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Abstract: The refined control of heating substations is of great significance for on-demand heating 
provision and for the efficient operation of district heating systems (DHSs). This paper proposes an 
integrated control strategy for substations based on the prediction of the water-supply temperature 
and indoor temperature. Firstly, online sequential extreme learning machine (OS-ELM) is used to 
predict the water-supply temperature. Then, a linear prediction model is established to predict the 
indoor temperature. Finally, the integrated regulation strategy is established with the goal of mini-
mizing operational costs, aiming at ensuring heating quality and meeting the limits of the flow rate 
and of the supply- and return-water temperatures. The heat-saving rate, power-saving rate and in-
door-temperature satisfactory rate are introduced to evaluate the regulation effect of the proposed 
method. The field study results show that the performance index of operation executed with the 
regulation strategy proposed in this paper is 9.31%, 16.33% and 20.87% higher than that without our 
energy-saving regulation strategy respectively. The fluctuations in the water-supply pressure and 
differential pressure of the secondary network are significantly reduced, and the energy-saving ef-
fect is obvious. 

Keywords: district heating system; integrated control; water-supply-temperature prediction;  
OS-ELM; indoor-temperature prediction; energy saving 
 

1. Introduction 
Heating systems account for about 21% of building energy consumption and are the 

key objects of low-carbon energy reforms [1]. The increasing pressure of the carbon-re-
duction issue represents a challenge for the heating sector in terms of achieving clean and 
efficient heating systems [2]. When aiming at ensuring users’ thermal comfort, to achieve 
on-demand heating provision, energy conservation and consumption reduction is an ur-
gent problem. The operational optimization of heating systems has attracted a lot of at-
tention, especially with respect to the optimization of economic performance. For exam-
ple, aiming at minimizing operational costs, Gu et al. [3] proposed an optimization model 
based on mixed integer nonlinear programming considering the thermal inertia of district 
heating networks and buildings. The obtained results of a simulation of an actual heating 
system in Jilin Province showed high wind-power utilization with low operational costs. 
Fang et al. [4] used the genetic algorithm (GA) to optimize the water-supply temperature 
of a multi-heat-source branch heating network, with the goal of optimizing the total costs 
of fuel consumption and pump power consumption of the heating system. There are also 
studies on strategies for the multi-objective optimization of heating systems. 

Research on the model predictive control of heating parameters such as water-supply 
temperature and return-water temperature is also gradually increasing. Lin et al. [5] de-
veloped a model predictive control system for district heating systems (DHSs) based on 
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the cyber physical system. The system takes the minimization of pollutant-emission pen-
alty costs and heating economic costs as the goal; it adds constraints such as operating 
load, pollutant emission and pipeline transportation capacity; and it uses the PSO algo-
rithm to obtain the best multi-heat-source load-distribution parameters. After applying 
this regulation method, the consumption of natural gas was reduced by 31.2%, and the 
total heating cost was reduced by 2.6%. Conink et al. [6] proposed a model predictive 
control strategy using the grey-box control model, which considers the system energy-
consumption cost and the user thermal-discomfort cost. The method was applied to a me-
dium-sized office building, comparing heating days, thermal comfort, energy costs and 
primary energy consumption. The results show that the model predictive controller could 
make better use of the water-supply temperature and provide users with better thermal 
comfort. Compared with the rule-based control system, the heating cost was reduced by 
more than 30%. Benakopoulos et al. [7] proposed a low-temperature operational strategy 
for a thermostatic-valve radiator without preset functions for when the difference be-
tween the minimum water-supply temperature and radiator temperature is small. The 
operation of the system was analyzed through the thermal hydraulic model. The results 
showed that a lower water-supply temperature reduced the reflux temperature. Among 
the above research studies on model predictive control, most of them take the minimum 
heating economic cost as the goal and the allowable range of heating-system operational 
parameters as the constraint condition, and the control of the operation of the heating 
station is based on future interference, so as to meet the heat demand of users. Few studies 
have been conducted on a real-time optimization strategy considering the user indoor-
temperature demand and thermal behavior. 

With the development of Internet of Things (IoT) technology, the measurement of 
indoor temperature has been vigorously promoted in China’s DHSs in recent years. This 
particularly large data set provides conditions for research on the feedback control 
method and performance test of thermal power stations. Yuan et al. [8] studied the feed-
back prediction model based on indoor temperature to improve the operational efficiency 
of thermal power stations. This method uses the first-order linear steady-state model to 
deduce the relationship model between the water-supply temperature of the thermal sta-
tion and the indoor and outdoor air temperatures. Considering the solar radiation and the 
uncertainty of the weather, in this model, the water-supply temperature is corrected every 
10 min and applied to a thermal station. Dahlblom et al. [9] modified the water-supply 
temperature based on the actual indoor temperature on the basis of the feedforward con-
trol of the existing thermostatic-valve heating system. Such a control strategy could obtain 
a more constant indoor temperature and could be applied to buildings in southern Swe-
den. Liao et al. [10] simulated a boiler controller through experiments and simulations 
and applied the indoor-temperature feedback to the boiler controller to improve the per-
formance of the heating system. The method was applied to an office building, and the 
results showed that the overheating phenomenon was greatly reduced. Sun et al. [11] pro-
posed a dynamic control strategy based on online prediction and indoor-temperature 
measurements. 

Song et al. [12] proposed an HA-GRU neural network to predict the indoor temper-
ature of energy-saving buildings. The network can realize the fusion of a single influenc-
ing factor and multiple features. The simulation results showed that the prediction accu-
racy of the algorithm was 98.4%, and that it had good nonlinear-feature-extraction and -
expression abilities. The indoor-temperature prediction results were used as feedback in-
put to improve energy efficiency. Salo et al. [13] proposed a new model to control the 
indoor temperature by controlling the set temperature of the thermostatic radiator valve 
based on a prediction algorithm via a cloud platform considering the collected outdoor-
temperature values and user feedback. The results showed that the indoor-temperature 
regulation with a single set point was more accurate. 

The accurate prediction of the indoor temperature is very important for fine regula-
tion. Li et al. [14] proposed an indoor-temperature predictive control method based on an 
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Elman neural network multi-step predictive model for the predictive control of the in-
door-temperature time delay in VAV air-conditioning systems. The experimental results 
showed that this method was conducive to improving the stability of the indoor-temper-
ature control loop. Brandi et al. [15] proposed deep reinforcement learning to optimize the 
indoor-temperature control method in an integrated simulation environment. Shnayder 
[16] et al. established a building inverse-dynamic simulation model including indoor air 
temperatures for the feedforward control of heating systems. The model can evaluate the 
unmeasured indoor temperature in real time, and the lag of the heating cycle is considered 
in the process of control. Jian et al. [17] studied an optimization method of water-supply 
temperatures based on simulations according to the relationship among outdoor temper-
ature, indoor temperature and water-supply temperature. By comparing the indoor tem-
perature and optimized energy consumption, they showed that this method can appro-
priately reduce overheating and ensure that the indoor temperature is at the set point. 
Cano [18] predicted the short-term indoor temperature through a Bayesian neural net-
work according to actual operational data to realize the real-time monitoring and man-
agement of a heating system. Aguilera et al. [19] proposed an indoor-temperature predic-
tion method based on meteorological parameters which takes the average outdoor tem-
perature, relative outdoor humidity, solar radiation and building attributes as input pa-
rameters and analyzes and simulates the data obtained from seven Danish family houses. 
The results showed that the accuracy of indoor-temperature prediction was 92%. The av-
erage outdoor temperature and personnel are important influencing parameters for pre-
dicting the indoor temperature, which provides a basis for the subsequent development 
of a simpler method for predicting the room temperature. Liu et al. [20] established an 
indoor-temperature prediction model based on the building equivalent heat capacity, de-
termined the appropriate switching time and proposed a temperature- and time-sharing 
dynamic control method based on wireless indoor-temperature monitoring and a control 
system. Taking the DHS of a university teacher’s apartment as an example, the effective-
ness of the method was verified. 

The regulation of heating stations in DHSs is mostly feedforward control which con-
siders outdoor meteorological parameters, historical operational parameters and indoor 
temperatures. In DHSs, the heat load changes with the outdoor temperature, solar radia-
tion, occupant behavior and other factors. At present, the open-loop feedforward control 
mode considering the interference of outdoor meteorological parameters is mostly 
adopted in thermal power stations. With the development of IoT technology, the indoor-
temperature acquisition technology of heat users has been widely used. In the operational 
regulation of heating stations of heating systems in the future, feedforward–feedback 
compound regulation should be realized aiming at the indoor thermal comfort of users. 
Secondly, the variations in the indoor temperature and the comprehensive outdoor air 
temperature are dynamic processes that change with time, and the heat load also changes. 
Therefore, it is particularly important to formulate a dynamic compound regulation strat-
egy to provide on-demand heating via heating systems. 

In order to improve the control effect of heating substations, this paper proposes an 
integrated strategy featuring the minimization of operational costs by combining water-
supply-temperature and indoor-temperature predictions. The rest of the paper is orga-
nized as follows: Section 2 describes the establishing process of the method; Section 3 in-
troduces the case study; results and discussion are presented in Section 4; Section 5 pre-
sents the main conclusions. 

2. Materials and Methods 
Figure 1 shows the schematic diagram of a typical indirectly connected DHS. In this 

heating system, the hot water in the primary network flows from the heat source to the 
heat exchangers of each heating station, then returns to the heat source after heating up 
the secondary water supply. In the secondary network, the outlet hot water from the heat 
exchangers is transported to the heating terminals of each building. The secondary-water-



Buildings 2022, 12, 351 4 of 24 
 

supply temperature is the most manipulated parameter used to tune the heat amount 
supplied to the buildings. The indoor temperature of the buildings represents the heating 
quality and can be used to adjust the set point of the secondary-supply temperature. 

 
Figure 1. Schematic of a heating system. 

The overall operational optimization process framework of the system is shown in 
Figure 2. It mainly includes the four steps listed below. 

 
Figure 2. Optimization process framework of the integrated control of the heating system. 

(1) Parameters such as outdoor temperature, characteristic room temperature and 
secondary-network water-supply temperature are obtained from the heating monitoring 
platform, and the data are preprocessed.  

(2) The temperature of the secondary water-supply network is dynamically predicted 
by online sequential extreme learning machine (OS-ELM). When the predicted secondary-
network water-supply temperature is directly used as the set secondary-network water-
supply temperature at the next time point, it conforms to the law of the secondary-net-
work water-supply temperature of the thermal power station without optimal regulation, 
but it is impossible to judge whether the indoor temperature meets the needs of users 
under the set secondary-network water-supply temperature; that is, it is impossible to 
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judge the rationality of setting the secondary-network water-supply temperature. There-
fore, the indoor-temperature online prediction method is used to predict the characteristic 
indoor temperature to characterize the heating effect for a given water-supply tempera-
ture of the secondary network. 

(3) Under the condition of meeting the thermal-comfort requirements of users, the 
operational energy-consumption cost of the heating system is minimized, and the water 
flow rate and supply temperature are adjusted accordingly. Then, the predicted second-
ary-network water-supply temperature and characteristic indoor-temperature parame-
ters are substituted into the optimization control model for calculation, and the optimal 
secondary-network water-supply temperature and secondary-network flow parameters 
are obtained. 

(4) The optimal secondary-network water-supply temperature and secondary-net-
work flow parameters are used for the regulation of the thermal power station, and the 
feature set is updated through the feedback of the heated building. The time domain rolls 
forward as a whole. At the next sampling time point, new parameters are used to solve 
the optimization problem of updating the model; finally, the optimal compound regula-
tion strategy for a certain period of time is obtained. 

2.1. Water-Supply-Temperature Prediction Based on OS-ELM Method 
Extreme learning machine (ELM) was developed from single-layer forward neural 

networks (SLFNs) as proposed by Huang et al. [21] in 2006. The purpose of this method 
is to minimize the training error value; the hidden layer does not need iteration, and the 
input weight and bias value can be selected at will. Research has shown that it has the 
ability to adapt to a large number of non-structural and imprecise laws that are character-
istic of autonomous learning and optimal computing. For example, Sajjadi et al. [22] es-
tablished nine short-term heat-load prediction models based on historical outdoor tem-
peratures, historical heating load and historical primary-network return-water tempera-
tures. The results showed that the prediction accuracy and generalization ability of limit 
learning machine (ELM) were better than BP neural networks and genetic algorithm op-
timization neural networks (GA-BPs). Guo et al. [23] used a correlation analysis and the 
lasso method to select 11 parameters, such as meteorological parameters, operating pa-
rameters, time and indoor temperatures. Based on the MLR, BP neural network, SVR and 
ELM methods, they predicted the heat load of a ground-source heat-pump system in the 
following 40 min. The results showed that the ELM model had the best prediction perfor-
mance with a root mean square error of 3.824. 

As shown in Figure 3, ELM generally comprises an input layer, a hidden layer and 
an output layer. Given n arbitrary groups of training samples (Xi, Yi), where the input is 
Xi = [x1, x2, …, xn]T, and the output is Yi = [y1, y2, …, ym]T, the output function of the hidden 
layer is Equation (1): 

1

( ) 1 2 ,
L

i i i j i
i

o β g ω x b j n


    ， , ,  
 

 

(1) 

where βi is the output weight; g(·) is the activation function; ωi is the input weight; bi is the 
bias of the i-th hidden layer; L is the number of hidden layers; and ok is the i-th output. 
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Figure 3. Schematics of extreme learning machine. 

The goal of the ELM algorithm is to minimize the difference between the output value 
of the model and the output value of the actual theory, as follows: 




1

=0
N

i i
i

o y  (2) 

There exist βi, ωi and bi satisfying Equation (3): 

1

( )= 1 2 , .
L

i i j i j
i

β g ω x b y j n


   ， , ,  (3) 

The matrix form of Equation (3) is as follows: 

βH = Y  (4) 

where H is the output matrix of the hidden layer; β is the output weight vector; and Y is 
the expected output vector. 

The detailed description of Equation (4) is shown in Equations (5) and (6): 

1 1 1 1

1 1 1

1 1

( ) ( )
( , , , , , , , , )

( ) ( )

L L

L L n

n L n L n L

g ω X b g ω X b
ω ω b b X X

g ω X b g ω X b


     
   
      



     



H  (5) 

 

1 1

,

T T

T T
L LL m L m

β Y

β Y
 

   
   
       
   
      

β Y  (6) 

β can be obtained by solving Equation (7) using the least square method, as follows: 
ˆ min +

β
Hβ - Y HH Y - Y Hβ - Y  (7) 

The least square solution is Equation (8): 
ˆ Y +β H  (8) 

where β̂  is the least square solution of the output weight vector and H+ is the Moore–
Penrose generalized inverse of H. 

Online sequential extreme learning machine (OS-ELM) [24] is developed based on 
ELM combining an online learning mechanism. As the real operational condition of DHSs 
is dynamic, the performance of the original prediction model may decrease with time. 
Besides, in actual online prediction, the operational data are not able to be obtained to 
train the prediction model at once. When new data are added to the network, the ELM 
algorithm puts the new data and old data together to retrain the network; this takes a long 
time. Thus, we introduce a method which can add training data to the training model one 
by one or more and can lose the trained data to reduce space consumption. The specific 
implementation process of OS-ELM is mainly divided into two stages. 
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···
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(1) Initialization phase 
The principle of the initialization stage is the same as that of the ELM algorithm. By 

giving the training samples, the number of neurons in the hidden layer, the excitation 
function, the input weight and the bias are randomly generated to determine the initial 
models, β0 and H0. 
(2) Online sequential learning phase 

When a new batch of data is added to the model, the hidden layer output matrix and 
outp*ut weight vector can be updated according to Equation (9): 

1 1

( 1) ( 1)
1 1 1 1

1
( 1) ( 1)

1 1

( ) ( )

( ) ( )
t t

T t T t
L L

t
T t T t

N L N L n L

g ω X b g ω X b

g ω X b g ω X b
 

 


 



     
   
 
     



  



H  (9) 

1 1 1 1 1( )T T
t t t t t t t      β β K H H H β  (10) 

where the following definitions apply: 

1 1
1

1 11

T
t t t t

t t T
t t t

 


 

 


K H H K
K K

H K H
 (11) 

1
0 0 0( )T K H H  (12) 

where Nt+1 represents the numbers of the t + 1-th sampling and  

1 1

( 1) ( 1) ( 1) ( 1)
1 2[ , , , ]

t t

t t t t
N Nx x x

+ +

+ + + +=X  is the input vector of the t + 1-th sampling. 
Using the above equation and the newly added training data, H and β, all data are 

input; then, the training of the OS-ELM model is finally completed. The flowchart of OS-
ELM is shown in Figure 4. 

 
Figure 4. Flowchart of OS-ELM. 

2.2. Prediction of Indoor Temperature 
To predict the indoor temperature, we need to determine the functional relationship 

among outdoor temperature, historical indoor temperature, water-supply temperature, 
return-water temperature, flow rate and other parameters. It is necessary to establish a 
physical model to describe the thermal process of the building and use the model to obtain 
the functional relationship between other variables and the indoor temperature. 

Figure 5 shows a simplified thermodynamic schematic of a heating room. According 
to the building heat-transfer theory, the heat gain of buildings at time τ is mainly the heat 
supply from the heating substation. The heat consumption at time τ is mainly composed 
of three parts, namely, heat loss across the building envelope, heating load caused by cold-
air infiltration and cold-air intrusion. The building dynamic thermal process can be de-
scribed by Equation (13): 
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  ,
, , , ,

in τ
air p air h τ w τ tf τ

dT
ρ Vc Q Q Q

dτ
    (13) 

where ρair is the indoor air density, kg/m3; V is the volume of the heating space, m3; cp.air is 
the specific heat capacity of indoor air, J/(kg·K); Tin,τ is the indoor temperature at time τ, 
°C; Qh,τ is the heat supplied by the network, W; Qw,τ is the heating load across the building 
envelope, W; and Qtf,τ is the heating load caused by cold-air infiltration and ventilation. 

 
Figure 5. Thermodynamic schematic of a heating room. 

Equation (13) can be written as follows: 

     ,
, , , , , ,

in τ
air p air τ p water s τ r τ b b in τ out τ

dT
ρ Vc G c T T K F T T

dτ
     (14) 

where Gτ is the secondary-water flow rate, kg/h; cp,water is the specific heat capacity of hot 
water, c = 4187 J/(kg·°C); Ts,τ is the secondary-water-supply temperature, °C; Tr,τ is the sec-
ondary-return-water temperature, °C; Kb is the overall heat-transfer coefficient of the 
building envelope, W/(m2·°C); Fb is the overall heat-transfer area of the building envelope, 
m2; and Tout,τ is the outdoor temperature, °C. 

Equation (14) can be simplified as follows: 

   ,
1 , , 2 , ,

in τ
s τ r τ in τ out τ

dT
a T T a T T

dτ
     (15) 

where a1 and a2 are regression coefficients. 
The differential expression of Equation (15) is: 

   , , 1
1 , , 2 , ,Δ

in τ in τ
s τ r τ in τ out τ

T T
a T T a T T

τ


     (16) 

where Tin,τ−1 is the indoor temperature at time τ − 1, °C. 
Then, the indoor temperature at time τ can be calculated by Equation (17): 

 , 1 , 1 2 , , 3 ,in τ in τ s τ r τ out τT c T c T T c T     (17) 

where c1, c2 and c3 are coefficients that need solving. 
There is an approximately linear function between the secondary-water-supply tem-

perature and the return temperature, which can be written as Equation (18): 

1=r sT m T  (18) 

where m1 is the fitting coefficient between the supply temperature and return tempera-
ture, which can be obtained by historical operational data. 

Combining Equation (17) with Equation (18), the prediction expression of the indoor 
temperature of the heating station is: 

Indoor temperature controller

Qh,τ

Qw,τ

Qtf,τ
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, 1 , 1 2 1 , 3 ,(1 )in τ in τ s τ out τT c T c m T c T     (19) 

c1, c2 and c3 can be determined by the historical operational data of the heating station 
and the least square linear regression of multiple functions. 

2.3. Optimization Model 
The operational cost of heating systems mainly includes fuel cost, cost of electricity 

consumed by water pumps, water cost, labor cost, etc. As the cost of staff is relatively 
fixed, it can be used as a constant. The water-supply cost of the thermal power station is 
relatively small and can be ignored. From the perspective of the energy-saving benefits of 
heating, the operational cost of a heating system is mainly considered, including boiler 
fuel cost and cost of electricity consumed by the circulating pump. For the heating system 
using a gas-fired boiler, the objective functions of the system-operation energy-consump-
tion equation are represented by Equations (20)–(22): 

 total gas gas power powerc EC c E   (20) 

1 2 ,

3600
(1 )(1 )gas

gas d gas

QE
η η η q


 

 (21) 

3

63.6 10power
pump

s GE
ρη

        
 (22) 

where Ctotal is the total operational cost, yr; cgas is the unit price of natural gas, yr/m3; Egas is 
the consumption of natural gas, m3; cpower is the unit price of electricity, yr/kWh; Epower is the 
power consumption of the circulation pumps, kWh; Q is the consumer heat load, kW; qd,gas 
is the low calorific value of natural gas, kJ/m3; ηg is the efficiency of the gas-fired boiler; η1 
is the heat-loss ratio of the primary network; η2 is the heat-loss ratio of the secondary net-
work; s is the resistance characteristic coefficient of the secondary network, Pa/(m3/h)2; G 
is the mass flow rate of secondary circulation water, kg/h; ρ is the water density, kg/m3; 
and ηpump is the pump efficiency. 

Constraint Condition 
In the actual operation of a central heating system, the parameters of supply- and 

return-water temperatures and water-supply flow of the secondary network are not infi-
nite but within a certain reasonable value range. The setting of these parameters should 
not only meet the heating needs of users but also take into account the economy of the 
heating pipe network. It is this range limit that constitutes the constraint condition of the 
system-operation energy-consumption equation. The constraints of this subject mainly in-
clude the aspects listed below. 
(1) Water-supply temperature of secondary network 

,min ,maxs s sT T T   (23) 

where Ts,min is the lower-limit value of the secondary-supply temperature, °C; and Ts,max is 
the upper-limit value of the secondary-supply temperature, °C. 
(2) Flow rate of secondary network 

 min maxG G G  (24) 

where Gmin is the lower-limit value of the secondary flow rate, kg/h; and Gmax is the upper-
limit value of the secondary flow rate, kg/h. 
(3) Return temperature 

,min ,maxr r rT T T   (25) 
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where Tr,min is the lower-limit value of the secondary-return temperature, °C; and Tr,max is 
the upper-limit value of the secondary-return temperature, °C. 
(4) Indoor temperature 

In order to improve the thermal comfort of users, it is considered that the indoor 
temperature can meet the thermal needs of users within the set indoor temperature ± 0.5 
°C; the indoor-temperature constraints are as follows: 

, 0.5in in setT T   (26) 

where Tin,set is the set point of the indoor temperature, °C. 
(5) Heat-balance equation 

When the operation of the heating pipe network is stable, if the heat loss along the 
heating pipe network is ignored, the heat load required by the user and the heating ca-
pacity of the heating station are equal. It can be approximately considered that there is the 
following heat balance in a heating cycle: 

   1.163 =s r b b in outQ G T T K F T T    (27) 

where Kb is the overall heat-transfer coefficient of the building envelope, W/(m2·°C); and 
Fb is the envelope area, m2. 

To sum up, the objective function and constraints of the system-operation energy 
consumption are: 

   

3

6
1 2 ,

,min ,max

,min ,max

min max

,

3600 1.163 ( )
min

(1 )(1 ) 3.6 10

. .
0.5

1.163 =0

s r
total gas power

gas d gas pump

s s s

r r r

in in set

s r b b in out

G T T s GC c c
η η η q ρη

T T T
T T T

s t G G G
T T

G T T K F T T

               

           

 (28) 

2.4. Evaluation Indices 
The regulation method proposed in this paper manipulates the secondary-water-

supply temperature and water flow rate to reduce energy consumption. In order to eval-
uate its performance, this paper proposes 4 indices from the perspectives of heating-sav-
ing rate, indoor-temperature satisfactory rate, power-saving rate and hydraulic stability. 
The relationships between these indices and the operational parameters are as shown in 
Figure 6. 

 
Figure 6. Flowchart of the evaluation indices. 

Manipulated parameters
Secondary water supply temperature: Ts 

Water flow rate: G

, 1 , 1 2 1 , 3 ,(1 )in τ in τ s τ out τT c T c m T c T   

3

63.6 10power
pump

s GE
ρη

        

2ΔP sG

                      

n pump power consumption

ndoor temperature

 ,h p water s rQ Gc T T 
   

hQφ

    Pφ

 powerφ

    inφ
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2.4.1. Heat-Saving Rate 

The heat-saving rate (
hQφ ) is the deviation percentage between the hourly or daily 

corrected heat consumption before the regulation of the heating system and the hourly or 
daily corrected heat consumption after the regulation of the heating system. The higher 
the 

hQφ  value is, the more energy is saved. The calculation method is as follows: 

, ,

,

100%
h

b a
h norm h norm

Q b
h norm

Q Q
φ

Q


   (29) 

where ,
a
h normQ  is the normalized heat consumption after regulation, GJ; and ,

b
h normQ  is the 

normalized heat consumption after regulation of the heating system, GJ. 
Equation (30) is used to calculate the corrected heat consumption: 

,
,

,

20 out des
h norm meter

in ave out

T
Q Q

T T





 (30) 

where Qmeter is the actual heat consumption recorded by the heat meter, GJ; Qh,norm is the 
normalized heat consumption, GJ; Tin,ave is the cumulative average characteristic indoor 
temperature, °C; Tout represents the average outdoor temperature in different heating pe-
riods, °C; and Tout,des is the designed outdoor average temperature, °C. 

2.4.2. Indoor-Temperature Satisfactory Rate 
This is the standard rate of the imported indoor temperature and is denoted by φin. 

The higher the indoor-temperature compliance rate, the higher the heating quality of the 
thermal power station. The calculation method is shown in Equation (31): 

,

,

1 1

0 1

100%

in in set
i

in in set

i
in

T T
U

T T

U
φ

n

    

 
 (31) 

where φin represents the indoor-temperature satisfactory rate, %; Ui is the number of users 
whose indoor temperature meets the standard; and n is the number of normal-heating 
users. 

2.4.3. Power-Saving Rate 
The power-saving rate (φpower) is the deviation percentage between the hourly or daily 

corrected power consumption before the regulation of the heating system and the hourly 
or daily corrected power consumption after the regulation of the heating system. The cal-
culation method is as follows: 

, ,

,

100%
a b
power norm power norm

power a
power norm

E E
φ

E


   (32) 

where ,
a
power normE  is the hourly or daily corrected power consumption of the circulating 

water pump in the secondary network before regulation, kWh; and ,
b
power normE  is the 

hourly or daily corrected power consumption of the circulating water pump in the sec-
ondary network after regulation, kWh. 

The corrected power consumption is calculated using Equation (33): 

,
, ,

,

20 out des
power norm power meter

in ave out

T
E E

T T





 (33) 
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where Ep,meter is the actual power consumption of the circulating water pump of the sec-
ondary network in different heating periods recorded by metering, kWh; and Ep,norm is the 
corrected heat consumption of the circulating water pump of the secondary network in 
different heating periods, kWh. 

2.4.4. Hydraulic-Stability Index 
Standard deviation is usually used to reflect the dispersion degree of a data set. 

Therefore, in this paper, a standard deviation value is used as index φP to measure the 
hydraulic stability of the pipe network. The calculation method is as follows: 

1

n

i
i

ave

P
P

n



 (34) 

2

1

1 ( )
n

P i ave
i

φ P P
n 

   (35) 

where n is the number of times required to collect the water-supply pressure (differential 
pressure between supply and return water) of the pipe network; Pi is the water-supply 
pressure at time i (differential pressure between supply and return water), bar; and Pave is 
the average value of the water-supply pressure (differential pressure between supply and 
return water) over n times, bar. 

3. Case Study 
The heating system of a teacher’s apartment in North China was selected as the re-

search object. The layout of the studied system is shown in Figure 7. The total construction 
area where the teacher’s apartment is located is 190,000 m2, with 48 buildings in total, of 
which buildings 46#–48# are 3 high-rise buildings (10 floors) with a floor height of 2.8 m, 
and the remaining 45 buildings are villas and multi-story buildings. The heating terminals 
are radiators, and the designed pressure bearing capacity is 0.4 MPa. 
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Figure 7. Layout of the studied heating system. 

The configuration of the heating system is as follows: a horizontal condensing gas-
fired hot-water boiler with a heat source of 14 MW. The heat source and the secondary 
network are indirectly connected by plate heat exchangers. The basic information related 
to the system are listed in Table 1. 

Table 1. Parameters of the studied heating system. 

No. Parameter Value Unit 
1 designed water-supply temperature of boiler 105 °C 
2 designed return-water temperature of boiler 75 °C 
3 rated flow rate of boiler 300 m3/h 
4 designed secondary-water-supply temperature 75 °C 
5 designed secondary-return-water temperature 50 °C 
6 rated flow of secondary-network circulating pump 506  m3/h 
7 rated power of secondary-network circulating pump 90 kW 

8 
rated efficiency of secondary-network circulating 

pump 
75 % 

9 unit price of gas * 2.4 yr/m3 
10 electricity price * 0.74 yr/kWh 
11 boiler efficiency 90 % 
12 low calorific value of gas 35 982.4 kJ/m3 
13 heat-loss rate of the primary network ** 0 % 
14 heat-loss rate of the secondary network 10 % 
15 resistance coefficient of pipe network 0.177 m3/s 
16 water density 983.2  kg/m3 

* The local gas price in the 2018 ~ 2019 heating season. ** As the primary network of the heating 
system is set inside the boiler house, the heat loss of the primary network can be ignored. 
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The heating system studied in this paper is equipped with an integrated intelligent 
system of heat metering and temperature control, as shown in Figure 8. The system equip-
ment includes a household heat meter, an intelligent on–off temperature control valve, an 
indoor-temperature controller and a data collector. An ultrasonic heat meter is installed 
at the thermal inlet of the user to calculate the heat consumption of the user. The intelligent 
control valve and wireless indoor-temperature controller are installed in the user’s living 
room. After the user sets the indoor temperature through the indoor-temperature control-
ler, the intelligent control valve controls the opening and closing of the valve by compar-
ing the set value of the indoor temperature with the actual value, so as to provide users 
with heating on demand. The data acquisition concentrator can collect the accumulated 
flow of the user’s heat meter, the supply- and return-water temperatures, the instantane-
ous flow, the indoor temperature, the user-set temperature, the opening and closing sta-
tuses of the intelligent on–off valve and the opening and closing time of the temperature 
control valve. It adopts GPRS (general packet radio service) remote data transmission and 
has the function of local storage of historical data. Finally, all the collected heating data 
are transmitted to the intelligent heating-network energy-saving monitoring platform 
through the network to guide the operational regulation of the heating station. 

 
Figure 8. Schematic diagram of building heating system with an integrated intelligent system of 
heat metering and temperature control. 

The collected data mainly include outdoor temperatures, indoor temperatures, sec-
ondary-network water-supply temperatures, secondary-return-water temperatures, in-
stantaneous flow and supply–return pressure difference. The user indoor-temperature ac-
quisition frequency is 2 h, and the acquisition frequency of the other heating parameters 
is 10 min. In order to unify the sampling period, the outdoor temperature, the secondary-
network water-supply temperature, the flow and the supply and return pressure differ-
ence are treated as average values of the 2 h period. The heating data of the heating station 
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in the community from 16 November 2018 to 15 March 2019 and from 15 November 2019 
to 21 November 2020 were selected as samples, with a total of 1524 groups of data. 

3.1. Water-Supply-Temperature Prediction Results 
In this paper, the factors affecting the water-supply temperature of the secondary 

network include outdoor temperature Tout, indoor temperature Tin, instantaneous flow G, 
supply and return pressure difference ΔP and historical secondary-network water-supply 
temperature Ts,τ-n. Pearson correlation coefficient r and PACF [25] are used to select the 
input variable of the prediction model. The results are the outdoor temperatures and the 
historical secondary-network water-supply temperatures 28 h before the prediction time. 

The collected operational data are divided into training set and test set. The data from 
16 November 2018 to 25 February 2019 (1224 groups data; 93.6% of the total data) are the 
training set. The data from 26 February 2019 to 4 March are the test set (84 groups data; 
6.4% of the total data). 

The comparison between the predicted curve and the actual curve of the secondary-
network water-supply temperatures is shown in Figure 9. For February 26 and March 1–
4, the fluctuation range of the water-supply temperatures of the secondary network is 
small, and the prediction curves of the five models are close to the actual curves. The wa-
ter-supply temperature of the secondary network fluctuates greatly from February 27 to 
28. The maximum water-supply temperature values of the secondary network on Febru-
ary 27 and 28 are 55.97 °C and 55.69 °C, respectively, and the minimum water-supply 
temperature values are 46.58 °C and 38.44 °C, with fluctuation ranges of 9.39 °C and 17.25 
°C. For February 27, the water-supply temperature curve of the secondary network pre-
dicted by the ELM, SVR and OS-ELM models is close to the actual curve, while the effects 
of BP and MLR are poor. The prediction curve of OS-ELM is the closest one to the actual 
curve for April 28. 

 
Figure 9. Comparison of the predicted values and actual values of the five models on feature set M. 

The comparison of the relative errors of the five prediction models is shown in Figure 
10. It can be seen from Figure 10 that, for February 26 and March 1–4, the prediction rela-
tive errors of the five models remain within ± 5%, meeting the error requirements. For 
February 27, the absolute maximum relative errors of the MLR, BP neural network, SVR 
and ELM models are 10.69%, 12.26%, 5.58% and 5.52%, respectively, while the relative 
errors of the OS-ELM model remain within ± 5%. For February 28, the predicted values of 
MLR, BP neural network, SVR and ELM fluctuate greatly compared with the actual val-
ues, and the maximum relative errors are 13.86%, 21.23%, 12.46% and 14.63%, respec-
tively, while the maximum relative error of the OS-ELM model is 6.20%. When the water-
supply temperatures of the secondary network fluctuate greatly, the prediction accuracy 
of the OS-ELM model is higher than that of the other four models. 
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Figure 10. Comparison of prediction errors of five models. 

3.2. Indoor-Temperature Prediction Results 
Through the least square regression of the coefficient in Equation (19), the equation 

of the indoor-temperature prediction model of the thermal power station is finally ob-
tained as follows: 

, , 1 , ,0.978 0.008 0.012in τ in τ s τ out τT T T T    (36) 

The prediction results of Equation (36) are compared with the actual indoor temper-
atures in Figure 11. It can be seen that the predicted values are in good agreement with 
the measured values. The minimum absolute error and maximum absolute error are −0.22 
°C and 0.21 °C. It can be considered that the prediction accuracy is acceptable to predict 
the indoor temperature. 

 
Figure 11. Comparison of measured and predicted indoor temperatures. 

3.3. Results of Optimization Model of Heating System 
The efficiency of the circulating water pump is affected by the operating flow of the 

pipe network. The relationship between the efficiency and flow of the secondary-network 
water pump of the thermal power station can be obtained by using the regression analysis 
method: 

6 2 33.78 10 3.81 10 0.22pumpη G G       
 

 

(37) 

Combined with the heating parameters of the heating system, the objective function 
of the system-operation energy-consumption equation is: 
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3

7 2 5

4186.8 ( ) 0.1772.4 0.74
983.22.915 10 13.608 13716 7.92 10

s r
total

G T T GC
G G

              
 (38) 

For the actual situation of the studied pipe network, the step-change limit of the sec-
ondary-water-supply temperature of ± 5 °C, i.e., the constraint on the secondary-supply 
temperature, is: 

, 1 , 5s τ s τT T    (39) 

where Ts,i+1 is the predicted secondary-water-supply temperature at the next time point, 
°C. 

To ensure the safe and stable operation of the heating network, the actual water flow 
rate of the secondary network is 80–120% of the rated flow: 

 0.8 1.2r rG G G  (40) 

where Gr is the rated flow of the secondary-network circulating pump, kg/h. 
Considering the characteristics of the heat exchangers in the heating station and the 

economy of the whole project, combined with the operational experience relative to other 
heat networks, the upper and lower limits of the return-water temperature are determined 
as 30 °C and 55 °C: 

30 55rT   (41) 

The user indoor-temperature setting law at a different time can be obtained, that is, 
the user-set indoor temperature at each time has a certain limit. Combined with the in-
door-temperature prediction model, it is considered that the indoor temperature varies 
within the set points ± 0.5 °C. The indoor-temperature limit is written as follows: 

, 1 , , ,0.978 0.008 0.012 0.5in τ s τ out τ in setT T T T      (42) 

To sum up, the operational energy-consumption equation of a heating system under 
actual working conditions is shown in Equation (43: 
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 (43) 

4. Results and Discussion 
To analyze the control effect of the proposed method, two consecutive days, 4 March 

2018 and 5 March 2018, were selected for an experimental comparative analysis. The for-
mer day, operated without the new method, is marked as before regulation, while the 
latter, to which the proposed integrated control method is applied, is recorded as after 
regulation. 

4.1. Comparison of Operational Parameters 
Figure 12 shows the changes in the main operating parameters of the heating system 

when two operational strategies are adopted. Before regulation, the water-supply temper-
ature of the secondary network changes between 45.7 and 52.3 °C. The flow-variation 
range of the circulating pump in the secondary network is 418.8 ~ 447.7 t/h, and the aver-
age flow rate is 429.8 t/h. The average user-set indoor temperature remains almost 
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unchanged from 0:00 to 6:00, decreases from 8:00 to 14:00 and gradually increases after 
16:00. The actual user indoor temperature is quite different from the set point. There is 
insufficient heating from 0:00 to 10:00, when the outdoor temperature is low, and exces-
sive heating after 12:00. This means that the water-supply temperature of the secondary 
network is not regulated according to the requirements of the user-set indoor tempera-
ture, indicating that the operation before regulation does not provide the required on-
demand heating. 

 
Figure 12. Variation curves of main heating parameters for two operating strategies. 

After regulation, the secondary-water-supply temperature changes in an approxi-
mately opposite way with respect to that of the outdoor temperature, which is consistent 
with the change law of the indoor-temperature set point, and the change range is 47.9 ~ 
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53.7 °C. The flow-rate variation is 411.8 ~ 432.6 t/h, and the average flow is 424.4 t/h. In 
addition, the user-set indoor-temperature rule after regulation is similar to that before 
regulation, and users have a certain energy-saving behavior. The variation law of the ac-
tual user indoor temperature after regulation is close to the set point, and the deviation is 
small, in the range −0.1 ~ 0.2 °C, which proves that the proposed regulation strategy can 
better meet user demand for heating on demand. 

 

4.2. Indoor-Temperature Comparison 
The distribution of user indoor temperatures before and after regulation are here sta-

tistically analyzed, as shown in Figure 13. The user indoor temperatures approximately 
present a normal distribution. Before regulation, 37.34% are in the range 20 ~ 22 °C; 9.32% 
are lower than 18 °C; 6.27% are higher, in the range 24 ~ 26 °C. After regulation, 42.54% 
are distributed in the range 20 ~ 22 °C, which is 5.2% higher than the temperature range 
before regulation. Meanwhile, both lower-indoor-temperature users (lower than 18 °C) 
and overheated users (higher than 24 °C) decrease. Lower-indoor-temperature users de-
crease from 9.32% to 5.32%, while overheated users decrease from 6.27% to 1.57%. The 
calculated indoor-temperature satisfactory rates are 72.86% after regulation, with 20.87% 
being higher than that before regulation. This shows that, after regulation, thermal com-
fort is improved, and the occurrence of overheating or supercooling decreases. 

 
Figure 13. Comparison of user indoor-temperature distribution frequency between two operating 
strategies. 

4.3. Energy-Saving Effect 
The heat- and power-consumption performances before and after regulation are an-

alyzed and compared in this section. 
Figure 14 shows the heat consumption every 2 h under the two operational strategies. 

After the normalization of heat consumption, the heat consumption before regulation 
fluctuates in the range 31.06 ~ 84.23 GJ, while it fluctuates in the range 29.63 ~ 71.28 GJ 
every 2 h after regulation. The heat consumption of the integrated regulation strategy pro-
posed in this paper is significantly lower than that before regulation. After regulation, the 
heat-saving rate varies in the range 3.29 ~ 16.24%. From 12:00 to 16:00, when the outdoor 
temperature is high, the heat-saving rate exceeds 10%. After regulation, the energy-saving 
effect is obvious. The equivalent daily heat consumption before regulation is 545.81 GJ, 
while it is 495.01 GJ after regulation. The equivalent daily heat consumption after regula-
tion is 50.80 GJ lower than before regulation, and the heat-saving rate is 16.33. 
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Figure 14. Comparison of modified heat load before and after adjustment. 

Figure 15 shows the power consumption of the secondary circulating water pump 
every 2 h under the two operational strategies. After the conversion of the power con-
sumption values to the same level, the power consumption before regulation fluctuates in 
the range 99.33 ~ 281.60 kWh, and the power consumption every 2 h after regulation fluc-
tuates in the range 87.28 ~ 233.62 kWh. The power consumption after regulation is signif-
icantly lower than that before regulation. After regulation, the power-saving rate varies 
in the range 10.06 ~ 22.18%. The equivalent daily power consumption before regulation is 
1825.32 kWh, and that after regulation is 1527.32 kWh. The equivalent daily power con-
sumption after regulation is 279.99 kWh lower than that before regulation, and the power-
saving rate is 16.33%. 

 
Figure 15. Comparison of corrected power consumption of circulating water pump in secondary 
network based on two operational strategies. 

4.4. Network Hydraulic-Stability Analysis 
As shown in Figure 16, the water-supply pressure of the secondary network before 

regulation is in the range 5.35 ± 0.05 bar, while it is in a narrower range, 5.34 ± 0.01 bar, 
after regulation. The change in the differential pressure between supply and return water 
is similar; it fluctuates in the range 2.46 ± 0.07 bar before regulation and in the range 2.48 
± 0.02 bar after regulation. In addition, according to Equation (35), the SD values of supply 
pressure and differential pressure before regulation are 0.034 and 0.036, while they are 
0.008 and 0.013, respectively, after regulation. The results show that the fluctuations in the 
water-supply pressure and differential pressure of the secondary network are signifi-
cantly reduced after adopting the regulation strategy proposed in this paper. 
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(a) (b) 

Figure 16. (a) Pressure fluctuation of secondary water supply before and after regulation. (b) Fluc-
tuation in differential pressure between secondary supply and return before and after regulation. 

5. Conclusions 
Firstly, combining secondary-side water-supply-temperature prediction and the in-

door-temperature prediction model of the thermal power station, this paper studies the 
compound regulation strategy of the heating system. Combined with the actual heating 
system, the operational energy-consumption-cost equation of the heating system is estab-
lished on the premise that ensuring heating quality and meeting the conditions of the ac-
tual supply- and return-water temperatures and the flow range of the heating pipe net-
work are fundamental. Aiming at minimizing the operational cost of the heating system, 
the heating operational parameters are optimized, and a refined on-line regulation strat-
egy is formulated. 

The regulation strategy is applied to a typical heating system for verification. The 
operational effect of the thermal power station is evaluated in terms of heat-saving rate, 
indoor-temperature compliance rate, power-saving rate and hydraulic-stability index, re-
spectively. The results show that the operational regulation strategy can give reasonable 
heating parameters according to the heat demand of users, with obvious energy-saving 
effects and good practical application. 

The field study results show that the operation executed with the regulation strategy 
proposed in this paper obtains 9.31% heat saving rate, 16.33% power saving rate and in-
door-temperature satisfactory rate increasing by 20.87% than that without an energy-sav-
ing regulation strategy. The fluctuations in the water-supply pressure and differential 
pressure of the secondary network are significantly reduced, and the energy-saving effect 
is obvious. 
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Nomenclature 
C cost 
c unit price of fuel or power 
cp specific heat capacity 
E energy consumption 
G flow rate 
g(·) activation function 
Fb overall heat-transfer area of building envelope 

Kb overall heat-transfer coefficient of building envelope 
P pressure 
ΔP differential pressure 
qd low calorific value of fuel 
Q heat load 
Qh heat supplied by network 

Qw heating load across building envelope 

Qtf heating load caused by cold-air infiltration and ventilation 
s resistance characteristic coefficient of pipeline 
Tin indoor temperature 
Tout outdoor temperature 
Ts secondary-water-supply temperature 
Tr secondary-return-water temperature 
V volume 
η efficiency 
ρ density 
φ evaluation index 

Vector and Matrix 
H output matrix of hidden layer 
H+ Moore–Penrose generalized inverse of H 
β output weight vector 

β̂  least square solution of output weight vector 

X input of prediction model 
Y expected output matrix of prediction model 

Subscript 
air indoor air 
des designed condition  
gas fuel gas 
meter energy consumption recorded by metering device 
min minimum value 
max maximum value 
pump secondary circulation pump 
power electricity 
set set point  
t iteration steps of prediction model 
water hot water circulating in the pipeline 
τ time  

Superscript 
a scenario after application of new regulation  
b scenario before application of new regulation  
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Abbreviations 
DHS district heating system 
ELM extreme learning machine 
OS-ELM online sequential extreme learning machine 
IoT Internet of Things 
GA genetic algorithm 
PSO particle swarm optimization 
VAV variable air volume 
BP back propagation  
MLR multi-linear regression 
SVR support vector regression 
GPRS general packet radio service 
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