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Abstract: The rapid infrastructure development in densely populated areas has had several negative
impacts. Increases in urbanization have led to increased LST, and urban ecological systems have
been negatively affected. Urban heat islands (UHIs) can be mitigated by understanding how current
and future LST phenomena are linked to changes in landscape composition and land use cover
(LUC). This study investigated the multi-scale spatial analysis of LUC and LST in Tianjin using
remote sensing and GIS data. We used Landsat data from 2005 to 2020 to examine the effects
of LUC on LST in urban agglomeration. According to the Urban Thermal Field Variance Index
(UTFVI), the city’s ecological evaluation was carried out. Results show that changes in LUC and other
anthropogenic activities affect the spatial distribution of LST. For the study years (2004–2009), the
estimated mean LST in Tianjin was 25.32 ◦C, 26.73 ◦C, 27.62 ◦C, and 27.93 ◦C. Between LST and urban
areas with other infrastructures, and NDBI, significant positive correlation values were found about
0.53, 0.48, and 0.76 (p < 0.05), respectively. Temperatures would almost certainly increase by 3.87 ◦C to
7.26 ◦C as a result of decreased plant cover and increased settlements. These findings strongly imply
a correlation between LST and the vegetation index. Between 2005 and 2020, the anticipated increase
in LST of 3.39 ◦C is expected to harm urban environmental health. This study demonstrates how
Tianjin and other cities can achieve ecological sustainability.

Keywords: land surface temperature; urban thermal field variance index; land use/cover change;
google earth engine; urban planning and development; ecological evaluation; urban system

1. Introduction

Land use cover (LUC) change occurs primarily due to the alteration of natural vegeta-
tion at various scales due to logging, vast urban development, and agricultural expansion
activities [1]. These changes contribute to various environmental problems, including
biodiversity loss, increased greenhouse gas concentrations [2–6], fluctuation in land surface
temperature (LST), and favored precipitation anomaly. Urbanization, associated with pop-
ulation growth, industrial/infrastructural development, and landscape composition, has
become a global challenge. As a result of urbanization, LUC changes are one of the major
causes of fluctuating LST in urban areas [6–9]. As a result of LST’s adverse effects on the
urban environment, the relationship between LUC and LST is gaining significant attention
within the scientific community [10,11]. As the second-largest economy globally, China is
experiencing rapid urbanization, with a dramatic expansion of built-up areas, residential
neighborhoods, and new cities [12–14]. As a result, appropriate urbanization policies to
modify land-use and landscape patterns are critical [15–17]. Understanding the relationship
between urbanization and these patterns may help inform the development of more sus-
tainable urban environmental management policies [14,18–20]. The vast majority of people
who relocate to new cities and their activities put a lot of strain on housing, infrastructure,
food security, ecosystem services, and natural resources management [7,14,17,21–23].
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Urban areas have higher air temperatures and LST than rural areas nearby. The
morning peak occurs during the transition between daylight and nocturnal conditions.
This shift occurs when sunlight begins to warm the atmosphere. During this time, a
more stable surface layer may form, trapping anthropogenic waste heat [13,14,24]. This
occurrence is predicted to occur more frequently during the winter. Anthropogenic activity
is at its peak over the weekend, which implies that surface temperatures in large cities
are predicted to be high. In most temperate climates, the evening peak hour is before
or just after sunset throughout the summer [24,25]. And low evapotranspiration [10,25].
Changing urban concentrations affect regional temperatures, increasing the UHI effect
in cities. Investigations into the relationship between landscape patterns and UHI have
ranged from local to global. Built-up areas and barren lands exacerbate UHI, while open
spaces and water mitigate it [6,26]. Landscape composition and configuration are dominant
patterns in LST [15,27–29]. Social and economic factors influence LST trends [8,22,30–32].

Numerous studies on LST have been conducted. Additionally, studies incorporating
UHIs or LSTs can be explained in three ways, depending on their methods and scales [5,33–36].
The first set of studies engages larger scales and satellite imagery to examine an entire city or
its immediate surroundings [5,37,38]. In the meantime, studies in the second group, known
as observation studies, compare data from meteorological stations in urban and rural
areas [32,39–41]. They are based on data analysis from established stations or monitoring
devices. Based upon the number of stations or sensors used in the measurements, these
studies can involve a portion of a city, the entire town, or a specific axis [1,42]. Finally,
numerical modeling is used in the third group of studies, mainly at the sub-scale, territory,
or residential extent [43].

Tianjin is a city of rich historical, cultural, and commerce backgrounds. Tianjin’s
land cover types are changing rapidly due to rapid population growth. The city’s natural
landscapes have been transformed into stone and concrete surfaces, leaving green areas
further from the city’s core [44–47]. More industrial, commercial, and transportation
services are being built to meet the growing city’s needs. The city’s most significant issue
is unplanned and uncontrolled growth, which means more impervious surfaces and less
green space. Impervious surfaces such as parking lots and roofs generate much heat, as do
buildings made of concrete or steel [5,16,21,34,48,49]. As a result, heat rises and concentrates
near or in Tianjin. There are also issues with urbanization and climate, significantly when
temperatures rise due to the increased population. Temperatures in cities are higher since
buildings disrupt natural vegetation and reduce green space [25,50–54]. As a result of these
factors, Tianjin’s air temperatures are much higher in densely populated areas. The primary
reasons for the formation of UHIs in Tianjin are the reduction of green spaces in urban
areas and the materials used in building construction [19–21,33,55,56].

Rapid economic growth, particularly in megacities such as Tianjin, has radically altered
the function and structure of urban ecosystems. Regular monitoring at both macro and
mid-range scales is required to assess the effects of LUC change land indexes on LST and
UHI. The region is currently the country’s growing urbanization hotspot. The objective
of this study was to: (1) investigate the effects of LUC change on LST by analyzing LULC
changes, LST distributions, and UHI intensity for Tianjin and its vicinity from 2005 to 2020
using Landsat 5 TM and Landsat 8 OLI data; (2) correlate LST with LUC, NDVI, and NDBI
for the entire Tianjin region and generate the ecological evaluation index (EEI) for the city;
and (3) establish a relationship between UHI and the town’s built-up area/bare land areas.

2. Materials and Methods
2.1. Study Area

Tianjin, China, is a global beta second-tier city with over 13.86 million people [57]
and an urban built-up area of approximately 1156 km2. It is located at 39◦N and 117◦E.
(Figure 1). Tianjin has undergone long-term evolution in urban spaces such as other world
metropolises, particularly in replacing its primary, secondary, and tertiary industries over
the last twenty-five years. Changes in urban development from a single center to multiple
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centers [38]; and significant spatial differences in factors such as UHI-related green coverage,
building height, building density, hardened pavements, and sky wideness [15,58]. Thermal
comfort levels have decreased due to these changes. We chose Tianjin as an example of a
mega-urban space for this study.
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Figure 1. Geographic location and characterization of the study area.

2.2. Data Source and Pre-Processing

For LST and LUC estimation, a series of remote-sensed images with a spatial resolution
of 30 m were collected from Landsat-5 (Landsat Thematic Mapper-TM) and Landsat 8 (Op-
eration Land Imager-OLI) over various periods between 2005 and 2020 [4,30,38,59–61]. The
primary objective was to use Google Earth Engine to select cloud-free images acquired
during the same season of each sample year (Table 1). (GEE). Before LUC identifica-
tion, a pre-treatment procedure was used to extract atmospheric effects from Landsat
images [5,62,63]. For each land cover class, 500 ground control points were collected
during a ground survey to assess the accuracy of the thematic layer. The US Geological
Survey’s web data portal provided the digital elevation model (DEM) data. Each Landsat
scene has been enhanced using the histogram equalization technique to increase the image
contrast [40,64].

Table 1. Details of the Landsat data used in this study.

Images Periode Spacecraft Sensor Resolution

May–September 2005 Landsat-5 TM 30, 15, 100 m
May–September 2010 Landsat-5 TM 30, 15, 100 m
May–September 2015 Landsat-8 OLI_TIRS 30, 15, 100 m
May–September 2020 Landsat-8 OLI_TIRS 30, 15, 100 m

2.3. Experimental Design

The data sets were processed in Google Earth Engine (GEE) according to the specified
methodology (Figure 2) to create a false color composite (FCC). The following procedure
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involved determining the presence of an urban heat island (UHI) within the city to figure out
the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Vegetation
Index (NDBI), and the land surface temperature (LST) [3,4,38,63,65]. The supervised image
classification method was then used to classify each scene. Pearson correlation analysis
was used to derive statistical inferences from the mean LST and the relative percentages of
various land cover types, as well as the NDVI and NDBI values [34,56,66,67]. The Ecological
Evaluation Index (EEI) for Tianjin City was mapped using UTFVI. ArcGIS Pro-2.5, Adobe
illustrator, and R-studio generated all spatial maps and statistical illustrations.
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2.4. Computation of Land Use Cover Change (LUCC)

This study’s land cover classification data was generated using an advanced super-
vised machine learning classification algorithm called random forest (RF) using 10–20
multiple DTs. RF is used to process spectral images in remote sensing-related fields [6,55].
Five different Landsat satellite images from the summer period (May–September) 2005 to
2020 were used to classify each reference year. Between May–September 2005 and 2010,
Landsat-5 TM multispectral images were acquired, and Landsat-8 OLI multispectral im-
ages were developed in 2015 and 2020 [7,8,11,21]. For all spatial scenes, an image classifier
was used to classify the LUC types into five classes: urban, water, cropland, forest, low-
land [34,58,60]. A confusion matrix was generated from the classified image and signature
file to evaluate accuracy. The image classification was carried out using the GEE platform’s
code editor.

2.5. NDVI and NDBI Calculation

The Normalized Difference Vegetation Index (NDVI) is the most frequently used
vegetation index worldwide. Equation (1) is commonly used to verify the condition of
vegetation by calculating the ratio of near-infrared (NIR) and red bands [6,28,53]. NDVI
values range between −1 and +1, depending on the objects visible at ground level. Typically,
green vegetation has a value between 0.2 and 0.8 [28,59].

NDVI = (NIR − RED/NIR + RED) (1)
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where NIR corresponds to Band 4 (Landsat TM) and Band 5 (Landsat 8) and RED corre-
sponds to Band 3 (Landsat TM) and Band 4 (for Landsat 8).

Normalized Difference Build-up Index (NDBI) can be calculated using the following
formula (2) [68]. NDBI values range from −1 to +1. A negative value of NDBI corresponds
to water bodies, whereas a positive value corresponds to developed areas. Vegetation has a
low NDBI value [10,28,68,69].

NDBI = (SWIR − NIR/SWIR + NIR) (2)

where SWIR denotes Band 5 (Landsat TM) and Band 6 (Landsat 8) and NIR denotes Band 4
(Landsat TM) and Band 5 (Landsat 8).

2.6. Retrieval of Land Surface Temperature (LST)

LST can be derived from Landsat data with a thermal infrared band (Band-6) that
has been radiometrically corrected. There is a procedure for converting digital numbers
(DNs) at the satellite level that takes atmospheric absorption, re-emissive heat, and a
collection of surface emission corrections into account [50]. The reflectance and brightness
temperature of the top of the atmosphere (TOA) should be converted from the spectral
radiance [9,22,29] and then calculated land surface temperature (LST) with the following
equation (Equation (3)) [4,29,48]

LST =
TB

1 + (λσTB/(hc)) ln ε
(3)

where, brightness temperature TB, λ is the effective wavelength (10.9 mm for band 10 in Land-
sat 8 data), σ is Boltzman constant (1.38 × 10−23 J/K), h is Plank’s constant
(6.626 × 10−34 Js), c is the velocity of light in a vacuum (2.998 × 10+8 m/sec), and ε is
emissivity. For this study, land surface temperature (LST) is expressed in degrees Celsius (◦C).

2.7. Mapping Urban Heat Island (UHI)

Urban heat island (UHI) was identified from the range values of LST by using Equa-
tions (Equation (4)) [10,44,70].

UHI =
(

T − Tmin

Tmin

)
(4)

T is the LST raster value, while Tmin is the minimum temperature value.

2.8. The Urban Thermal Field Variance Index (UTFVI)

Tianjin City’s urban heat island (UHI) was also studied using the UTFVI to understand
its effects better. The LST value is directly related to the amount of heat
generated [4,65]. Thermal comfort indices can be used to assess the impact of urban
heat islands (UHI) on the quality of life in the city. The UHI zones of Tianjin were evaluated
for their environmental impact using UTFVI. Which was calculated using the following
equation (Equation (5)) [15,44,61,71,72]:

UTFVI =
Ts − Tmean

Tmean
(5)

where, UTFVI is the Urban Thermal Field Variance Index; Ts = LST (◦C); and Tmean
mean LST (◦C).

3. Results
3.1. Land Use Cover and Changes Analysis

LUC generated spatially detailed maps for five thematic categories: (i) urban,
(ii) cropland, (iii) water, (iv) forest, and (v) lowland (Figure 3A) for 2005, 2010, 2015,
and 2020. Urban area covered 2425.187 km2 in 2005 and 3043.35 km2 in 2020. (Table 2).
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Between 2005 to 2020, the water area decreased significantly (711.11 km2). In 2005, the
cropland was 2796.23 Km2, while in 2020, it was 3288.52 km2. Between 2005 and 2020,
the area covered by forest and lowland was 2794.63 km2, 2308.22 km2, 2043.86 km2, and
2659.69 km2, respectively.
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Table 2. Land use cover (LUC) details from 2005 to 2020.

Land Cover
2005 2010 2015 2020

Area (km2) %Age Area (km2) %Age Area (km2) %Age Area (km2) %Age

urban 2425.19 21% 1914.48 16% 2576.97 22% 3043.35 26%
cropland 2796.23 24% 2791.55 24% 3347.76 29% 3288.52 28%

water 1345.71 12% 1526.86 13% 865.12 7% 634.59 5%
forest 2794.64 24% 3439.43 29% 2853.42 24% 2043.86 18%

lowland 2308.23 20% 1997.67 17% 2026.71 17% 2659.69 23%

The urban area increased significantly by about 146.32 km2 during this period, while
water and forest area decreased by 191.98 km2 and 191.98 km2. Similarly, cropland and
lowland increased by 492.28km2 and 351.46 km2, representing an inverse accumulative
change of 13% during 2005–2020.

Urban area increased by 662.48 km2 and 466.38 km2 between 2010 and2015 and
between 2015 and2020, respectively. A similar trend was observed for lowland 29.04 km2

and 632.97 km2. Cropland increased 4.05% in 2010–2015. However, water area decreased
continuously 661.20 km2 and 230.54 km2 from 2010 to 2020. Lastly, the forest area fell
by about 586 km2 in 2010–2015, and the same declining trend of about 809.56 km2 was
observed in 2015–2020 (Table 3).



Buildings 2022, 12, 399 7 of 16

Table 3. Land use cover (LUC) change statistics from 2005 to 2020.

Land Cover Change
2000–2010 %Age Change

2010–2015 %Age Change
2015–2020 %Age

urban −510.704 −4% 662.485 6% 466.380 4%
cropland −4.679 0% 556.209 5% −59.240 −1%

water 181.151 2% −661.736 −6% −230.540 −2%
forest 644.793 6% −586.008 −5% −809.560 −7%

lowland −310.561 −3% 29.046 0% 632.970 5%

3.2. Accuracy Assessment of LUC

These land-use classifications’ Kappa coefficient was calculated about 0.91%, 0.96%,
0.84% and 0.97%, respectively. For all four classified images, the kappa coefficient value
was greater than 0.85, indicating the accuracy of the classification estimations and the
reliability of the RF algorithm utilized in this investigation.

3.3. Land Surface Temperature (LST)

The spatial distribution of LST in 2005, 2010, 2015, and 2020 across Tianjin (Figure 3B).
The LST values were categorized into five classes: (i) 20 ◦C; (ii) 20–25 ◦C; (iii) 25–30 ◦C;
(iv) 30–35 ◦C; and (v) >35 ◦C, defining the temperature pattern in study area (Figure 3B).

The total area with temperatures below 20 ◦C and 20–25 ◦C was estimated to be
approximately 1239.40 km2, 4961.73 km2 in 2005, 3911.36 km2, 5946.67 km2 in 2010,
110.32 km2 and 3237.27 km2 in 2015, 792.66 & 2119.04 km2 in 2020. Within the range of
25–30 ◦C, there are approximately 4672.72 km2, 747.58 km2, 5982.67 km2, and 1313.66 km2

in 2005, 2010, 2015, and 2020 respectively (Table 4). The respective areas for 30–35 ◦C were
approximately 450.07 km2 and 220.74 km2, 1268.14 km2 and 657.99 km2, from 2005 to 2020.
Similarly, the values for areas classified as >35 ◦C are 102.02 km2 (2005), 140.00 km2 (2010),
197.96 km2 (2015), and 340.37 km2 (2020).

Table 4. Details of land surface temperature (LST) from 2005 to 2020.

LST (◦C)
Categories

2005 2010 2015 2020

Area km2 %Age Area km2 %Age Area km2 %Age Area km2 %Age

<20 1239.399 11% 3911.361 37% 110.320 1% 792.664 18%
20–25 4961.730 45% 5946.673 56% 3237.273 34% 2119.038 47%
25–30 4672.717 43% 747.584 7% 5982.673 63% 1313.659 29%
30–35 45.065 0% 32.742 0% 168.139 2% 265.993 6%
>35 10.022 0% 20.004 0% 39.960 0% 50.370 1%

3.4. Normalize Difference of Vegetation Index (NDVI) and Build-Up Index (NDBI)

We categories Normalize Difference of Vegetation Index (NDVI) into four different
classes (i) <0.25; (ii) 0.26–0.45; (iii) 0.46–0.59; and (iv) >0.60 to evaluate the vegetation index
in the study area (Figure 4A).
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The total area covered in <0.25 was estimated to be 32.98 km2, 92.85 km2, 195.99 km2,
314.82 km2 during 2005–2020. Area in the category of (0.26–0.45) were determined in
3880.11km2, 1236.99 km2, 895.57 km2 and 1516.09 km2, and third category (0.46–0.59) in
7234.43 km2, 9987.26 km2, 8998.417 km2 and 7913.16 km2. The values for areas classified
as >0.60 are 204.62 km2, 35.43, 1258.44 km2 and 1607.21 km2 during 2005, 2010, 2015, and
2020, respectively (Table 5).

Table 5. Details of Normalize Difference of Vegetation (NDVI) and Build-up Index (NDBI) from 2005
to 2020.

Classes
2005 2010 2015 2020

Area (km2) Area (km2) Area (km2) Area (km2)

NDVI

<0.25 32.98 92.86 195.99 314.83
0.26–0.45 3880.11 1237.00 895.58 1516.10
0.46–0.59 7234.44 9987.26 8998.42 7913.16

>0.60 204.63 35.43 1258.44 1607.22

NDBI

<−0.99 32.98 92.86 195.99 314.83
−0.10 to
−0.75 3880 1237.00 895.58 1516.10

−0.76 to
−0.45 7234.44 9987.26 8998.42 7913.16

>−0.46 204.63 35.43 1258.44 1607.22

We classify the Normalized Difference of Build-up Index (NDBI) into four different
categories (Figure 4B); the total area in the category <−0.99 was estimated to be 32.98,
92.85, 195.99, and 14.82 km2 during 2005, 2010, 2015, and 2020. Area in the (−0.10 to −0.75)
category was determined in 3880.10, 1236.94, 895.57, and 1516.09 km2. Similarly, the area
7234.43, 9987.26, 8998.42, and 7913.16 were categorized as third category (0.46–0.59). The
values for areas classified as >−0.46 were 204.62, 35.43, 1258.44 and 1607.21 km2 during
2005 to 2020.
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3.5. Determination of Urban Heat Island (UHI)

Urban heat island (UHI) was categorized into five various categories: (i) no UHI, (ii) low,
(iii) moderate, (iv) high, and (v) very high (Figure 5A) for 2005 to 2020. No UHI area covered
294.29 km2 which was 3.36%, and low UHI area was 2699.61 km2, moderate UHI area was
3710.06 km2, area covered in high UHI was 40.95 km2, and tiny patches were observed in
highly high UHI in 2005. (Table 6). From 2005 to 2020, the non and low UHI area increased up
to 12% and 10%, covering almost 1715.98 km2 and 2662.85 km2. Moderate UHI class observed
a massive decrease of up to 16% and a total area of 381.34 km2.
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Table 6. Descriptive statistics of the urban heat island (UHI) during the study period for Tianjin.

UHI
Classes

2005 2010 2015 2020

Area km2 %Age Area km2 %Age Area km2 %Age Area km2 %Age

No UHI 294.29 3.35 198.76 2.19 112.94 1.03 2010.27 15.46
Low 2699.61 30.76 5992.05 65.92 3326.91 30.48 5362.46 41.23

Moderate 3710.06 42.28 750.04 8.25 6109.39 55.96 3328.72 25.59
High 40.95 0.47 92.72 1.02 1308.11 11.98 165.04 1.27

Very High 26.02 0.30 46.78 0.51 59.47 0.54 120.00 0.92

Similarly, high UHI and very high/extremely high UHI category areas were increased
by 124.09 km2 and 93.98 km2, representing an accumulative change of 0.8% and 0.63%,
respectively, during 2005–2020.

3.6. Evaluation of Urban Thermal Field Variance Index (UTFVI)

UTFVI for the area was divided into five different categories according to the ecological
indexing as (i) good, (ii) normal, (iii) bad, (iv) worse, and (v) worst in the period 2005
to 2020 (Figure 5B). The area with the good and normal condition was 1166.09 km2 and
4891.97 km2, 9.98% and 41.89% in 2005, and bad index area was 4557.55 km2 (39.02%). The
worse and worst situation observed were 743.68 km2 (6.37%) and 320.00 km2 (2.74%). In
2020, the good index area covered 2010.27 km2 (16.02%), the normal area was 5362.46 km2
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(42.74%), the bad index area was 3328.72 km2 (26.53%), and the area covered in worse
condition was 1165.04 km2 (9.29%). The most critical condition area was observed in the
worst index, about 680.78 km2 which was 5.43% of the whole study area. (Table 7).

Table 7. Detailed Ecological Evaluation Index (EEI) of the study period for Tianjin.

UTFVI EEI
2005 2010 2015 2020

Area km2 %Age Area km2 %Age Area km2 %Age Area km2 %Age

<0.005 Good 1166.09 9.98 3914.38 34.40 112.94 1.00 2010.27 16.02
0.005–0.010 Normal 4891.97 41.89 5992.05 52.66 3326.91 29.35 5362.46 42.74
0.010–0.015 Bad 4557.55 39.02 750.04 6.59 6109.39 53.89 3328.72 26.53
0.015–0.020 Worse 743.68 6.37 452.82 3.98 1308.11 11.54 1165.04 9.29

>0.020 Worst 320.00 2.74 270.01 2.37 478.87 4.22 680.78 5.43

We also observed the severe changes in good and normal were 844.18 km2 and
470.49 km2, which was 97% and 54% increment in these indices during the period
2005-2020. the worse and worst condition area grew by 421.35 km2 (49%) and
360.78 km2 (42%), respectively. During 2005 and 2020, Bad index area showed a mas-
sive decrease of about 1228.83 km2. Still, it turned to the most critical condition. It increased
the proportion in the study region’s worse and worst condition area, which shows the
extreme heat condition due to rapid urbanization and development.

3.7. Statistical Analysis

Pearson’s Correlation Analysis is used to determine the relationship between all LUC
variables and different LST indices. The NDVI had a negative and statistically insignificant
relationship with the LST. At the same time, the LST association between NDBI was positive
and negligible. There was a strong positive significant correlation between urban areas,
NDBI, and low land with LST (Figure 6). This measure was also found a negative and
insignificant relationship with water, cropland, and Forest.
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Similarly, the UHI and UTFVI had a significant positive association with urban Areas,
NDBI, and low land, while the negative and insignificant association with water, cropland,
Forest, and NDVI, including urban vegetation. The Pearson correlation coefficient confirms
the positive and robust relationship between urban/constructed areas with LST, UHIs, and
UTFVIs. As a result, it could be a hot climate in a metropolitan area if more infrastructure,
highways, businesses, and industrial zones are built. Agricultural/cropland has a positive
and significant relationship, while lowland has a negative and insignificant relationship
with the LST.

4. Discussion

The objective of this study was to summarize the various factors that influence UHI
density. A review of the elements was then carried out to identify the pros and cons. It was
also concluded that planning and designing for UHI reduction are interrelated. Due to the
rapid growth of Tianjin city’s urban population and industrialization, land use changes
dramatically. The climate also changes due to the presence of more people. As a result
of unregulated development and anthropogenic heat, the density of UHI increases. This
study established that planning and designing for reduced UHI might be accomplished
by modifying the features of the surrounding environment [4,73–75]. Urbanization and
industrialization in Tianjin produce higher temperatures in the city. Natural processes do
not cause this phenomenon but result from human actions.

4.1. LUC, Impervious & Green Space versus Temperature

Land use cover (LUC) classification can assist in estimating the relationship between
LST and a variety of land use indices [30,72,76]. Additionally, macro/anthropogenic cli-
mate [9], meso- and oscillating climate, the land-use landscape, urban expansion [22,77,78],
spatial transitions, human pressures on the ecosystem [3,75,79,80], energy transition, gen-
eral macro- and urbanized environments, and socioeconomic and biophysical conditions
may all be associated with the UHI [9,15,75,81]. From 2005 to 2020, this study discovered a
highly discordant and out-of-the-ordinary trend in LUC change. The rapid urbanization
may explain this abrupt change in LUC. The extensive deforestation and cropland destruc-
tion associated with various development projects (housing and industrial development)
may have resulted in a decline in total vegetation cover [5,58,65,73]. This rapid loss of
vegetation cover (VC) has far-reaching implications for reducing natural cooling effects
due to shading and plant evapotranspiration [34,40,48]. This study discovered a negative
correlation between NDVI and LST and the presence of VC and its impact on UHI. Transpi-
ration and evaporation of plants may become extinct as a result [12,16,76]. Grasslands and
ornamental plants have a lower impact on LST reduction than other types of vegetation,
such as forest/urban treebanks and gardens, according to earlier research [32,48]. Our
findings indicate that LUC significantly affects LST in the urban environment, particularly
in urban areas. The effect varies according to the proportion of green space, blue space
(constructed areas), and water bodies [35,73], indicating that vegetation contributes to the
city’s cooling. Since buildings, streets, concrete and asphalt roads, and other components
of the landscape [25,82], built-up areas contribute significantly to urban heat fluxes. Since
natural evaporation from water surfaces helps cool the surrounding air, lowering overall
air temperature in the region, the study’s findings also show a positive linear relationship
between LST and the built-up area [65,83,84]. This study found that UHI was not good for
the NDVI [12,48,65]. Changes have been made to the city’s downtown area and Tianjin’s
growth as a city. Many lands in these areas have been turned around by the government
or private businesses to build new homes, businesses, and factories on top of it [25,53,83].
In certain situations, new industries were erected alongside secondary infrastructure on
well-maintained cropland/forest areas, lowering the number of cropland and forest areas
while raising LSTs in such places [83,85]. These areas were supposed to function as a buffer
between urban and rural regions, absorbing surplus heat from vehicles and industry [11,52].
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According to the findings, urban expansion is a key contributor to LST, which causes
uneven thermal fluxes in metropolitan regions. This radiation/heat exchange is thought
to be an essential contribution to UHI and to urban climate change. As a result, it can be
stated that LUC has a significant impact on a location’s surface radiant temperature and
that human-induced LUC change is the key mechanism influencing LST rises in the urban
micro-atmosphere.

4.2. LUC, Impervious & Green Space Vs. UTFVI

Spatial fluctuations in LST are significant climatic variables employed by remote sens-
ing data to estimate the urban thermal environment using UTVFI. It has been shown that
growing population density and transitions in the city’s urban climate, notably in terms
of urban development and vegetation cover loss, are the significant causes of oscillations
in urban thermal conditions [4,7,65,77]. Land-use change is the driving factor of envi-
ronmental deterioration and changes in urban EEI values in its aggregate spatiotemporal
evaluation of LUC, NDVI, BUI, and UTFVI [28,70,74]. According to quantitative research,
the increase in urban temperatures and changes in the urban and regional climate result
from fast urban/built-up area expansion and various building materials and other key
structures in city development [78].

4.3. Current Research Trends in UHI Mitigation and Adaptation

The world’s natural resources are depleting yearly, while temperatures are rising.
Most scientists are now attempting to avoid the production of this so that people can live in
more pleasant environments [8,38,58]. The open and green surfaces are the most significant
regulating element in decreasing UHIs. It is important to note that green areas do not
have to be of a specific type. Green roofs roof gardens may now contribute to the urban
environment [4,10,23].

Similarly, the location and shape of settlements are significant considerations for urban
heat. To lessen urban heat, buildings must be placed in such a manner that they do not
obstruct the breeze [43,58,69,82]. The study’s findings will be shared with appropriate
institutions/policymakers, and LUC Layout may be recommended for Tianjin. For example,
additional green space should be added to metropolitan areas. According to the study’s
findings, smaller green patches are calmer than larger green ones. As a result, green zones
should be developed in cities by constructing parks and tiny plant communities, effectively
countering the rise in surface temperatures [12,18,31,36,40]. The critical issue that must be
addressed in Tianjin’s rural areas is preserving existing green spaces. Agricultural policy
should be reviewed for Tianjin and its surroundings, and agricultural development should
not be permitted in places with existing vegetation. High LSTs can be avoided by increasing
green space in rural regions. Furthermore, any new settlements should be developed on
impermeable or unoccupied land rather than green space. Green spaces in cities can bring
long-term advantages if specific criteria are followed.

5. Conclusions

Environmental scientists and urban planners are currently concerned about the impact
of the LST surge in urban areas, as it can cause serious health problems. According to
scientific evidence, rapid growth raises the Earth’s average surface temperature. This
study looked into the issues of urban heat evaluation and land-use change in Tianjin,
China. The UTFVI Index and Google Earth Engine (GEE), a web-based remote sensing
tool, were used to analyze the region’s thermal pattern on Landsat Time Series data
estimated for LST’s spatial distribution. The findings show that urbanization changed
the spatial distribution of LST between 2005 and 2020 and that temperatures in Tianjin’s
central region soared. Simultaneously, temperatures were relatively low in areas far from
densely populated areas. The city’s eco-environmental changes were induced by changes
in vegetation cover from 2005 to 2020, as demonstrated by the lowering NDVI trend. As
a result, Tianjin was discovered to have the most severe urban heat island phenomenon
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and the worst ecological state, indicating that a more acceptable city layout and improved
urban planning regulations should be implemented as soon as possible. The city’s Urban
Thermal Field Variance Index was used to determine Tianjin’s ecological status (UTFVI).
The worst Environmental Evaluation Index (EEI) has occurred in highly dense urban areas,
contributing to a degraded and thermal eco-environment over time. According to the study,
remote sensing techniques are appropriate for evaluating UHI and non-UHI sites. Still,
high-resolution imagery with the same atmospheric and surface conditions is challenging
to obtain and select. Tianjin has become the most severe urban heat island as a result of this
environmental issue. The Urban Thermal Field Variance Index was used to calculate the
city’s worst ecological index. It demonstrated how, throughout time, the increasing density
of dense metropolitan areas has contributed to the development of deteriorated and heated
ecosystems. The study’s limitations are that it only uses ground-based data and cannot be
utilized to determine UHI zones.
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LUC Land use cover
LST Land surface temperature
UHI Urban heat islands
NDVI Normalized Difference Vegetation Index
NDBI Normalized Difference Building Index
TM Thematic Mapper
TIRS Thermal Infrared Sensor
OLI Operation Land Imager
UTFVI Urban Thermal Field Variance Index
EEI Ecological Evaluation Index
RF Random Forest
GEE Google Earth Engine
VC Vegetation cover
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