figure A7. Case Study—Advanced Energy setting in BIM.
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Figure A8. Case Study—Location setting in BIM.

Figure A9. Revit 2022. (2021). Autodesk. Insight. (2021). Autodesk. Green Building Studio.
(2021). Autodesk.
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