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Abstract: Construction-oriented quantity take-off (QTO) refers to the process of determining the
quantities for construction items or work packages in accordance with their descriptions. How-
ever, the current construction-oriented QTO practice relies on estimators’ manual interpretation
of work descriptions and manual processes to look up proper building objects for quantity calcu-
lation. Hence, this research aims to develop natural language processing (NLP) and rule-based
algorithms to automate the information extraction (IE) from work descriptions for QTO in building
construction. Specifically, several named entity recognition (NER) models, including Hidden Markov
Model (HMM), Conditional Random Field (CRF), Bidirectional-Long Short-Term Memory (Bi-LSTM),
and Bi-LSTM+CRF, were developed to identify construction activities, material, building component,
product features, measurement unit, and additional information (e.g., work scope) from work de-
scriptions. Cost items in the RSMeans database are used to evaluate the developed models in terms
of F1 scores. HMM was found to achieve a 5% higher F1 score in the NER than the other three algo-
rithms. Then, labeling rules and active learning strategies were applied along with the HMM model,
which improved F1 score by 3% and reduced the labeling efforts by 26%. The results showed that the
proposed IE method successfully interprets the desired information from the work description for
QTO. This research contributed to the body of knowledge by the NLP-based information extraction
model integrating HMM and formalized labeling rules that automatically process work descriptions
and lay a foundation for automated QTO and cost estimation.

Keywords: NLP; quantity take-off; cost estimation; construction automation; work description

1. Introduction

Construction cost estimation is one of the most fundamental construction management
tasks, intending to determine the total construction cost of projects before construction
commences. It provides the base for cost management and control during the construc-
tion stage. Construction cost estimation typically involves several procedures [1], such as
(1) developing construction methods, (2) establishing work breakdown structure (WBS),
(3) take-off quantities for construction work packages in WBS, (4) calculating direct cost
based on quantities and unit price of each work packages, and (5) determining the total
construction cost by adding overhead, profit, and contingencies. However, these steps de-
mand substantial manual efforts and are challenging to be fully automated. The reason for
this partially arises from the fact that construction cost estimation is a knowledge-intensive
process and estimation knowledge is missing from current computer systems. For example,
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knowledge and experience of cost estimators are required to interpret the construction
specifications to establish the WBS. The quantity take-off (QTO) step also demands manual
judgments and involvements of estimators in analyzing work descriptions of the WBS
cost items to determine their quantities accordingly. Construction-oriented QTO herein is
defined as determining the quantity amount of construction cost items or work packages.
As each cost item is associated with a specific construction crew and production rate, their
unit cost regarding labor, material, and equipment varies. As such, each cost item is de-
fined with a clear work scope through its unique work description. The work descriptions
provide the basis for estimators in construction-oriented QTO and cost estimation.

Work descriptions are the textual information describing the nature and scope of work
packages and construction tasks to deliver construction projects. Typical information of
work descriptions includes construction material, construction method, product features
such as locations and sizes, and accessories required. Construction-oriented QTO has to
be determined in accordance with work descriptions of cost items. Work descriptions
provide essential information regarding product and construction methods and are usually
expressed using a collection of construction vocabulary, which are semi-structured and
separated by commas. For example, a work description for a cost item of walls is ‘Wall
framing, studs, 2” × 4”, 8’ high wall, pneumatic’ [2]. This description informs cost estimators
to take off the total length of studs hosted by walls that are made of 2” × 4” studs, with a
height of 8’, functioning as structural walls, and framed using a pneumatic nailing gun.
Accordingly, the quantity for this cost item should be derived for building elements with
the proper product features, namely, (1) quantity unit: length in the linear foot, (2) building
material: lumber stud, (3) building element: wall, (4) material size: 2” × 4” for studs,
(5) building element feature: wall height of 8’, and (6) building element feature: structural
usage. Such information could guide estimators to extract the quantities of related building
elements from the design document.

The traditional QTO is a tedious manual process that is subject to human error [3].
For example, substantive manual efforts from estimators are required to interpret the
work descriptions manually in the traditional QTO. Different estimators may end up with
different quantities results, even though they use the same work descriptions for cost items.
The knowledge-based automation in QTO has been proven to be capable of addressing such
identified issues. It can eliminate the manual measurement process, resulting in enhanced
efficiency. Therefore, the knowledge-based automated QTO is required to address current
issues in manual QTO. There is a need to extract desired information from work descriptions
for automated construction-oriented QTO and construction cost estimation.

Although plenty of research has been devoted to NLP-based text analysis and infor-
mation extraction in the construction industry, most of the existing literature primarily
focuses on information extraction from inspection reports and construction specifications,
consisting of natural language sentences. In contrast, work descriptions are a collection
of construction vocabulary separated by commas and are not expressed with natural lan-
guage sentence structure. At times, the collection of words for work descriptions has
different sequential orders, i.e., unstructured data. For example, the work descriptions of
wood framing activities for walls and floors are “Wall framing, studs, 2” × 4”, 8’ high wall”
and “2” × 6” rafters, roof framing, to 4 in 12 pitch”, respectively. Such variation in work
descriptions imposes challenges in automated IE. In addition, the association of the desired
information, such as building element/material and size, is difficult to identify, as the size
can be either material size or building element size. These challenges affect the performance
of the existing IE model. An automated approach that extracts the desired information
from work descriptions for the purpose of construction-oriented QTO is lacking.

To fill this gap, this research developed an integrated approach for automatically
extracting required information from the work description of cost items. Theoretically,
the proposed approach contributed to the body of knowledge by integrating HMM and
formalized labeling rules for automatically processing work item descriptions. This ap-
proach achieves the integration of named entity recognition (NER) and IE rules, leading



Buildings 2022, 12, 354 3 of 19

to a better performance in terms of precision, i.e., the F1 score. It lays a foundation for
automated QTO and cost estimation. The practical contributions of the presented research
are two-fold, including (1) increased automation by reducing massive manual efforts in
the QTO process and (2) enhanced accuracy of information extraction and interpretation
through eliminating manual subjective interpretation of work descriptions, especially for
junior estimators. With that, the extracted information could be used to query a given BIM
model to automatically extract the desired quantity and achieve the mapping between
cost items and the BIM model in the future. The NER-rule-based approach for automatic
information extraction is developed in this research as the first step in automated cost
estimation. It also lays a foundation for automated QTO and cost estimation and sheds
light on artificial intelligence (AI) applications for smart construction.

The remainder of this paper is organized as follows. In Section 2, previous research
regarding NLP application in construction is reviewed to clarify the research gap. Subse-
quently, the research methodology is illustrated in Section 3 in detail. Section 4 presents the
case study, as well as their results. The final section concludes the paper, highlighting the
research contribution.

2. Literature Review

NLP has been extensively studied to facilitate various tasks in the construction indus-
try, such as compliance checking, document management, and social media-based data
analytics for construction applications in the past two decades [4–10]. It could be applied
to address IE from work descriptions for construction-oriented QTO. As such, this section
provides a comprehensive review regarding rule-based IE, ML-based IE, text classification,
and information retrieval from BIM models.

2.1. Rule-Based Information Extraction

IE is to extract desired information from unstructured text data. In general, IE can
be performed in two different approaches, including (1) the rule-based method and (2)
the ML-based approach. A rule-based IE is used to extract predefined information based
on pattern matching. It is widely employed in the NLP research community and the
construction industry. For example, Lee et al. [11] attempted to apply rule-based IE in
contract management. An NLP-based extraction model was developed to identify poi-
sonous clauses in international construction contracts. They developed semantic rules
such as “if-then” logic to extract the predefined information in contracts. Additionally,
a construction-oriented lexicon was used to facilitate semantic matching; for example,
different words that may have the same meaning semantically are determined to be iden-
tical. Ontology is also often used for semantic modeling and is applied in IE because it
allows formalizing the terms, interrelationships, and properties of domain terms. In this
respect, Zhang and EI-Gohary [12] used ontology to incorporate semantic features and
developed extraction patterns for NLP-based IE. Similarly, Xu and Cai [13] proposed an
ontology and rule-based NLP approach to extract utility information and interpret textual
regulations. Their approach can deal with complex spatial relations and reasoning for
compliance checking.

2.2. ML-Based Information Extraction

Although rule-based IE can provide high performance such as precision, it, on the
other hand, suffers from the fact that it demands substantial manual efforts in rule develop-
ment. It is also challenging to apply the developed rules to other applications. With the
advancement of artificial intelligence (AI), machine learning (ML) is gaining momentum
and is increasingly used in many discipline-specific applications. A large amount of re-
search has been devoted to applying ML to process unstructured text data, including bridge
inspection reports [14,15], work descriptions [16–18], and construction specifications [19,20].
For example, Liu and EI-Gohary [14] invented an ontology-based semi-supervised CRF
for extracting bridge deficiencies and maintenance actions from bridge inspection reports.
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Their approach intends to reduce manual efforts in rule development of the rule-based
approach and data labeling of ML-based IE. Similarly, Kim and Chi [21] used the rule-based
method and conditional random field (CRF) to extract tacit knowledge such as hazard
objects, hazard position, work process, and accident results from accident cases. The CRF
model was trained using rule-based labeled data. Integrating rule-based methods and ML
can reduce the manual efforts in rule development and data labeling. Subsequently, Liu and
EI-Gohary [15] further proposed a novel semantic neural network ensemble-based method
to identify semantic dependency relations of extracted information in bridge reports. An-
other effort is the NLP-based text analysis for assigning maintenance staff for building
maintenance [22]. In their research, an ML-based classification model is trained to assign
and prioritize work orders for building maintenance, achieving 77% and 88% accuracy for
staff assignment and prioritization, respectively.

Moon et al. [19] reported an NER model to extract user-defined information from
construction specifications, with a particular focus on road construction projects. The NER
model is essentially a Bi-LSTM model, and their research is one of the first few attempts
in successfully applying this model in the construction industry. As revealed by existing
literature, the ML-based approach for IE demands significant manual efforts in labeling the
training data. In this regard, Moon et al. [23] proposed to integrate active learning and a
recurrent neural network (RNN) for bridge damage recognition. The results proved that
the proposed model is capable of detecting bridge damage with reduced effort.

2.3. Text Classification

Alternatively, Martínez-Rojas et al. [16–18] explored six classification methods to
assign work descriptions to a predefined structure of task groups. These six methods
include the C4.5 decision tree, random forest, Naïve Bayes, neural networks, support
vector machines, and k-nearest neighbors. Basic linguistic processing, such as cleaning
and synonym replacement, was applied before applying these classification methods. The
results revealed that random forest achieves the best performance in terms of precision.
Their proposed approach can organize construction data such as bills of quantities and
work descriptions in a structured manner so that construction data can be readily accessed
during the decision-making process. In terms of contract management, Jallan et al. [24]
applied NLP-based text mining to reveal patterns in litigation cases regarding construction
defects, i.e., the similarity of keyword frequency and topic modeling. Le and Jeong [6]
explored an NLP-based approach to identify semantic relations of transportation asset data
terminology. Their classification of domain terms lay a foundation for integrating asset
data for the transportation industry.

2.4. Information Retrieval from BIM

In fact, some scholars used NLP in text analysis to facility QTO and cost estimation in
construction. For example, Akanbi et al. [25] applied the NLP technique to analyze BIM
models such as material layer information and then used identified material information to
search a material database for price information. Akanbi et al. [20] presented an automated
IE approach for extracting design information from construction specifications for cost
estimation. Their system primarily extracts design information and then uses the extracted
data to search unit prices in a material database for direct cost estimation. These efforts
applied NLP to search cost items in cost databases instead of BIM models. On the contrary,
Lin et al. [26] applied the NLP technique to information retrieval from a given BIM model.
NLP was applied to interrupt the intent of end-users through the concepts of “keyword”
and “constraints” in the query statement, and then, the desired information can be extracted
from the BIM model. Wu et al. [27] employed the natural language processing technique
to understand the user’s query intention, leading to increased precision and efficiency of
information retrieval from BIM models. Their approach primarily retrieves the product
information from a given BIM model and is not intended for QTO for construction work
packages. Liu et al. [28] proposed a knowledge model-based framework to calculate
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QTO-related information through the developed standard method of measurement rules.
Despite of this, the current interpretation of work descriptions of cost items is manual,
time-consuming, and error-prone. Yet, there is a lack of an automated approach to extract
desired information from work descriptions for the QTO purpose.

3. Research Methodology

To address these limitations, this research explores various NER models and rule-
based methods to extract the product and process information from work descriptions for
QTO. It is worth noting that NER is an IE task, where desired entities are identified from
unstructured text and assigned with predefined labels [19]. This research addresses IE as a
sequence labeling problem through a novel NER-based framework. The proposed sequence
labeling framework can classify all target entities related to a given source entity in the cost
item’s work descriptions into predefined labels, such as construction material, construction
method, function, size, sub-component of building elements, etc. The proposed framework
achieves the integration of ML-based IE, rule-based approach, and active learning for
IE from work descriptions, which reduces the label efforts and rule development while
improving the IE performance, such as precision.

Figure 1 illustrates the research methodology. It consists of seven steps, namely,
(1) data collection and preprocessing, where the authors collected cost items and retrieved
the corresponding description from the construction cost database (i.e., RSMeans On-
line); (2) identification of labels, which is intended to determine what sort of information
should be extracted for the purpose of construction-oriented QTO; (3) data labeling and
preparation, which prepare training data and testing data for ML-based sequence labeling;
(4) development and performance evaluation of NER algorithms, where four NER algo-
rithms are developed and evaluated quantitatively in terms of F1 score; (5) formalization of
sequence labeling rules, which function as prior knowledge to improve the performance
of ML-based NER models; and (6) application of active learning to train the selected NER
model (i.e., HMM), which reduces manual efforts spent on data labeling. Each of these
steps is described in detail in the following sub-sections.

3.1. Data Collection and Preprocessing

Construction work packages or cost items are the basic units used to estimate the direct
cost for construction projects. Each work package in cost databases has its description.
For example, RSMeans online consists of thousands of cost items for construction estima-
tion, and each item is associated with a unique description. Items in other cost databases,
including the in-house database of contractors, also offer work descriptions. RSMeans
online was selected in this study as it is the most widely used commercial cost database in
North America [29] and uses Construction Specifications Institute (CSI) MasterFormat to
manage all cost item data for all types of construction, such as steel, concrete, wood, and so
forth. It should be noted that the proposed method is also applicable to cost items in other
sources. This research mainly focuses on the wood and concrete work, and the case study
in this research is a wood framing building with a concrete basement. Therefore, typical
cost items for wood buildings are selected in the data collection.

Figure 2 shows several examples of RSMeans cost items. As shown in Figure 2, each
work package has unique line lumber and work description. Intuitively, the textual descrip-
tion of work packages is structured so that it should be much easier to extract the desired
information from the work description than natural language statements. However, the de-
scriptions of cost items are unstructured data. For example, the item “061110182680, Wood
framing, joists, 2” × 6”” is under the item category “Joist framing”, which is a sub-category
of “Framing with Dimensional, Engineered or Composite Lumber”. Ideally, the textual
description of item “061110182680” should contain information related to its categories.
However, the item ”061110182680” is described as “Wood framing, joists, 2” × 6””, while
“Framing with Dimensional, Engineered or Composite Lumber” is missing from its work
description. In addition, the cost items within the same category have different description
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patterns. For example, the items of “061110182680” and “061110182700” are from the same
category, “Joist framing”. However, the item “061110182680” is described as “Wood framing,
joists, 2” × 6”” while the item “061110182700” is described as “2” × 8”” wood joist, framing”.
Their work descriptions are expressed in a different pattern. As such, the NLP-NER is
required to analyze such textual data.

Buildings 2022, 12, x FOR PEER REVIEW 6 of 20 
 

Development and evaluation of NER models

Bi-LSTM HMM model CRF modelBi-LSTM+ 
CRF

Morphological analysis 

Determination of Labels

Split data

Training Set Testing Set

Data labelling and Preparation

Formalize domain-specific labelling rules

Train HMM model with 
active learning

Train HMM model in 
traditional way 

Test the performance of active learning

Tokenization

Data collection

Development of labelling rules

Test the performance of labelling rules

 HMM and rule-based IE model 

Application of active learning

Data collection and preprocessing

RSMeans Online

Select the best model in terms of F1 score

 
Figure 1. Research Methodology. 

3.1. Data Collection and Preprocessing 
Construction work packages or cost items are the basic units used to estimate the 

direct cost for construction projects. Each work package in cost databases has its descrip-
tion. For example, RSMeans online consists of thousands of cost items for construction 
estimation, and each item is associated with a unique description. Items in other cost da-
tabases, including the in-house database of contractors, also offer work descriptions. 
RSMeans online was selected in this study as it is the most widely used commercial cost 
database in North America [29] and uses Construction Specifications Institute (CSI) Mas-
terFormat to manage all cost item data for all types of construction, such as steel, concrete, 
wood, and so forth. It should be noted that the proposed method is also applicable to cost 
items in other sources. This research mainly focuses on the wood and concrete work, and 
the case study in this research is a wood framing building with a concrete basement. 
Therefore, typical cost items for wood buildings are selected in the data collection. 

Figure 2 shows several examples of RSMeans cost items. As shown in Figure 2, each 
work package has unique line lumber and work description. Intuitively, the textual de-
scription of work packages is structured so that it should be much easier to extract the 
desired information from the work description than natural language statements. How-
ever, the descriptions of cost items are unstructured data. For example, the item 
“061110182680, Wood framing, joists, 2″ × 6″” is under the item category “Joist framing”, 
which is a sub-category of “Framing with Dimensional, Engineered or Composite Lum-
ber”. Ideally, the textual description of item “061110182680” should contain information 
related to its categories. However, the item ”061110182680” is described as “Wood framing, 
joists, 2″ × 6″”, while “Framing with Dimensional, Engineered or Composite Lumber” is 
missing from its work description. In addition, the cost items within the same category 
have different description patterns. For example, the items of “061110182680” and 

Figure 1. Research Methodology.

Buildings 2022, 12, x FOR PEER REVIEW 7 of 20 
 

“061110182700” are from the same category, “Joist framing”. However, the item 
“061110182680” is described as “Wood framing, joists, 2″ × 6″” while the item 
“061110182700” is described as “2″ × 8″” wood joist, framing”. Their work descriptions are 
expressed in a different pattern. As such, the NLP-NER is required to analyze such textual 
data. 

06 11 Wood Framing 
06 11 10 – Framing with Dimensional, Engineered or Composite Lumber 
06 11 10.18 Joist framing 
061110180010 Joist framing 
061110182650   Joists, 2" x 4" 
061110182655                 Pneumatic nailed 
061110182680             2" x 6" 
061110182685          Pneumatic nailed 
061110182700            2" x 8" 
061110182705          Pneumatic nailed 
061110182720            2" x 10" 
061110182725          Pneumatic nailed 
061110182740    2" x 12" 
061110182745                 Pneumatic nailed 
061110182760      2" x 14" 

Wood framing, joists, 2" x 6"

2" x 8" wood joist, framing

 
Figure 2. Work descriptions (adapted from RSMeans online [2]). 

In the initial stage of IE from work descriptions, the preprocessing is conducted to 
transform the obtained text data into a clean and computer-processable format. Several 
NLP techniques were employed, such as tokenization and morphological analysis. For 
example, tokenization was used to separate the text into several tokens for feature repre-
sentation. Generally, the ‘word’ is a chunk of alphabetical characters separated by space 
marks, and it is the most commonly used unit in text analysis. Punctuation was also re-
garded as a token to separate sentences in this study. Following this, morphological anal-
ysis (MA) was conducted to identify the different forms of a word and map it to its stand-
ard form. MA converts various nonstandard forms of a word (e.g., plural form of the 
noun) to its lexical form (e.g., the singular form of the noun). Figure 3 presents one illus-
trative example of text preprocessing. For example, “frames” and “framing” are all 
mapped to their lexical form “frame”, as shown in Figure 3. 

*Item Description
Wall framing, studs, 2" × 6", 8' high wall, pneumatic nailed

*Processed Text
<item><token>wall</token><token>frame</token><token>,</token>
<token>stud</token><token>,</token><token>2</token>
<token>"</token><token>×</token><token>6</token>
<token>"</token><token>,</token><token>8</token><token>'</token>
<token>high</token><token>wall</token><token>,</token>
<token>pneumatic </token><token>nail</token>

Text preprocessing

 
Figure 3. An illustrative example for text preprocessing. 

3.2. Identification of Predefined Labels 
This research addresses information extraction as a sequence labeling problem 

through NER models. That is, cost parameters are extracted by assigning their proper pre-
defined labels. The predefined labels of tokens should be determined based on the specific 

Figure 2. Work descriptions (adapted from RSMeans online [2]).

In the initial stage of IE from work descriptions, the preprocessing is conducted to
transform the obtained text data into a clean and computer-processable format. Several NLP
techniques were employed, such as tokenization and morphological analysis. For example,
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tokenization was used to separate the text into several tokens for feature representation.
Generally, the ‘word’ is a chunk of alphabetical characters separated by space marks, and
it is the most commonly used unit in text analysis. Punctuation was also regarded as a
token to separate sentences in this study. Following this, morphological analysis (MA) was
conducted to identify the different forms of a word and map it to its standard form. MA
converts various nonstandard forms of a word (e.g., plural form of the noun) to its lexical
form (e.g., the singular form of the noun). Figure 3 presents one illustrative example of text
preprocessing. For example, “frames” and “framing” are all mapped to their lexical form
“frame”, as shown in Figure 3.
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3.2. Identification of Predefined Labels

This research addresses information extraction as a sequence labeling problem through
NER models. That is, cost parameters are extracted by assigning their proper predefined
labels. The predefined labels of tokens should be determined based on the specific need
of the targeted application. For example, the labels can be defined as organization and
person, provided that such information is of particular interest. In this research, the desired
information is the construction method and product-related features that could be used
to query a given BIM model for quantities. Consequently, labels are defined to describe
(1) construction activity, (2) construction material, (3) building component, (4) measurement
unit, and (5) additional information (e.g., work scope). The description of each category
is summarized in Table 1. For example, such labels as material name, type of building
element, type of element part, size of building element, function of building element, and
material characteristics are defined to describe product-related features.

Table 1. Predefined labels and their description.

Label Description

M Product material name
PUK Punctuation
TBE Type of building element
TEP Type of element part
O Other
SEP Size of element part
SBE Size of building element
SHBE Shape of building element
FEP Function of element part
CM Construction method
DF Design feature
FBE Function of building element
MP Material characteristics
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3.3. Data Labeling and Preparation of Training and Testing Data

Typically, the NER technique demands manually annotated data to train the ML-based
NER models that could be used to classify and label new data/parameters. As such, this
step is to prepare work description data and manually label item descriptions. The retrieved
dataset was split into two datasets: a training set (80%) and a testing set (20%). The training
set was used to train the developed ML-based NER models, while the testing dataset was
used to evaluate the performance of the developed algorithms. Each token in preprocessed
data is annotated manually after determining token labels. Figure 4 shows one example
of the annotated work description. As shown in Figure 4, “Wall Frame” is annotated as
“TBE”, “Stud” is labeled as “TEP”, “2”× 6”” is annotated as “SEP”, and “8’ high” is labeled
as “SBE”, and “pneumatic nailed” is given a label of “CM”.
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3.4. Development and Evaluation of NER Models

Several NER algorithms have been proven to be effective for various construction
applications, including (1) Hidden Markov model (HMM) [30], (2) Conditional Random
Field (CRF) [31], (3) Bidirectional-Long Short-Term Memory (Bi-LSTM) [32], and (4) Bi-
LSTM+CRF [33]. However, there is no evidence indicating that one of them outperforms
than others. These algorithms were adopted in this research and were trained based on
the retrieved data. As shown in Figure 5, the NER models take a sequence of tokens as
inputs and predict corresponding labels. For example, “8’ high” are labeled by NER models
as “SBE”, “SBE”, and “SBE”. The conceptual labeling processes of these four models are
briefly shown in Figure 5. As shown in Figure 5, HMM and CRF models label every token
independently; on the contrary, Bi-LSTM and Bi-LSTM+CRF models can classify all the
tokens in a sequence as a whole, capitalizing on the Recurrent Neural Network (RNN).
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3.4.1. Feature Engineering

This study employed different strategies of feature representation for each NER model.
The HMM algorithm uses the original word to represent each token in a sentence due
to its simplicity. In terms of the CRF algorithm, the authors proposed a new feature
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representation, i.e., adding syntactic features to express each token in a sentence. A context
window of size one is used to capture features of its surrounding tokens to enrich the
information contained in the token feature. Figure 6 illustrates the feature vectors for the
CRF model. As shown in Figure 6, the generated d feature is a 1 × 12 feature vector. The
added features consist of syntactic and semantic features. The syntactic features contain
“isDigital” and “isPunctuation”. The semantic feature is “isUnit” and can be recognized
based on the developed dictionary by comparing the token with each word in the dictionary.
The common units in the domain of construction are included in the Unit Dictionary, such
as “‘”, “S.Y.”, “HP”, and “ga”. The token “high” in item description “Wall framing, studs,
2” × 4”, 8’ high wall” is transformed into vector [‘, 0, 0, 1, high, 0, 0, 0, wall, 0, 0, 0]. The
feature vector indicates that the current token is “high”. Its preceding token is “‘”, while its
succeeding token is “high”. Moreover, its previous token is a unit.
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As for the BiLSTM and BiLSTM+CRF models, the authors employed word embedding
to transform textual descriptions of cost items into numerical data so that these two models
could take the whole description as the input. The Word2vec method represents a token as a
numerical vector, assuming that the meaning of a token can be inferred by its neighbors. Since
a piece of item description is a sequence of tokens, a line item is consequently represented as
a matrix by the word embedding method. The matrix size is L × d, where L is the number of
tokens in the item description and d is the length of a token vector. The word embedding
is presented in Figure 7. As shown in the figure, the token “high” was processed in the
embedding layer before being fed into the NER model. The skip-gram Word2vec model is a
two-layer ANN (Artificial Neural Network). This simple ANN model takes a token as input
and returns surrounding words of the target word. After training this model with all samples,
weights of the hidden layer have fitted with the training data so that the trained model can
predict the context of a given token in samples. Therefore, the hidden layer of the trained
ANN model was employed to represent the input token. In this study, the dimension of word
vectors, which is also the hidden unit of the skip gram’s layer, was set as 140. In addition, the
maximum length of the padded sequences was specified as 60 in Bi-LSTM/Bi-LSTM+CRF
model, considering the max size of samples in the collected data.
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3.4.2. Model Development

The algorithm selected for HMM model is Viterbi algorithm due to its efficiency in
decoding the NER label state sequences [34]. The algorithm in the CRF model is determined
as ‘lbfgs’, which is the abbreviation of “Limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm” because of its significant outperformance than GIS and other gradient-
based algorithms regarding convergence rate [35]. Then, the number of max iterations was
set as 100. The BiLSTM model consists of four layers: (1) embedding layer, (2) bidirectional
LSTM (also known as the first LSTM layer), (3) LSTM layer, and (4) time-distributed layer.
The embedding layer has been described thoroughly in the last section. The maximum
length of the padded sequences was specified as 60 in Bi-LSTM/Bi-LSTM+CRF model,
considering the max length of samples in collected data. In training the BiLSTM model,
the batch size is set as two because of the limited training data size. In addition, verbose
and epochs are determined to 1 and 1 after tuning hyperparameters. Bi-LSTM+CRF model
adds a CRF layer to the bidirectional LSTM model. Therefore, the detailed configuration is
the same as the previous two models.

3.4.3. Model Evaluation

Three performance metrics are widely used to evaluate the NER models [36], including
(1) precision, (2) recall, and (3) F1 score. Precision refers to the ratio of the number of
correctly labeled tokens over the total number of tokens. The recall is calculated by dividing
the number of correctly labeled tokens by the number of tokens with the same label in the
ground truth dataset. On the contrary, the F1 score is the harmonic mean of precision and
recall so that it outperforms others in terms of imbalanced class distribution [36]. It is used
to measure the performance of the proposed NER-based methods. The performance of
these four algorithms is discussed later in the “Case Study” section.

3.5. Sequence Labeling Rules Based on Expert Knowledge

As described earlier, two approaches are typically used for information extraction:
(1) ruled-based methods and (2) ML-based methods [11]. ML-based methods eliminate
manual effort in rule development by automatically extracting implicit rules (i.e., training
the model) from training data. However, ML-based methods suffer from labeling training
data and lower prediction accuracy [11,37]. The sequence labeling rules were developed
by authors and integrated with ML algorithms described in the previous sub-sections.
The formalized sequence labeling rules are summarized in Table 2. For example, rule #1
specifies that when the current token is labeled as “SBE”/“SHBE”/“FBE”, its preceding
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tokens should contain “TBE” tokens. The entities of “SBE” or “SHBE” provides additional
information for tokens with “TBE”. For example, detailed information of building elements
is always specified after the tokens “Type of Building Element”. Similarly, the authors
formalized rule #2, because information of “Design feature” is used to describe the building
element or element part. Rule #3 indicates that information of “SBE”/“SEP”/”DF” usually
contains a cardinal digit. Furthermore, Rule #4 shows that a cardinal digit followed by a
unit token is an entity of SBE, SEP, or DF. For example, “2” × 4”” in item description “Wall
framing, studs, 2” × 4”, 8’ high wall” is labeled as “SEP”, while it contains two cardinal digits
and two-unit tokens. It should be noted that the developed rules served as a checker on the
results obtained by ML models and cannot work independently.

Table 2. Formalized sequence labeling rules.

ID Rule

1 The preceding tokens before the “SHBE/SBE/FBE” token should contain the “TBE” token.
2 The preceding tokens before the “DF” token should contain the “TEP” or “TBE” token.
3 Information of SBE, SEP, or DF should contain the cardinal digit.
4 The cardinal digit and its following unit token should be labeled as SBE, SEP, or DF.

Figure 8 provides one example of how the sequence labeling rules work with ML-based
NER algorithms. Generally, the ML-based NER model returns a sequence of predicted
probabilities of different labels, and the predicted label is the one with the highest probabil-
ity. Afterward, the developed sequence labeling rules are applied to check the prediction
results. As shown in Figure 8, “8’” is labeled as “FBE”, which conflicts with sequencing
rules. Then, the labeling result with a lower probability will be checked until the proposed
labeling rules are satisfied.

3.6. Active Learning

ML-based NER requires human annotators to label a large amount of training data.
Such labeling is exceptionally costly and time-consuming [23]. To address such limitations,
this study employed the strategy of active learning to minimize the volume of training data,
thereby reducing manual labeling efforts. Active learning is to select and learn the most
informative-to-learn instances to reduce labeling efforts. In other words, active learning
intervenes the selection of the training data for the developed NER model to increase the
overall efficiency. Essentially, active learning allows the selection of the most valuable data
as input of ML algorithms. For example, ‘10” × 10” wood column framing, heavy mill timber,
structural grade, 1500f ’ and ‘12” × 12” wood column framing, heavy mill timber, structural grade,
1500f ’ are similar cost items [2]. If the former has been used in the training set, the trained
model is expected to label the latter accurately. Active learning, thus, will not feed these
two similar items into the training set, thereby reducing the cost spent on labeling data.
Figure 9 depicts how active learning works in the proposed NER-based framework. In
the traditional method, all the training data are labeled by the human annotator and fed
into NER models. In contrast, the training data are inputted to the active learner before
being labeled in the scenario of active learning. The active learner evaluates and sorts these
unlabeled data in terms of their impact on model training so that the most valuable data
selected by the active learner can be fed into the NER model. As a result, there is no need
for the human labeler to annotate invaluable data, thereby reducing the manual efforts to
label training data. It is important to note that active learning is not intended to improve
the performance of the model. It is used to reduce the manual efforts in preparing the
training data. Its strategy is to enable the employed model to reach the best performance
with minimal training data in the most efficient manner.
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Uncertainty sampling is a strategy for identifying unlabeled items that the developed
ML model cannot predict confidently. It means that only items with low certainty are
selected as the training data. It was adopted by the authors because the developed NER
returns the sequence of probabilities that could be used to calculate the uncertainty of the
prediction. Figure 10 displays the workflow of the uncertainty sampling method, which
functions as an active learner to select training data. Initially, a small portion of the training
data is randomly selected from the training data and labeled by the human annotator. Then,
these labeled data were fed into the developed NER model. Subsequently, the trained NER
model was employed to predict the rest of the training data. Afterward, the uncertainty
sampling method is utilized to calculate the uncertainty of the rest of the training samples
based on the NER model prediction results. Eventually, the samples with the highest
uncertainty are selected as the training data. The prediction uncertainty of the NER model
on a piece of work description is quantified by counting the arithmetic average of the un-
certainty of every token in the work description of a cost item, employing Equation (1) [23].
The entropy for each token (i.e., uncertainty) is measured using Equation (2).

H(item) =
1
N ∑

i=1,2,...N
H(tokeni) (1)

H(token) = − ∑
i=1,2,...,14

P(li|token)logP(li|token) (2)

where H(item) denotes the entropy of cost item description, H(token) represents the en-
tropy of tokens, N denotes the number of total tokens in a given cost item, and li is the
categorical label of the token.
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To test the performance of active learning, two NER models were trained in different
strategies. The first one was implemented in the traditional environment. The second
one employed active learning. A comparative analysis between two experiments was
conducted to quantify the performance of active learning on the developed NER method
and presented in the “Case Study” section. In the evaluation of the performance of the
active learning method, the involved labeling effort is an important aspect. In this research,
the manual annotation effort spent on every cost item is assumed to be equivalent. The
human labeling effort is measured based on the size of the required training data.
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4. Validation

The proposed approach was implemented using the Python programming language.
This is because Python is one of the most commonly used ones and is characterized by being
open-source, with flexible syntax and good extensibility [38]. In addition, several libraries
have been compiled in support of Python. Among these libraries, NLTK is employed to
conduct tokenization for the item description and morphological analysis for each token,
while pandas are employed to collect data through reading excels files containing a textual
description of cost items. Furthermore, the development of HMM model requires sklearn-
learn, while CRF model is established with the assistance of Sklearn_crfsuite. Additionally,
TensorFlow is utilized to build Bi-LSTM and Bi-LSTM+CRF models.

4.1. Case Studies

RSMeans online cost database consists of thousands of cost items, which cover all types
of construction projects. The present research primarily focuses on building construction
with a particular focus on light-framed buildings. This type of building, in general, is made
of wood-framed superstructures and a concrete basement. Therefore, cost items related to
‘Concrete’ and ‘Wood, Plastic and Composites’ are selected to test the proposed NER-based
framework. Eighty-three cost items were selected from these two categories and saved into
an Excel sheet. Among these extracted line items, 52 items are under the category of “Wood,
plastic and composites”, while 31 items come from the category of “Concrete”. Table 3
shows several examples of these cost items. Their line number, textual description, required
crew, and quantity unit are provided in Table 3. These items are selected as representative
items, as they are commonly used in the estimation of light-frame buildings.

Table 3. Cost item examples from RSMeans online [2].

Line Number Description Crew Unit

061110307060 Wood framing, roofs, rafters, to 4 in 12 pitch, 2” × 8” 2 Carp M.B.F.
061110307000 2” × 6” rafters, roof framing, to 4 in 12 pitch 2 Carp M.B.F.
061110306070 Wood framing, roofs, fascia boards, 2” × 8” 2 Carp M.B.F.
061323100500 10” × 10” wood column framing, heavy mill timber, structural grade, 1500f 2 Carp M.B.F.
066310100550 Plastic (PVC) handrails, post base trim, 4 × 4 post 2 Carp Ea.
061110406140 Wall framing, studs, 2” × 4”, 8’ high wall 1 Carp M.B.F.

033113700400 Structural concrete, placing, column, square or round, pumped, 12” thick,
includes leveling (strike off) & consolidation, excludes material C20 C.Y.

4.2. Results and Discussions

The comparison among different NER models is tabulated in Table 4. As shown
in Table 4, the developed models can accurately extract cost parameters from textual
information of cost items. The F1 scores of all four NER algorithms are greater than
0.75. However, it is worth noting that these models did not perform well in labeling
entities of category “FBE” with an average F1 score of 0.482. Among these four candidates,
HMM algorithm achieved the highest average F1 score, i.e., 0.88, which is 5% higher than
other NER models. Additionally, HMM model shows the best performance in predicting
instances of 8 groups among 13 groups. Consequently, HMM was selected as the NER
algorithm. The sample size influences the performance of the Bi-LSTM-based model.
However, the HMM model, a stable and straightforward algorithm, works more efficiently
with a limited training dataset than deep learning-based models. In addition, the CRF
algorithm accommodates context information [39], while HMM algorithm depends only
on the previous state regardless of context [30]. Moreover, RNN-based algorithms consider
the neighboring words [23]. Traditionally, the consideration of context is an advantage of
the NER algorithm. However, the work description of cost items employed in this research
is unstructured data. The context of the target token cannot effectively support the NER
models to predict its category, resulting in the lower performances of NER algorithms.
Figure 11 depicts a labeling example; the work description ‘Structural concrete, placing,
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column, square or round, pumped, 12′ thick, includes leveling (strike off) & consolidation, excludes
material” is tokenized and assigned corresponding labels.

Table 4. F1 scores of four NER algorithms and combined algorithms.

Label HMM CRF Bi-LSTM Bi-LSTM + CRF HMM+Rules HMM + Rules + Active Learning

M 0.95 0.9 0.83 0.85 0.98 0.95
PUK 0.99 0.99 0.95 0.99 0.99 0.99
TBE 0.93 0.82 0.92 0.90 0.95 0.90
TEP 0.57 0.4 0.85 0.8 0.62 0.88
O 0.94 0.81 0.81 0.82 0.98 0.94
SEP 0.89 0.87 0.68 0.56 0.92 0.95
CM 0.88 0.57 0.87 0.96 0.91 0.88
SBE 1 1 0.85 0.79 1 1
MP 1 1 0.78 0.625 1 0.86
DF 1 1 0.72 0.6 1 0.97
FBE 0.428 0.5 0.75 0.25 0.68 0.54
FEP - - - - - -
SHBE 1 1 1 1 1 1
Average 0.88 0.82 0.83 0.76 0.91 0.89Buildings 2022, 12, x FOR PEER REVIEW 16 of 20 
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The confusion matrix for the HMM model prediction results is presented in Table 5.
The confusion matrix is a contingency table. As shown in Table 5, each column stands for
the number of tokens with an actual label, and each row represents predicted instances for
each label. The diagonal elements of the confusion matrix are occurrences of tokens that are
predicted accurately by the NER model. For example, the middle cell (CM/CM, 32) implies
32 tokens with the actual label “CM” are annotated as “CM” by HMM model. The higher
diagonal values of the confusion matrix indicate the better performance of the NER model.
The HMM model has poor performance on classifying instances of the ‘FBE’ category with
a 0.428 F1 score. This might be due to the limited size of ‘FBE’ samples, and most cost items
do not contain ‘FBE’ information.

Two experiments are conducted to test the validity of the developed label rules. The
first one employed the HMM model, while the second experiment extracted information by
integrating the HMM models and the developed labeling rules. Their detailed performance
in terms of F1 score was presented in Table 4. The results revealed that developed labeling
rules could generally increase the HMM model. On average, the F1 scores were improved
by 3.6%. However, it should be noted that the improvement of the developed rules on the
NER model is limited because of two aspects: (1) the HMM model has shown satisfactory
performance and (2) a limited number of rules are formalized in this research.
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Table 5. Confusion matrix of HMM model.

M PUK TBE TEP O SEP CM SBE PM DF FBE SHBE
M 30 0 0 0 1 0 0 0 0 0 0 0

PUK 0 96 0 0 1 0 0 0 0 0 0 0
TBE 0 0 27 1 2 0 0 0 0 0 0 0
TEP 2 0 0 2 0 0 0 0 0 0 0 0

O 0 0 0 0 138 0 0 0 0 0 2 0
SEP 0 0 0 0 3 33 0 0 0 0 5 0
CM 0 0 0 0 8 0 32 0 0 0 0 0
SBE 0 0 0 0 0 0 0 7 0 0 0 0
PM 0 0 0 0 0 0 0 0 10 0 0 0
DF 0 0 0 0 0 0 0 0 0 3 0 0
FBE 0 0 1 0 0 0 0 0 0 0 3 0

SHBE 0 0 0 0 0 0 0 0 0 0 0 1

In the strategy of active learning, only 49 among 66 cost items are selected as training
data for the developed NER model. Table 4 shows the performance of HMM model trained
by the active learning method. The result suggested that the trained model with active
learning achieved F1 scores of 0.89 slightly lower than 0.91 F1 obtained by the traditional
method. Considering that much smaller training data are employed in the active learning
method compared to the traditional approach, active learning effectively reduces the
manual effort needed to label the text data and train the model. Assuming that the labeling
effort is spent on every work item is equivalent, 26% the manual efforts are reduced by
active learning. Active learning is used to reduce the manual efforts in data labeling at the
expense of reduced performance. Less training data are fed into the developed model due
to the employment of active learning; thus, the accuracy and precision of the developed
model drop accordingly. However, it is more efficient, since the active learning-assisted
model achieved 98% of the performance with 74% of the labeling cost. It indicated that
active learning is helpful to find the training data with the most training value.

4.3. Limitations and Future Work

This research has a few limitations. First, the proposed framework was only tested on
RSMeans cost items. The cost items from other sources may have a different structure or
pattern from RSMeans. The developed method may not work effectively on cost items from
other sources. Second, training and testing data are limited. Typically, more extensive data can
yield better performance of ML models. However, ML algorithms, including deep learning
algorithms, still work well with small data set [40]. There is no explicit definition of the
minimum amount of dataset used in machine learning models. It depends on the complexity
of the proposed model. The size of the required dataset could be approximately estimated by
the first experiment with the created model. Third, in the process of data collection, only cost
items within the categories “Concrete” and “Wood, plastic and composites”, are considered
in the case study. Although active learning is proven to reduce the labeling efforts in the
model training, it cannot completely eliminate them. Furthermore, the prediction errors of
the proposed automated approach are detected and corrected manually. The automated
solution to checking the prediction results will be investigated in the future. In addition,
this paper shows the results of the developed NER models for work description analysis,
rather than QTO. Estimators essentially need to map the unit price database (providing unit
price for cost items) and the BIM models (offering quantities) in cost estimation. Quantities
in a given BIM model have to be determined as per the work descriptions of cost items in
the unit price database, i.e., mapping quantities and unit prices. The presented research
introduced a generic approach for information extraction from work descriptions, laying
the foundation for the quantity–price match. The cost items in the proposed approach are
not constrained to either a specific unit price database, such as contractors’ private price
databases or commercial databases or specific annual updates. The authors will employ
the extracted information to conduct QTO from BIM design models for automated cost
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estimation in the future. Future studies will also be directed at demonstrating the usefulness
of the presented research through actual case studies.

5. Conclusions

Intending to automate construction-oriented QTO, this research developed an NER-
based information extraction method that extracts information from the work descriptions
of cost items. Four NER algorithms, namely (1) HMM, (2) CRF, (3) Bi-LSTM, and (4) Bi-
LSTM+CRF, were tested. The results revealed that HMM outperforms others in terms of
the F1 score. As such, it was selected to implement the NER-based IE model. Moreover, this
study integrated the HMM and manually developed labeling rules. The strategy of active
learning was adopted to reduce the number of training data and human labeling efforts.
The experimental results showed that the developed NER model (i.e., active learning-based
HMM model) could extract the cost parameters from the work item description with
satisfactory performance. With the assistance of developed labeling rules, the performance
of the ML-based NER model was improved by 3%. The active learning approach could
reach the performance of the traditional method with a significantly reduced size of training
data, thereby reducing costs for human labeling.

This research contributed to the body of knowledge by the NLP-based IE model inte-
grating HMM and formalized labeling rules that automatically process work descriptions
and lay a foundation for automated QTO and cost estimation. This research indicated
that HMM algorithm is the most suitable algorithm for IE from the textual description
of cost items compared other three common NER algorithms. The integration of HMM
and formalized labeling rules has improved accuracy by 89% in NER. In addition, active
learning strategies reduced by 26% the labeling efforts for the case study. The represented
approach can extract cost parameters from work descriptions, laying a foundation for
automated QTO.
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