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Abstract: The refined control of heating substations is of great significance for on-demand heating
provision and for the efficient operation of district heating systems (DHSs). This paper proposes an
integrated control strategy for substations based on the prediction of the water-supply temperature
and indoor temperature. Firstly, online sequential extreme learning machine (OS-ELM) is used to
predict the water-supply temperature. Then, a linear prediction model is established to predict
the indoor temperature. Finally, the integrated regulation strategy is established with the goal of
minimizing operational costs, aiming at ensuring heating quality and meeting the limits of the flow
rate and of the supply- and return-water temperatures. The heat-saving rate, power-saving rate and
indoor-temperature satisfactory rate are introduced to evaluate the regulation effect of the proposed
method. The field study results show that the performance index of operation executed with the
regulation strategy proposed in this paper is 9.31%, 16.33% and 20.87% higher than that without our
energy-saving regulation strategy respectively. The fluctuations in the water-supply pressure and
differential pressure of the secondary network are significantly reduced, and the energy-saving effect
is obvious.

Keywords: district heating system; integrated control; water-supply-temperature prediction; OS-ELM;
indoor-temperature prediction; energy saving

1. Introduction

Heating systems account for about 21% of building energy consumption and are
the key objects of low-carbon energy reforms [1]. The increasing pressure of the carbon-
reduction issue represents a challenge for the heating sector in terms of achieving clean and
efficient heating systems [2]. When aiming at ensuring users’ thermal comfort, to achieve
on-demand heating provision, energy conservation and consumption reduction is an urgent
problem. The operational optimization of heating systems has attracted a lot of attention,
especially with respect to the optimization of economic performance. For example, aiming
at minimizing operational costs, Gu et al. [3] proposed an optimization model based on
mixed integer nonlinear programming considering the thermal inertia of district heating
networks and buildings. The obtained results of a simulation of an actual heating system
in Jilin Province showed high wind-power utilization with low operational costs. Fang
et al. [4] used the genetic algorithm (GA) to optimize the water-supply temperature of a
multi-heat-source branch heating network, with the goal of optimizing the total costs of
fuel consumption and pump power consumption of the heating system. There are also
studies on strategies for the multi-objective optimization of heating systems.

Research on the model predictive control of heating parameters such as water-supply
temperature and return-water temperature is also gradually increasing. Lin et al. [5]
developed a model predictive control system for district heating systems (DHSs) based on
the cyber physical system. The system takes the minimization of pollutant-emission penalty
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costs and heating economic costs as the goal; it adds constraints such as operating load,
pollutant emission and pipeline transportation capacity; and it uses the PSO algorithm
to obtain the best multi-heat-source load-distribution parameters. After applying this
regulation method, the consumption of natural gas was reduced by 31.2%, and the total
heating cost was reduced by 2.6%. Conink et al. [6] proposed a model predictive control
strategy using the grey-box control model, which considers the system energy-consumption
cost and the user thermal-discomfort cost. The method was applied to a medium-sized
office building, comparing heating days, thermal comfort, energy costs and primary energy
consumption. The results show that the model predictive controller could make better use
of the water-supply temperature and provide users with better thermal comfort. Compared
with the rule-based control system, the heating cost was reduced by more than 30%.
Benakopoulos et al. [7] proposed a low-temperature operational strategy for a thermostatic-
valve radiator without preset functions for when the difference between the minimum
water-supply temperature and radiator temperature is small. The operation of the system
was analyzed through the thermal hydraulic model. The results showed that a lower
water-supply temperature reduced the reflux temperature. Among the above research
studies on model predictive control, most of them take the minimum heating economic
cost as the goal and the allowable range of heating-system operational parameters as
the constraint condition, and the control of the operation of the heating station is based
on future interference, so as to meet the heat demand of users. Few studies have been
conducted on a real-time optimization strategy considering the user indoor-temperature
demand and thermal behavior.

With the development of Internet of Things (IoT) technology, the measurement of
indoor temperature has been vigorously promoted in China’s DHSs in recent years. This
particularly large data set provides conditions for research on the feedback control method
and performance test of thermal power stations. Yuan et al. [8] studied the feedback predic-
tion model based on indoor temperature to improve the operational efficiency of thermal
power stations. This method uses the first-order linear steady-state model to deduce the
relationship model between the water-supply temperature of the thermal station and the
indoor and outdoor air temperatures. Considering the solar radiation and the uncertainty
of the weather, in this model, the water-supply temperature is corrected every 10 min and
applied to a thermal station. Dahlblom et al. [9] modified the water-supply temperature
based on the actual indoor temperature on the basis of the feedforward control of the exist-
ing thermostatic-valve heating system. Such a control strategy could obtain a more constant
indoor temperature and could be applied to buildings in southern Sweden. Liao et al. [10]
simulated a boiler controller through experiments and simulations and applied the indoor-
temperature feedback to the boiler controller to improve the performance of the heating
system. The method was applied to an office building, and the results showed that the
overheating phenomenon was greatly reduced. Sun et al. [11] proposed a dynamic control
strategy based on online prediction and indoor-temperature measurements.

Song et al. [12] proposed an HA-GRU neural network to predict the indoor temperature
of energy-saving buildings. The network can realize the fusion of a single influencing factor
and multiple features. The simulation results showed that the prediction accuracy of the
algorithm was 98.4%, and that it had good nonlinear-feature-extraction and -expression
abilities. The indoor-temperature prediction results were used as feedback input to improve
energy efficiency. Salo et al. [13] proposed a new model to control the indoor temperature
by controlling the set temperature of the thermostatic radiator valve based on a prediction
algorithm via a cloud platform considering the collected outdoor-temperature values and
user feedback. The results showed that the indoor-temperature regulation with a single set
point was more accurate.

The accurate prediction of the indoor temperature is very important for fine regu-
lation. Li et al. [14] proposed an indoor-temperature predictive control method based
on an Elman neural network multi-step predictive model for the predictive control of
the indoor-temperature time delay in VAV air-conditioning systems. The experimental
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results showed that this method was conducive to improving the stability of the indoor-
temperature control loop. Brandi et al. [15] proposed deep reinforcement learning to
optimize the indoor-temperature control method in an integrated simulation environment.
Shnayder [16] et al. established a building inverse-dynamic simulation model including
indoor air temperatures for the feedforward control of heating systems. The model can
evaluate the unmeasured indoor temperature in real time, and the lag of the heating cycle
is considered in the process of control. Jian et al. [17] studied an optimization method of
water-supply temperatures based on simulations according to the relationship among out-
door temperature, indoor temperature and water-supply temperature. By comparing the
indoor temperature and optimized energy consumption, they showed that this method can
appropriately reduce overheating and ensure that the indoor temperature is at the set point.
Cano [18] predicted the short-term indoor temperature through a Bayesian neural network
according to actual operational data to realize the real-time monitoring and management of
a heating system. Aguilera et al. [19] proposed an indoor-temperature prediction method
based on meteorological parameters which takes the average outdoor temperature, relative
outdoor humidity, solar radiation and building attributes as input parameters and analyzes
and simulates the data obtained from seven Danish family houses. The results showed that
the accuracy of indoor-temperature prediction was 92%. The average outdoor temperature
and personnel are important influencing parameters for predicting the indoor temperature,
which provides a basis for the subsequent development of a simpler method for predicting
the room temperature. Liu et al. [20] established an indoor-temperature prediction model
based on the building equivalent heat capacity, determined the appropriate switching time
and proposed a temperature- and time-sharing dynamic control method based on wireless
indoor-temperature monitoring and a control system. Taking the DHS of a university
teacher’s apartment as an example, the effectiveness of the method was verified.

The regulation of heating stations in DHSs is mostly feedforward control which
considers outdoor meteorological parameters, historical operational parameters and indoor
temperatures. In DHSs, the heat load changes with the outdoor temperature, solar radiation,
occupant behavior and other factors. At present, the open-loop feedforward control mode
considering the interference of outdoor meteorological parameters is mostly adopted in
thermal power stations. With the development of IoT technology, the indoor-temperature
acquisition technology of heat users has been widely used. In the operational regulation
of heating stations of heating systems in the future, feedforward–feedback compound
regulation should be realized aiming at the indoor thermal comfort of users. Secondly, the
variations in the indoor temperature and the comprehensive outdoor air temperature are
dynamic processes that change with time, and the heat load also changes. Therefore, it is
particularly important to formulate a dynamic compound regulation strategy to provide
on-demand heating via heating systems.

In order to improve the control effect of heating substations, this paper proposes an
integrated strategy featuring the minimization of operational costs by combining water-
supply-temperature and indoor-temperature predictions. The rest of the paper is organized
as follows: Section 2 describes the establishing process of the method; Section 3 introduces
the case study; results and discussion are presented in Section 4; Section 5 presents the
main conclusions.

2. Materials and Methods

Figure 1 shows the schematic diagram of a typical indirectly connected DHS. In this
heating system, the hot water in the primary network flows from the heat source to the
heat exchangers of each heating station, then returns to the heat source after heating up
the secondary water supply. In the secondary network, the outlet hot water from the heat
exchangers is transported to the heating terminals of each building. The secondary-water-
supply temperature is the most manipulated parameter used to tune the heat amount
supplied to the buildings. The indoor temperature of the buildings represents the heating
quality and can be used to adjust the set point of the secondary-supply temperature.
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Figure 1. Schematic of a heating system.

The overall operational optimization process framework of the system is shown in
Figure 2. It mainly includes the four steps listed below.
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Figure 2. Optimization process framework of the integrated control of the heating system.

(1) Parameters such as outdoor temperature, characteristic room temperature and
secondary-network water-supply temperature are obtained from the heating monitoring
platform, and the data are preprocessed.

(2) The temperature of the secondary water-supply network is dynamically predicted
by online sequential extreme learning machine (OS-ELM). When the predicted secondary-
network water-supply temperature is directly used as the set secondary-network water-
supply temperature at the next time point, it conforms to the law of the secondary-network
water-supply temperature of the thermal power station without optimal regulation, but
it is impossible to judge whether the indoor temperature meets the needs of users under
the set secondary-network water-supply temperature; that is, it is impossible to judge the
rationality of setting the secondary-network water-supply temperature. Therefore, the
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indoor-temperature online prediction method is used to predict the characteristic indoor
temperature to characterize the heating effect for a given water-supply temperature of the
secondary network.

(3) Under the condition of meeting the thermal-comfort requirements of users, the
operational energy-consumption cost of the heating system is minimized, and the water
flow rate and supply temperature are adjusted accordingly. Then, the predicted secondary-
network water-supply temperature and characteristic indoor-temperature parameters are
substituted into the optimization control model for calculation, and the optimal secondary-
network water-supply temperature and secondary-network flow parameters are obtained.

(4) The optimal secondary-network water-supply temperature and secondary-network
flow parameters are used for the regulation of the thermal power station, and the feature set
is updated through the feedback of the heated building. The time domain rolls forward as a
whole. At the next sampling time point, new parameters are used to solve the optimization
problem of updating the model; finally, the optimal compound regulation strategy for a
certain period of time is obtained.

2.1. Water-Supply-Temperature Prediction Based on OS-ELM Method

Extreme learning machine (ELM) was developed from single-layer forward neural
networks (SLFNs) as proposed by Huang et al. [21] in 2006. The purpose of this method is
to minimize the training error value; the hidden layer does not need iteration, and the input
weight and bias value can be selected at will. Research has shown that it has the ability
to adapt to a large number of non-structural and imprecise laws that are characteristic of
autonomous learning and optimal computing. For example, Sajjadi et al. [22] established
nine short-term heat-load prediction models based on historical outdoor temperatures,
historical heating load and historical primary-network return-water temperatures. The
results showed that the prediction accuracy and generalization ability of limit learning
machine (ELM) were better than BP neural networks and genetic algorithm optimization
neural networks (GA-BPs). Guo et al. [23] used a correlation analysis and the lasso method
to select 11 parameters, such as meteorological parameters, operating parameters, time and
indoor temperatures. Based on the MLR, BP neural network, SVR and ELM methods, they
predicted the heat load of a ground-source heat-pump system in the following 40 min. The
results showed that the ELM model had the best prediction performance with a root mean
square error of 3.824.

As shown in Figure 3, ELM generally comprises an input layer, a hidden layer and
an output layer. Given n arbitrary groups of training samples (Xi, Y i), where the input is
Xi = [x1, x2, . . . , xn]T, and the output is Y i = [y1, y2, . . . , ym]T, the output function of the
hidden layer is Equation (1):

oi =
L

∑
i=1

βig(ωi·xj + bi), j = 1, 2, · · · , n (1)

where βi is the output weight; g(·) is the activation function; ωi is the input weight; bi is the
bias of the i-th hidden layer; L is the number of hidden layers; and ok is the i-th output.

The goal of the ELM algorithm is to minimize the difference between the output value
of the model and the output value of the actual theory, as follows:

N

∑
i=1
‖oi − yi‖ = 0 (2)

There exist βi, ωi and bi satisfying Equation (3):
L

∑
i=1

βig(ωi·xj + bi) = yj, j = 1, 2, · · · , n. (3)

The matrix form of Equation (3) is as follows:
βH = Y (4)

where H is the output matrix of the hidden layer; β is the output weight vector; and Y is
the expected output vector.
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The detailed description of Equation (4) is shown in Equations (5) and (6):

H(ω1, · · · , ωL, b1, · · · , bL, X1, · · · , Xn) =

 g(ω1·X1 + b1) · · · g(ωL·X1 + bL)
...
...

...
g(ω1·Xn + b1) · · · g(ωL·Xn + bL)


n×L

(5)

β =

 βT
1
...

βT
L


L×m

, Y =

 YT
1
...

YT
L


L×m

(6)

β can be obtained by solving Equation (7) using the least square method, as follows:

‖H
^
β−Y‖ = ‖HH+Y−Y‖ = min

β
‖Hβ−Y‖ (7)

The least square solution is Equation (8):
^
β = H+Y (8)

where
^
β is the least square solution of the output weight vector and H+ is the Moore–

Penrose generalized inverse of H.
Online sequential extreme learning machine (OS-ELM) [24] is developed based on

ELM combining an online learning mechanism. As the real operational condition of DHSs
is dynamic, the performance of the original prediction model may decrease with time.
Besides, in actual online prediction, the operational data are not able to be obtained to
train the prediction model at once. When new data are added to the network, the ELM
algorithm puts the new data and old data together to retrain the network; this takes a long
time. Thus, we introduce a method which can add training data to the training model one
by one or more and can lose the trained data to reduce space consumption. The specific
implementation process of OS-ELM is mainly divided into two stages.

(1) Initialization phase

The principle of the initialization stage is the same as that of the ELM algorithm. By
giving the training samples, the number of neurons in the hidden layer, the excitation
function, the input weight and the bias are randomly generated to determine the initial
models, β0 and H0.

(2) Online sequential learning phase

When a new batch of data is added to the model, the hidden layer output matrix and
outp*ut weight vector can be updated according to Equation (9):
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Ht+1 =

 g(ωT
1 ·X

(t+1)
1 + b1) · · · g(ωT

L ·X
(t+1)
1 + bL)

· · · · · · · · ·
g(ωT

1 ·X
(t+1)
Nt+1

+ b1) · · · g(ωT
L ·X

(t+1)
Nt+1

+ bL)


n×L

(9)

βt+1 = βt + Kt+1Ht+1(HT
t+1 −HT

t+1βt) (10)

where the following definitions apply:

Kt+1 = Kt −
KtHt+1HT

t+1Kt

1 + HT
t+1KtHt+1

(11)

K0 = (HT
0 H0)

−1
(12)

where Nt+1 represents the numbers of the t + 1-th sampling and
X(t+1)

Nt+1
= [x(t+1)

1 , x(t+1)
2 , · · · , x(t+1)

Nt+1
] is the input vector of the t + 1-th sampling.

Using the above equation and the newly added training data, H and β, all data are
input; then, the training of the OS-ELM model is finally completed. The flowchart of
OS-ELM is shown in Figure 4.
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2.2. Prediction of Indoor Temperature

To predict the indoor temperature, we need to determine the functional relationship
among outdoor temperature, historical indoor temperature, water-supply temperature,
return-water temperature, flow rate and other parameters. It is necessary to establish a
physical model to describe the thermal process of the building and use the model to obtain
the functional relationship between other variables and the indoor temperature.

Figure 5 shows a simplified thermodynamic schematic of a heating room. According
to the building heat-transfer theory, the heat gain of buildings at time τ is mainly the heat
supply from the heating substation. The heat consumption at time τ is mainly composed of
three parts, namely, heat loss across the building envelope, heating load caused by cold-air
infiltration and cold-air intrusion. The building dynamic thermal process can be described
by Equation (13): (

ρairVcp,air
)dTin,τ

dτ
= Qh ,τ −Qw ,τ −Qt f ,τ (13)

where ρair is the indoor air density, kg/m3; V is the volume of the heating space, m3; cp.air
is the specific heat capacity of indoor air, J/(kg·K); Tin,τ is the indoor temperature at time τ,
◦C; Qh,τ is the heat supplied by the network, W; Qw,τ is the heating load across the building
envelope, W; and Qtf,τ is the heating load caused by cold-air infiltration and ventilation.
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Equation (13) can be written as follows:(
ρairVcp,air

)dTin,τ

dτ
= Gτcp,water(Ts,τ − Tr,τ)− KbFb(Tin,τ − Tout,τ) (14)

where Gτ is the secondary-water flow rate, kg/h; cp,water is the specific heat capacity of hot
water, c = 4187 J/(kg·◦C); Ts,τ is the secondary-water-supply temperature, ◦C; Tr,τ is the
secondary-return-water temperature, ◦C; Kb is the overall heat-transfer coefficient of the
building envelope, W/(m2·◦C); Fb is the overall heat-transfer area of the building envelope,
m2; and Tout,τ is the outdoor temperature, ◦C.

Equation (14) can be simplified as follows:

dTin,τ

dτ
= a1(Ts,τ − Tr,τ)− a2(Tin,τ − Tout,τ) (15)

where a1 and a2 are regression coefficients.
The differential expression of Equation (15) is:

Tin ,τ − Tin ,τ−1

∆τ
= a1(Ts ,τ − Tr ,τ)− a2(Tin ,τ − Tout ,τ) (16)

where Tin,τ−1 is the indoor temperature at time τ − 1, ◦C.
Then, the indoor temperature at time τ can be calculated by Equation (17):

Tin ,τ = c1Tin ,τ−1 + c2(Ts ,τ − Tr ,τ) + c3Tout ,τ (17)

where c1, c2 and c3 are coefficients that need solving.
There is an approximately linear function between the secondary-water-supply tem-

perature and the return temperature, which can be written as Equation (18):

Tr = m1·Ts (18)

where m1 is the fitting coefficient between the supply temperature and return temperature,
which can be obtained by historical operational data.

Combining Equation (17) with Equation (18), the prediction expression of the indoor
temperature of the heating station is:

Tin ,τ = c1Tin ,τ−1 + c2(1−m1)Ts ,τ + c3Tout ,τ (19)

c1, c2 and c3 can be determined by the historical operational data of the heating station
and the least square linear regression of multiple functions.

2.3. Optimization Model

The operational cost of heating systems mainly includes fuel cost, cost of electricity
consumed by water pumps, water cost, labor cost, etc. As the cost of staff is relatively fixed,
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it can be used as a constant. The water-supply cost of the thermal power station is relatively
small and can be ignored. From the perspective of the energy-saving benefits of heating,
the operational cost of a heating system is mainly considered, including boiler fuel cost
and cost of electricity consumed by the circulating pump. For the heating system using
a gas-fired boiler, the objective functions of the system-operation energy-consumption
equation are represented by Equations (20)–(22):

Ctotal = cgasEgas + cpowerEpower (20)

Egas =
3600Q

ηgas(1− η1)(1− η2)qd,gas
(21)

Epower =
s

3.6× 106 × ηpump

(
G
ρ

)3
(22)

where Ctotal is the total operational cost, yr; cgas is the unit price of natural gas, yr/m3;
Egas is the consumption of natural gas, m3; cpower is the unit price of electricity, yr/kWh;
Epower is the power consumption of the circulation pumps, kWh; Q is the consumer heat
load, kW; qd,gas is the low calorific value of natural gas, kJ/m3; ηg is the efficiency of the
gas-fired boiler; η1 is the heat-loss ratio of the primary network; η2 is the heat-loss ratio
of the secondary network; s is the resistance characteristic coefficient of the secondary
network, Pa/(m3/h)2; G is the mass flow rate of secondary circulation water, kg/h; ρ is the
water density, kg/m3; and ηpump is the pump efficiency.

Constraint Condition

In the actual operation of a central heating system, the parameters of supply- and
return-water temperatures and water-supply flow of the secondary network are not infinite
but within a certain reasonable value range. The setting of these parameters should not
only meet the heating needs of users but also take into account the economy of the heating
pipe network. It is this range limit that constitutes the constraint condition of the system-
operation energy-consumption equation. The constraints of this subject mainly include the
aspects listed below.

(1) Water-supply temperature of secondary network
Ts,min ≤ Ts ≤ Ts,max (23)

where Ts,min is the lower-limit value of the secondary-supply temperature, ◦C; and Ts,max
is the upper-limit value of the secondary-supply temperature, ◦C.

(2) Flow rate of secondary network
Gmin ≤ G ≤ Gmax (24)

where Gmin is the lower-limit value of the secondary flow rate, kg/h; and Gmax is the
upper-limit value of the secondary flow rate, kg/h.

(3) Return temperature
Tr,min ≤ Tr ≤ Tr,max (25)

where Tr,min is the lower-limit value of the secondary-return temperature, ◦C; and Tr,max is
the upper-limit value of the secondary-return temperature, ◦C.

(4) Indoor temperature

In order to improve the thermal comfort of users, it is considered that the indoor
temperature can meet the thermal needs of users within the set indoor temperature±0.5 ◦C;
the indoor-temperature constraints are as follows:

|Tin − Tin,set| ≤ 0.5 (26)

where Tin,set is the set point of the indoor temperature, ◦C.

(5) Heat-balance equation
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When the operation of the heating pipe network is stable, if the heat loss along the
heating pipe network is ignored, the heat load required by the user and the heating capacity
of the heating station are equal. It can be approximately considered that there is the
following heat balance in a heating cycle:

Q = 1.163G(Ts − Tr) = KbFb(Tin − Tout) (27)

where Kb is the overall heat-transfer coefficient of the building envelope, W/(m2·◦C); and
Fb is the envelope area, m2.

To sum up, the objective function and constraints of the system-operation energy
consumption are:

minCtotal = cgas × 3600×1.163G(Ts−Tr)
ηgas(1−η1)(1−η2)qd,gas

+ cpower × s
3.6×106×ηpump

(
G
ρ

)3

s.t.


Ts,min ≤ Ts ≤ Ts,max
Tr,min ≤ Tr ≤ Tr,max
Gmin ≤ G ≤ Gmax
|Tin − Tin,set| ≤ 0.5
1.163G(Ts − Tr)− KbFb(Tin − Tout) = 0

(28)

2.4. Evaluation Indices

The regulation method proposed in this paper manipulates the secondary-water-
supply temperature and water flow rate to reduce energy consumption. In order to
evaluate its performance, this paper proposes 4 indices from the perspectives of heating-
saving rate, indoor-temperature satisfactory rate, power-saving rate and hydraulic stability.
The relationships between these indices and the operational parameters are as shown
in Figure 6.
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2.4.1. Heat-Saving Rate

The heat-saving rate (ϕQh ) is the deviation percentage between the hourly or daily
corrected heat consumption before the regulation of the heating system and the hourly or
daily corrected heat consumption after the regulation of the heating system. The higher the
ϕQh value is, the more energy is saved. The calculation method is as follows:

ϕQh =
Qb

h,norm −Qa
h,norm

Qb
h,norm

× 100% (29)
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where Qa
h,norm is the normalized heat consumption after regulation, GJ; and Qb

h,norm is the
normalized heat consumption after regulation of the heating system, GJ.

Equation (30) is used to calculate the corrected heat consumption:

Qh,norm = Qmeter
20− Tout,des

Tin,ave − Tout
(30)

where Qmeter is the actual heat consumption recorded by the heat meter, GJ; Qh,norm is the
normalized heat consumption, GJ; Tin,ave is the cumulative average characteristic indoor
temperature, ◦C; Tout represents the average outdoor temperature in different heating
periods, ◦C; and Tout,des is the designed outdoor average temperature, ◦C.

2.4.2. Indoor-Temperature Satisfactory Rate

This is the standard rate of the imported indoor temperature and is denoted by ϕin.
The higher the indoor-temperature compliance rate, the higher the heating quality of the
thermal power station. The calculation method is shown in Equation (31):

Ui =

{
1 |Tin − Tin,set| ≤ 1
0 |Tin − Tin,set| > 1

ϕin = ∑ Ui
n × 100%

(31)

where ϕin represents the indoor-temperature satisfactory rate, %; Ui is the number of
users whose indoor temperature meets the standard; and n is the number of normal-
heating users.

2.4.3. Power-Saving Rate

The power-saving rate (ϕpower) is the deviation percentage between the hourly or daily
corrected power consumption before the regulation of the heating system and the hourly
or daily corrected power consumption after the regulation of the heating system. The
calculation method is as follows:

ϕpower =
Ea

power,norm − Eb
power,norm

Ea
power,norm

× 100% (32)

where Ea
power,norm is the hourly or daily corrected power consumption of the circulating

water pump in the secondary network before regulation, kWh; and Eb
power,norm is the hourly

or daily corrected power consumption of the circulating water pump in the secondary
network after regulation, kWh.

The corrected power consumption is calculated using Equation (33):

Epower,norm = Epower,meter
20− Tout,des

Tin,ave − Tout
(33)

where Epower,meter is the actual power consumption of the circulating water pump of the
secondary network in different heating periods recorded by metering, kWh; and Epower,norm
is the corrected heat consumption of the circulating water pump of the secondary network
in different heating periods, kWh.

2.4.4. Hydraulic-Stability Index

Standard deviation is usually used to reflect the dispersion degree of a data set.
Therefore, in this paper, a standard deviation value is used as index ϕP to measure the
hydraulic stability of the pipe network. The calculation method is as follows:

Pave =

n
∑

i=1
Pi

n
(34)

ϕP =

√
1
n

n

∑
i=1

(Pi − Pave)
2 (35)
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where n is the number of times required to collect the water-supply pressure (differential
pressure between supply and return water) of the pipe network; Pi is the water-supply
pressure at time i (differential pressure between supply and return water), bar; and Pave is
the average value of the water-supply pressure (differential pressure between supply and
return water) over n times, bar.

3. Case Study

The heating system of a teacher’s apartment in North China was selected as the
research object. The layout of the studied system is shown in Figure 7. The total construction
area where the teacher’s apartment is located is 190,000 m2, with 48 buildings in total, of
which buildings 46#–48# are 3 high-rise buildings (10 floors) with a floor height of 2.8 m,
and the remaining 45 buildings are villas and multi-story buildings. The heating terminals
are radiators, and the designed pressure bearing capacity is 0.4 MPa.
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The configuration of the heating system is as follows: a horizontal condensing gas-
fired hot-water boiler with a heat source of 14 MW. The heat source and the secondary
network are indirectly connected by plate heat exchangers. The basic information related
to the system are listed in Table 1.

Table 1. Parameters of the studied heating system.

No. Parameter Value Unit

1 designed water-supply temperature of boiler 105 ◦C
2 designed return-water temperature of boiler 75 ◦C
3 rated flow rate of boiler 300 m3/h
4 designed secondary-water-supply temperature 75 ◦C
5 designed secondary-return-water temperature 50 ◦C
6 rated flow of secondary-network circulating pump 506 m3/h
7 rated power of secondary-network circulating pump 90 kW
8 rated efficiency of secondary-network circulating pump 75 %
9 unit price of gas * 2.4 yr/m3

10 electricity price * 0.74 yr/kWh
11 boiler efficiency 90 %
12 low calorific value of gas 35,982.4 kJ/m3

13 heat-loss rate of the primary network ** 0 %
14 heat-loss rate of the secondary network 10 %
15 resistance coefficient of pipe network 0.177 m3/s
16 water density 983.2 kg/m3

* The local gas price in the 2018–2019 heating season. ** As the primary network of the heating system is set inside
the boiler house, the heat loss of the primary network can be ignored.

The heating system studied in this paper is equipped with an integrated intelligent
system of heat metering and temperature control, as shown in Figure 8. The system
equipment includes a household heat meter, an intelligent on–off temperature control
valve, an indoor-temperature controller and a data collector. An ultrasonic heat meter
is installed at the thermal inlet of the user to calculate the heat consumption of the user.
The intelligent control valve and wireless indoor-temperature controller are installed in
the user’s living room. After the user sets the indoor temperature through the indoor-
temperature controller, the intelligent control valve controls the opening and closing of the
valve by comparing the set value of the indoor temperature with the actual value, so as
to provide users with heating on demand. The data acquisition concentrator can collect
the accumulated flow of the user’s heat meter, the supply- and return-water temperatures,
the instantaneous flow, the indoor temperature, the user-set temperature, the opening
and closing statuses of the intelligent on–off valve and the opening and closing time of
the temperature control valve. It adopts GPRS (general packet radio service) remote data
transmission and has the function of local storage of historical data. Finally, all the collected
heating data are transmitted to the intelligent heating-network energy-saving monitoring
platform through the network to guide the operational regulation of the heating station.

The collected data mainly include outdoor temperatures, indoor temperatures, secondary-
network water-supply temperatures, secondary-return-water temperatures, instantaneous
flow and supply–return pressure difference. The user indoor-temperature acquisition
frequency is 2 h, and the acquisition frequency of the other heating parameters is 10 min.
In order to unify the sampling period, the outdoor temperature, the secondary-network
water-supply temperature, the flow and the supply and return pressure difference are
treated as average values of the 2 h period. The heating data of the heating station in the
community from 16 November 2018 to 15 March 2019 and from 15 November 2019 to 21
November 2020 were selected as samples, with a total of 1524 groups of data.



Buildings 2022, 12, 351 14 of 23Buildings 2022, 12, 351 14 of 24 
 

 

Figure 8. Schematic diagram of building heating system with an integrated intelligent system of 

heat metering and temperature control. 

The collected data mainly include outdoor temperatures, indoor temperatures, sec-

ondary-network water-supply temperatures, secondary-return-water temperatures, in-

stantaneous flow and supply–return pressure difference. The user indoor-temperature ac-

quisition frequency is 2 h, and the acquisition frequency of the other heating parameters 

is 10 min. In order to unify the sampling period, the outdoor temperature, the secondary-

network water-supply temperature, the flow and the supply and return pressure differ-

ence are treated as average values of the 2 h period. The heating data of the heating station 

in the community from 16 November 2018 to 15 March 2019 and from 15 November 2019 

to 21 November 2020 were selected as samples, with a total of 1524 groups of data. 

3.1. Water-Supply-Temperature Prediction Results 

In this paper, the factors affecting the water-supply temperature of the secondary 

network include outdoor temperature Tout, indoor temperature Tin, instantaneous flow G, 

supply and return pressure difference ΔP and historical secondary-network water-supply 

temperature Ts,τ-n. Pearson correlation coefficient r and PACF [25] are used to select the 

input variable of the prediction model. The results are the outdoor temperatures and the 

historical secondary-network water-supply temperatures 28 h before the prediction time. 

The collected operational data are divided into training set and test set. The data from 

16 November 2018 to 25 February 2019 (1224 groups data; 93.6% of the total data) are the 

training set. The data from 26 February 2019 to 4 March are the test set (84 groups data; 

6.4% of the total data). 

The comparison between the predicted curve and the actual curve of the secondary-

network water-supply temperatures is shown in Figure 9. For February 26 and March 1–

4, the fluctuation range of the water-supply temperatures of the secondary network is 

small, and the prediction curves of the five models are close to the actual curves. The 

Figure 8. Schematic diagram of building heating system with an integrated intelligent system of heat
metering and temperature control.

3.1. Water-Supply-Temperature Prediction Results

In this paper, the factors affecting the water-supply temperature of the secondary
network include outdoor temperature Tout, indoor temperature Tin, instantaneous flow G,
supply and return pressure difference ∆P and historical secondary-network water-supply
temperature Ts,τ-n. Pearson correlation coefficient r and PACF [25] are used to select the
input variable of the prediction model. The results are the outdoor temperatures and the
historical secondary-network water-supply temperatures 28 h before the prediction time.

The collected operational data are divided into training set and test set. The data from
16 November 2018 to 25 February 2019 (1224 groups data; 93.6% of the total data) are the
training set. The data from 26 February 2019 to 4 March are the test set (84 groups data;
6.4% of the total data).

The comparison between the predicted curve and the actual curve of the secondary-
network water-supply temperatures is shown in Figure 9. For 26 February and 1–4 March,
the fluctuation range of the water-supply temperatures of the secondary network is small,
and the prediction curves of the five models are close to the actual curves. The water-
supply temperature of the secondary network fluctuates greatly from 27 to 28 February.
The maximum water-supply temperature values of the secondary network on 27 and
28 February are 55.97 ◦C and 55.69 ◦C, respectively, and the minimum water-supply
temperature values are 46.58 ◦C and 38.44 ◦C, with fluctuation ranges of 9.39 ◦C and
17.25 ◦C. For 27 February, the water-supply temperature curve of the secondary network
predicted by the ELM, SVR and OS-ELM models is close to the actual curve, while the
effects of BP and MLR are poor. The prediction curve of OS-ELM is the closest one to the
actual curve for 28 April.
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Figure 9. Comparison of the predicted values and actual values of the five models on feature set M.

The comparison of the relative errors of the five prediction models is shown in
Figure 10. It can be seen from Figure 10 that, for 26 February and 1–4 March, the prediction
relative errors of the five models remain within ± 5%, meeting the error requirements. For
27 February, the absolute maximum relative errors of the MLR, BP neural network, SVR
and ELM models are 10.69%, 12.26%, 5.58% and 5.52%, respectively, while the relative
errors of the OS-ELM model remain within ± 5%. For 28 February, the predicted values of
MLR, BP neural network, SVR and ELM fluctuate greatly compared with the actual values,
and the maximum relative errors are 13.86%, 21.23%, 12.46% and 14.63%, respectively,
while the maximum relative error of the OS-ELM model is 6.20%. When the water-supply
temperatures of the secondary network fluctuate greatly, the prediction accuracy of the
OS-ELM model is higher than that of the other four models.
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Figure 10. Comparison of prediction errors of five models.

3.2. Indoor-Temperature Prediction Results

Through the least square regression of the coefficient in Equation (19), the equation of
the indoor-temperature prediction model of the thermal power station is finally obtained
as follows:

Tin ,τ = 0.978Tin ,τ−1 + 0.008Ts ,τ + 0.012Tout ,τ (36)

The prediction results of Equation (36) are compared with the actual indoor tempera-
tures in Figure 11. It can be seen that the predicted values are in good agreement with the
measured values. The minimum absolute error and maximum absolute error are −0.22 ◦C
and 0.21 ◦C. It can be considered that the prediction accuracy is acceptable to predict the
indoor temperature.
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Figure 11. Comparison of measured and predicted indoor temperatures.

3.3. Results of Optimization Model of Heating System

The efficiency of the circulating water pump is affected by the operating flow of
the pipe network. The relationship between the efficiency and flow of the secondary-
network water pump of the thermal power station can be obtained by using the regression
analysis method:

ηpump = −3.78× 10−6G2 + 3.81× 10−3G− 0.22 (37)

Combined with the heating parameters of the heating system, the objective function
of the system-operation energy-consumption equation is:

Ctotal = 2.4× 4186.8G(Ts − Tr)

2.915× 107 + 0.74× 0.177
−13.608G2 + 13716G− 7.92× 105

(
G

983.2

)3
(38)

For the actual situation of the studied pipe network, the step-change limit of the
secondary-water-supply temperature of ±5 ◦C, i.e., the constraint on the secondary-supply
temperature, is:

|Ts,τ+1 − Ts,τ | ≤ 5 (39)

where Ts,τ+1 is the predicted secondary-water-supply temperature at the next time point, ◦C.
To ensure the safe and stable operation of the heating network, the actual water flow

rate of the secondary network is 80–120% of the rated flow:

0.8Gr ≤ G ≤ 1.2Gr (40)

where Gr is the rated flow of the secondary-network circulating pump, kg/h.
Considering the characteristics of the heat exchangers in the heating station and the

economy of the whole project, combined with the operational experience relative to other
heat networks, the upper and lower limits of the return-water temperature are determined
as 30 ◦C and 55 ◦C:

30 ≤ Tr ≤ 55 (41)
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The user indoor-temperature setting law at a different time can be obtained, that
is, the user-set indoor temperature at each time has a certain limit. Combined with the
indoor-temperature prediction model, it is considered that the indoor temperature varies
within the set points ±0.5 ◦C. The indoor-temperature limit is written as follows:

|0.978Tin ,τ−1 + 0.008Ts ,τ + 0.012Tout ,τ − Tin ,set| ≤ 0.5 (42)

To sum up, the operational energy-consumption equation of a heating system under
actual working conditions is shown in Equation (43):

minCtotal = 2.4× 4186.8G(Ts−Tr)
2.915×107 + 0.74× 0.177

−13.608G2+13716G−7.92×105

(
G

983.2

)3

s.t.


|Ts,τ+1 − Ts,τ | ≤ 5
30 ≤ Tr ≤ 55
404800 ≤ G ≤ 607200
|0.978Tin ,τ−1 + 0.008Ts ,τ + 0.012Tout ,τ − Tin ,set| ≤ 0.5
1.163G(Ts − Tr)− KbFb(Tin − Tout) = 0

(43)

4. Results and Discussion

To analyze the control effect of the proposed method, two consecutive days, 4 March
2018 and 5 March 2018, were selected for an experimental comparative analysis. The former
day, operated without the new method, is marked as before regulation, while the latter, to
which the proposed integrated control method is applied, is recorded as after regulation.

4.1. Comparison of Operational Parameters

Figure 12 shows the changes in the main operating parameters of the heating system
when two operational strategies are adopted. Before regulation, the water-supply tempera-
ture of the secondary network changes between 45.7 and 52.3 ◦C. The flow-variation range
of the circulating pump in the secondary network is 418.8 to 447.7 t/h, and the average
flow rate is 429.8 t/h. The average user-set indoor temperature remains almost unchanged
from 0:00 to 6:00, decreases from 8:00 to 14:00 and gradually increases after 16:00. The
actual user indoor temperature is quite different from the set point. There is insufficient
heating from 0:00 to 10:00, when the outdoor temperature is low, and excessive heating
after 12:00. This means that the water-supply temperature of the secondary network is not
regulated according to the requirements of the user-set indoor temperature, indicating that
the operation before regulation does not provide the required on-demand heating.

After regulation, the secondary-water-supply temperature changes in an approxi-
mately opposite way with respect to that of the outdoor temperature, which is consis-
tent with the change law of the indoor-temperature set point, and the change range is
47.9 to 53.7 ◦C. The flow-rate variation is 411.8 to 432.6 t/h, and the average flow is
424.4 t/h. In addition, the user-set indoor-temperature rule after regulation is similar to
that before regulation, and users have a certain energy-saving behavior. The variation
law of the actual user indoor temperature after regulation is close to the set point, and the
deviation is small, in the range −0.1 to 0.2 ◦C, which proves that the proposed regulation
strategy can better meet user demand for heating on demand.
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Figure 12. Variation curves of main heating parameters for two operating strategies.

4.2. Indoor-Temperature Comparison

The distribution of user indoor temperatures before and after regulation are here
statistically analyzed, as shown in Figure 13. The user indoor temperatures approximately
present a normal distribution. Before regulation, 37.34% are in the range 20 to 22 ◦C; 9.32%
are lower than 18 ◦C; 6.27% are higher, in the range 24 to 26 ◦C. After regulation, 42.54%
are distributed in the range 20 to 22 ◦C, which is 5.2% higher than the temperature range
before regulation. Meanwhile, both lower-indoor-temperature users (lower than 18 ◦C) and
overheated users (higher than 24 ◦C) decrease. Lower-indoor-temperature users decrease
from 9.32% to 5.32%, while overheated users decrease from 6.27% to 1.57%. The calculated
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indoor-temperature satisfactory rates are 72.86% after regulation, with 20.87% being higher
than that before regulation. This shows that, after regulation, thermal comfort is improved,
and the occurrence of overheating or supercooling decreases.
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Figure 13. Comparison of user indoor-temperature distribution frequency between two operating strategies.

4.3. Energy-Saving Effect

The heat- and power-consumption performances before and after regulation are
analyzed and compared in this section.

Figure 14 shows the heat consumption every 2 h under the two operational strategies.
After the normalization of heat consumption, the heat consumption before regulation
fluctuates in the range 31.06 to 84.23 GJ, while it fluctuates in the range 29.63 to 71.28 GJ
every 2 h after regulation. The heat consumption of the integrated regulation strategy
proposed in this paper is significantly lower than that before regulation. After regulation,
the heat-saving rate varies in the range 3.29 to 16.24%. From 12:00 to 16:00, when the
outdoor temperature is high, the heat-saving rate exceeds 10%. After regulation, the
energy-saving effect is obvious. The equivalent daily heat consumption before regulation
is 545.81 GJ, while it is 495.01 GJ after regulation. The equivalent daily heat consumption
after regulation is 50.80 GJ lower than before regulation, and the heat-saving rate is 16.33.
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Figure 14. Comparison of modified heat load before and after adjustment.

Figure 15 shows the power consumption of the secondary circulating water pump
every 2 h under the two operational strategies. After the conversion of the power con-
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sumption values to the same level, the power consumption before regulation fluctuates
in the range 99.33 to 281.60 kWh, and the power consumption every 2 h after regulation
fluctuates in the range 87.28 to 233.62 kWh. The power consumption after regulation is
significantly lower than that before regulation. After regulation, the power-saving rate
varies in the range 10.06 to 22.18%. The equivalent daily power consumption before regula-
tion is 1825.32 kWh, and that after regulation is 1527.32 kWh. The equivalent daily power
consumption after regulation is 279.99 kWh lower than that before regulation, and the
power-saving rate is 16.33%.
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Figure 15. Comparison of corrected power consumption of circulating water pump in secondary
network based on two operational strategies.

4.4. Network Hydraulic-Stability Analysis

As shown in Figure 16, the water-supply pressure of the secondary network before
regulation is in the range 5.35 ± 0.05 bar, while it is in a narrower range, 5.34 ± 0.01 bar,
after regulation. The change in the differential pressure between supply and return water
is similar; it fluctuates in the range 2.46 ± 0.07 bar before regulation and in the range
2.48 ± 0.02 bar after regulation. In addition, according to Equation (35), the SD values
of supply pressure and differential pressure before regulation are 0.034 and 0.036, while
they are 0.008 and 0.013, respectively, after regulation. The results show that the fluctua-
tions in the water-supply pressure and differential pressure of the secondary network are
significantly reduced after adopting the regulation strategy proposed in this paper.
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5. Conclusions 

Firstly, combining secondary-side water-supply-temperature prediction and the in-

door-temperature prediction model of the thermal power station, this paper studies the 

compound regulation strategy of the heating system. Combined with the actual heating 

system, the operational energy-consumption-cost equation of the heating system is estab-

lished on the premise that ensuring heating quality and meeting the conditions of the ac-

tual supply- and return-water temperatures and the flow range of the heating pipe net-
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egy is formulated. 

The regulation strategy is applied to a typical heating system for verification. The 
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indoor-temperature compliance rate, power-saving rate and hydraulic-stability index, re-

spectively. The results show that the operational regulation strategy can give reasonable 

heating parameters according to the heat demand of users, with obvious energy-saving 

effects and good practical application. 

The field study results show that the operation executed with the regulation strategy 

proposed in this paper obtains 9.31% heat saving rate, 16.33% power saving rate and in-

door-temperature satisfactory rate increasing by 20.87% than that without an energy-sav-

ing regulation strategy. The fluctuations in the water-supply pressure and differential 

pressure of the secondary network are significantly reduced, and the energy-saving effect 

is obvious. 
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Figure 16. (a) Pressure fluctuation of secondary water supply before and after regulation. (b) Fluctuation
in differential pressure between secondary supply and return before and after regulation.
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5. Conclusions

Firstly, combining secondary-side water-supply-temperature prediction and the indoor-
temperature prediction model of the thermal power station, this paper studies the com-
pound regulation strategy of the heating system. Combined with the actual heating system,
the operational energy-consumption-cost equation of the heating system is established
on the premise that ensuring heating quality and meeting the conditions of the actual
supply- and return-water temperatures and the flow range of the heating pipe network
are fundamental. Aiming at minimizing the operational cost of the heating system, the
heating operational parameters are optimized, and a refined on-line regulation strategy
is formulated.

The regulation strategy is applied to a typical heating system for verification. The
operational effect of the thermal power station is evaluated in terms of heat-saving rate,
indoor-temperature compliance rate, power-saving rate and hydraulic-stability index,
respectively. The results show that the operational regulation strategy can give reasonable
heating parameters according to the heat demand of users, with obvious energy-saving
effects and good practical application.

The field study results show that the operation executed with the regulation strategy
proposed in this paper obtains 9.31% heat saving rate, 16.33% power saving rate and indoor-
temperature satisfactory rate increasing by 20.87% than that without an energy-saving
regulation strategy. The fluctuations in the water-supply pressure and differential pressure
of the secondary network are significantly reduced, and the energy-saving effect is obvious.
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Nomenclature
C cost
c unit price of fuel or power
cp specific heat capacity
E energy consumption
G flow rate
g(·) activation function
Fb overall heat-transfer area of building envelope
Kb overall heat-transfer coefficient of building envelope
P pressure
∆P differential pressure
qd low calorific value of fuel
Q heat load
Qh heat supplied by network
Qw heating load across building envelope
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Qtf heating load caused by cold-air infiltration and ventilation
s resistance characteristic coefficient of pipeline
Tin indoor temperature
Tout outdoor temperature
Ts secondary-water-supply temperature
Tr secondary-return-water temperature
V volume
η efficiency
ρ density
ϕ evaluation index

Vector and Matrix
H output matrix of hidden layer
H+ Moore–Penrose generalized inverse of H
β output weight vector
^
β least square solution of output weight vector
X input of prediction model
Y expected output matrix of prediction model

Subscript
air indoor air
des designed condition
gas fuel gas
meter energy consumption recorded by metering device
min minimumvalue
max maximumvalue
pump secondary circulation pump
power electricity
set set point
t iteration steps of prediction model
water hot water circulating in the pipeline
τ time

Superscript
a scenario after application of new regulation
b scenario before application of new regulation

Abbreviations
DHS district heating system
ELM extreme learning machine
OS-ELM online sequential extreme learning machine
IoT Internet of Things
GA genetic algorithm
PSO particle swarm optimization
VAV variable air volume
BP back propagation
MLR multi-linear regression
SVR support vector regression
GPRS general packet radio service
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