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Abstract: Wearable devices as an emerging technology to collect safety data on construction site is 
gaining increasing attention from researchers and practitioners. Given the rapid development of 
wearable devices research and the high application prospects of wearable devices in construction 
safety, a state-of-the-art review of research and implementations in this field is needed. The aim of 
this study is to provide an objective and extensive bibliometric analysis of the published articles on 
wearable applications in construction safety for the period of 2005–2021. CiteSpace software was 
used to conduct co-citation analysis, co-occurrence analysis, and cluster identification on 169 iden-
tified articles. The results show that 10 research clusters (e.g., attentional failure, brain-computer 
interface) were extremely important in the development of wearable devices for construction safety. 
The results highlight the evolution of wearable devices in construction-safety-related research, re-
vealing the underlying structure of this cross-cutting research area. The analysis also summarizes 
the status quo of wearable devices in the construction safety field and provides a dynamic platform 
for integrating future applications. 
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1. Introduction 
The construction industry has long been regarded as one of the most dangerous in-

dustries worldwide [1,2]. It employs approximately 7% of the global workforce but con-
tributes to 30–40% of total fatalities [3]. Among all causes of construction accidents, unsafe 
behaviors of construction workers are the primary and immediate causes. For instance, a 
study has reported that 88% of accidents are related to unsafe behaviors [4]. To reduce 
unsafe behaviors and improve the safety performance of construction workers, various 
measures have been proposed, such as establishing multiple training programs, applying 
academic knowledge to work sites, and exploring new technologies [5,6]. Wearable de-
vices that offer a promising solution for construction safety management and risk identi-
fication are increasingly adopted on construction sites [7]. Due to the dynamic and tran-
sient nature of construction [8], traditional manual collection of construction safety data 
is time intensive [9], and needs to be automated by an effective tool that provides timely 
information for safety managers to take positive actions. As an emerging technology, 
wearable devices can potentially realize real-time and accurate security monitoring [10]. 
They are products controlled by electronic components and software that can be incorpo-
rated into clothing or worn on the body like accessories. Wearable devices collect infor-
mation through tiny, easily worn sensors [11]. Such non-invasive devices avoid the obvi-
ous problems of large and complex physical examination devices [12,13], and provide 
real-time information interaction with the wearer [7]. Timely monitoring and feedback 
ensure the effectiveness of the information provision. Automated safety monitoring sys-
tems based on wearable devices are another promising avenue of research. The data of 
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construction sites collected through wearable devices have been evaluated by researchers 
and practitioners, providing early warnings of the safety risks in construction environ-
ments [14–16], physiological signals from construction workers [6,17,18] and automatic 
recognition of workers’ actions [11,19]. Wearable devices have also assisted safety training 
[20] and accident prevention [21]. For example, the biomechanical gait-stability parame-
ters can prevent falling and colliding accidents, which are common occurrences on con-
struction sites [21,22]. 

To reveal the possible connections among the studies on wearable-device applica-
tions in construction safety, some studies have reviewed the past development and pro-
posed new research trends in this area. For example, Wang et al. (2015) reviewed the avail-
able techniques for the risk assessment of work-related musculoskeletal disorders, and 
summarized the advantages and limitations of wearable-device systems in this theme 
[23]. Awolusi et al. (2018) reviewed the application of wearable technologies in construc-
tion-safety monitoring, and analyzed the relevant safety performance metrics [24]. Ahn et 
al. (2019) recently reviewed and identified general wearable-sensing technology applica-
tions in construction safety and health, and indicated the challenges and future research 
opportunities for advancing this field [6]. However, these reviews are often qualitative or 
based on manual process and researchers’ subjective judgement. Such methods may over-
look some articles available for review and thus be vulnerable to biases. 

This study aims to conduct a comprehensive and objective bibliometric analysis of 
the research on the application of wearable devices in construction safety from 2005 to 
2021 with the help of CiteSpace software. This research clusters the applications of weara-
ble devices in construction safety, reviews the whole development framework, and sug-
gests future research trends. Based on the bibliometrics, the study quantitatively summa-
rizes the status quo and establishes the important issues concerning the new technologies 
of wearable devices in construction safety. The research hotspots are illustrated on visual 
maps. This study extends traditional literature review methods to carry out a bibliometric 
analysis to delineate the intellectual structure and quantitatively summarizes the related 
knowledge in graphical form. 

2. Research Method 
2.1. Data Collection 

The data collection consisted of two stages. In Stage 1, a comprehensive search was 
carried out in the online academic database. This study used Scopus database for literature 
search, as it could provide a comprehensive coverage of the sciences, social sciences, arts, 
and humanities across journals, books, and conference proceedings and was sufficiently 
large for most bibliometric analysis. Articles containing the specific terms in the title/ab-
stract/keyword’ were firstly retrieved. Five experts were interviewed to provide the key 
search words for the research topic. Based on the analysis of interviews, the following 
search string was used in the ‘title/abstract/keyword’ fields: (“Wearable devices” OR 
“Wearable systems” OR “Wearable technology” OR “Wearable sensor”) AND (“construc-
tion safety”). The search was further refined by limiting the time span into the recent 16 
years—‘from 2005 to 2021’ and the document type to ‘article, review and conference pa-
per’. At the same time, the same search string was used in the Web of Science database to 
find the articles not included in the Scopus database. A total of 239 articles were identified 
in this stage. 

Given that the search results of Stage 1 may include irrelevant papers that contain 
the search keywords but do not actually focus on wearable devices in construction safety, 
Stage 2 was conducted to eliminate the irrelevant literature. To ensure the accuracy and 
relevance of data, the titles and abstracts of all 239 articles retrieved in Stage 1 were care-
fully scrutinized by authors. During this process, two authors examined these articles in-
dependently and their results of screening were compared and consolidated. After remov-
ing 70 irrelevant articles, 169 papers were retained as the basis of our bibliometric analysis. 
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The bibliographic records of the identified 169 literatures were downloaded from the da-
tabase, including the article title, article type, a list of authors, a set of keywords, the ab-
stract, the journal name, publication year, volume, issue number, number of citations, and 
a list of the cited references. These bibliographic records were further standardized (e.g., 
correcting the different spellings of authors, journal, or keywords) through manually 
checking for bibliometric analysis. 

2.2. Bibliometric Analysis 
The term of bibliometric was first introduced as “the application of mathematical and 

statistical methods to books and other means of communication” by Pritchard (p. 349) 
[25]. Bibliometric analysis is a quantitative statistical analysis of the literature [26], which 
has been widely used for identifying the relationships among authors, institutions, re-
search directions, and other variables [27–29]. A bibliometric analysis can be realized 
through visualization tools to identify the emerging trends and knowledge structures in 
a specific research field. The results are often presented intuitively in visual maps. The 
present study focuses on author co-citation analysis, keyword co-occurrence network, and 
cluster identification. These techniques are advantageous over the conventional manual 
review method. 

Co-citation analysis measures the semantic similarity among documents, authors, or 
journals by computing their co-citation relationships. A co-citation relationship defines 
the frequency at which two items are cited together [30]. Co-citation analysis assumes that 
when two items are commonly cited together, their contents are relevant to each other. 
Co-citation analysis can be performed on documents, authors, or journals, which connects 
the cited documents, authors, or journals that researchers consider as valuable and inter-
esting. The present study conducts an author co-citation analysis, which identifies the re-
lationships among authors whose publications are cited in the same literature. More spe-
cifically, an author co-citation analysis identifies and visualizes the knowledgeable struc-
ture of a specialist research area by counting the co-citation frequency of two authors’ 
publications among the reference lists of cited literature [31]. 

Keywords represent the core content of a research article. A keyword co-occurrence 
network constructs and maps the knowledge domain of a particular area over a specific 
time span. This method acknowledges that when keywords frequently co-occur in publi-
cations, their underlying ideas are closely associated [32]. A keyword co-occurrence net-
work constructs a similarity measure from the literature contents themselves, rather than 
linking the literature indirectly through citations. In the present analysis, the bibliometric 
analysis results of wearable devices in construction safety were demonstrated in a key-
word network, which identifies the keywords that co-occur in at least two different arti-
cles in a given time span. High-frequency keywords are recognized as indicators of re-
search hotspots or directions over a specified period. 

Cluster analysis is commonly applied in knowledge discovery, which identifies the 
profound themes hidden in the textual data [33]. Cluster analysis categorizes a mass of 
data into different units with common relevancy of terms, which identifies the research 
topics and their interrelation within a research domain. In cluster analysis, the homoge-
neity or consistency of clusters is evaluated from the mean silhouette of the network [34]. 
When the silhouette value is 1, the clusters in the network are completely separated. Re-
search trends can also be effectively analyzed by cluster analysis [35]. 

At present, there are many widely used bibliometric tools, such as CiteSpace, 
VOSViewer, and HistCite. In terms of cluster analysis, VOSViewer does not have as many 
algorithms as CiteSpace to extract cluster labels. HistCite is relatively simple to operate, but 
its graphical presentation is not as rich as CiteSpace’s. CiteSpace software has all the func-
tions mentioned above, as well as time slicing technology, which supports more intuitive 
performance of time series in network analysis for systematic review[36]. CiteSpace is a 
Java application for structural and temporal analyses of various networks derived from 
the academic literature and has been optimized several times in recent years to improve 
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its function and practicability [27]. It supports networks with hybrid node types (e.g., in-
stitutions and countries), and hybrid link types (e.g., co-citations and co-occurrence) 
[29,37]. CiteSpace can also detect trends and citation bursts of academic papers by calcu-
lating publication indicators [34]. Therefore, version 5.8R3 of the CiteSpace software was 
chosen as the bibliometric tool to conduct a comprehensive analysis. 

3. Results 
3.1. Overview of Research 

Tables 1 and 2 illustrate the trends of identified articles regarding the wearable de-
vices in construction safety by country, year, and journal/conference. The data in Table 1 
are derived from the article list filtering function in Scopus database. In term of the geo-
graphic distribution, the contribution of the United States to the literature of wearable 
devices in construction safety is the most (N = 88, P = 42.1%). In fact, it is much larger than 
the second one, i.e., Hong Kong (N = 31, P = 14.8%) and the third one, i.e., Mainland of 
China (N = 23, P = 11.0%) (see Table 1). 

Table 1. Main research origin of papers published. 

Country 
Institute/ 

University 
Researchers 

Involved 
Number of 

Papers 
Percentage Con-

tribution 
United States 73 135 88 42.1% 
Hong Kong 28 54 31 14.8% 
China 36 72 23 11.0% 
South Korea 25 48 22 10.5% 
United Kingdom 16 28 10 4.8% 
Australia 22 36 9 4.3% 
Japan 22 40 8 3.8% 
Italy 6 26 5 2.4% 
Saudi Arabia 3 10 5 2.4% 
Germany 7 15 4 1.9% 
Canada 10 16 4 1.9% 
Countries or regions with four or more papers are counted in the table. 

As shown in Table 2, Automation in Construction and Journal of Construction Engineer-
ing and Management have published the most articles at 36 (i.e., 21.3%) and 18 (i.e., 10.7%) 
out of 169 identified articles. The papers published in Automation in Construction are sig-
nificantly more than those published in other journals. The total number of publications 
on this topic by year has increased. Until 2016, the number of articles was under 10 per 
year, but from 2017 to 2021 the number of publications has increased to triple, e.g., 2021 
(N = 31). It indicates that the study on applying wearable devices in construction safety 
has attracted increasing interest of researchers and practitioners.  

Table 3 lists the top 10 cited papers of wearable devices in construction safety. Six 
papers were published in Automation in Construction and two were published in Applied 
Ergonomics. The remaining two papers were published in Journal of Construction Engineer-
ing and Management and Journal of Computing in Civil Engineering. In terms of research con-
tent, many of them focus on the construction workers’ posture and activity, including 
three concerning about work-related musculoskeletal disorders (WMSDs) [23,38,39], and 
three concentrating on ergonomic analysis, fall detection, and activity recognition 
[19,40,41]. In these studies, inertial measurement unit (IMU), accelerometer gyroscope, 
and linear accelerometer, etc., were the most commonly used wearable sensors. The re-
maining of them focus on workers’ fatigue or stress levels, collecting physiological data 
from construction workers using heart rate, body surface temperature, and EEG data 
[18,42]. 
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Table 2. The publishing year of journals/conference proceedings contributing to the area of weara-
ble devices in construction safety. 

Source 
Publication Year 

2005–
2010 

2011 2012 2014 2015 2016 2017 2018 2019 2020 2021 Total 

Automation in Construction      3 10 7 6 3 7 36 
Journal of Construction Engineering 
and Management 

    1   2 6 5 4 18 

Sensors (Switzerland)         1 5 2 8 
Advanced Engineering Informatics       1 2 1 1  5 
Congress on Computing in Civil En-
gineering, Proceedings 

 1 2    1     4 

Engineering, Construction and Ar-
chitectural Management 

         2 2 4 

Safety Science         1 2 1 4 
Construction Research Congress 
2020: Safety, Workforce, and Educa-
tion—Selected Papers from the Con-
struction Research Congress 2020 

         4  4 

Others 6 2 4 3 3 6 6 11 10 20 15 86 
Total 6 3 6 3 4 9 18 22 25 42 31 169 

Journals and conference proceedings with less than four paper were classified into Others. 

Table 3. Top 10 cited articles on wearable devices in construction safety. 

Rank Authors Title Cited Frequency  Journal Refs. 

1 
Awolusi et al. 

(2018) 

Wearable technology for personalized construction 
safety monitoring and trending: Review of applica-
ble devices  

143 
Automation in 
Construction 

[24] 

2 
Yan et al. 

(2017) 

Wearable IMU-based real-time motion warning sys-
tem for construction workers’ musculoskeletal disor-
ders prevention 

135 
Automation in 
Construction 

[38] 

3 
Aryal et al. 

(2017) 
Monitoring fatigue in construction workers using 
physiological measurements 

111 
Automation in 
Construction 

[42] 

4 
Valero et al. 

(2016) 

Musculoskeletal disorders in construction: A review 
and a novel system for activity tracking with body 
area network 

111 
Applied Ergonom-
ics 

[39] 

5 
Wang et al. 

(2015) 
Risk assessment of work-related musculoskeletal 
disorders in construction: State-of-the-art review 

109 

Journal of Con-
struction Engi-
neering and Man-
agement 

[23] 

6 
Jebelli et al. 

(2018) 
EEG-based workers’ stress recognition at construc-
tion sites 

101 
Automation in 
Construction 

[18] 

7 
Nath et al. 

(2017) 
Ergonomic analysis of construction worker’s body 
postures using wearable mobile sensors 

94 
Applied Ergonom-
ics 

[19] 

8 
Yang et al. 

(2016) 
Semi-supervised near-miss fall detection for iron-
workers with a wearable inertial measurement unit 

92 
Automation in 
Construction 

[40] 

9 
Joshua et al. 

(2011) 
Accelerometer-based activity recognition in con-
struction 

86 
Journal of Compu-
ting in Civil Engi-
neering 

[41] 
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10 
Choi et al. 

(2017) 

What drives construction workers’ acceptance of 
wearable technologies in the workplace?: Indoor lo-
calization and wearable health devices for occupa-
tional safety and health 

85 
Automation in 
Construction 

[43] 

3.2. Co-Authorship Analysis 
Co-authorship analysis can identify main researchers and research communities in 

this field. Figure 1 depicts the co-authorship network generated from the literature data, 
and visualized by CiteSpace. The 212 nodes represent the authors in the cited literature, 
and the 340 links represent their co-authorship relationships. The color of the links repre-
sents different ranges of years, e.g., gray, blue, green, yellow, orange, and red, and those 
colors range from light to dark, corresponding to different years from 2005 to 2021, as 
shown in Figure 1. A high ‘count’ parameter indicates a great influence of authors in the 
field. As shown in Figure 1, the larger the ‘count’ parameter, the larger the author’s name 
label size, e.g., Heng Li (Hong Kong, count = 19), Houtan Jebelli (USA, count = 15), SangHyun 
Lee (USA, count = 13), Antwi-Afari Maxwell Fordjour (United Kingdom, count = 10), Chang-
bum Ryan Ahn (USA, count = 9), Jiayu Chen (Hong Kong, count = 8), Chukwuma Nnaji (USA, 
count = 8), Kanghyeok Yang (South Korea, count = 7), Byungjoo Choi (South Korea, count = 
7), Ibukun Gabriel Awolusi (USA, count = 7). 

When the links form a closed-loop circuit, the linked authors share a strong interac-
tion relationship. such as the circuit of SangHyun Lee, Houtan Jebelli, Yizhi Liu and Mahmoud 
Habibnezhad. In addition, multiple research communities can be identified through these 
closed loops and productive authors can be found within them. For example, Heng Li and 
Antwi-Afari Maxwell Fordjour are the two crucial authors of a research community, includ-
ing Waleed Umer, Shahnawaz Anwer, Arnold Wong, etc., and Jiayu Chen is the crucial author 
of a research community, consisting of Di Wang, Dong Zhao, Dai, Fei, etc. 

 
Figure 1. Co-authorship network of wearable devices in construction safety. 

In graph theory, a node with high betweenness centrality usually means that the 
node is located in a more crucial position in the network. The top five authors with this 
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property were Heng Li (centrality = 0.05), JoonOh Seo (centrality = 0.03) Jiayu Chen (central-
ity = 0.02), Cenfei Sun (centrality = 0.02), and SangHyun Lee (centrality = 0.01). An author 
with many counts and a high betweenness centrality in Figure 1 will most likely lead the 
research field of wearable devices in construction safety. Combined with the above met-
rics of main researchers and the links of research communities in Figure 1, we can continue 
to explore the research direction of specific communities and find the most influential ar-
ticles based on node information. 

3.3. Keyword Co-Occurrence Network 
Figure 2 shows an overview of the keywords co-occurrence network with 379 nodes 

generated from the dataset. Each node represents one keyword term specified in the arti-
cles. Table 4 lists the top 28 terms (frequency > 10) with a total of 752 co-occurrence fre-
quencies, which account for 47.9% of all keyword frequencies. 

 
Figure 2. Keyword co-occurrence network of wearable devices in construction safety. 

According to Figure 2 and Table 4, occupational risk is the most frequent keyword, 
appearing 77 times, revealing that most studies are inspired by the occupational injuries 
suffered by workers in the construction industry. The second most frequently mentioned 
keyword is wearable technology (73 times), showing that wearable technology is the main 
research focus in this field. Following these two keywords, construction workers, con-
struction industry, wearable sensor and construction safety are also mentioned fre-
quently, with 66, 54, 47 and 40 times, respectively. These terms constitute the background 
and objectives of the construction safety research domain. Most of the remaining key-
words appear less than 40 times. Some of these low-frequency keywords refer to specific 
wearable technologies, such as electroencephalography (16 times), inertial measurement 
unit (13 times), and heart (generally refers to heart rate, 12 times). Some keywords explain 
the method of analyzing data collected by wearable devices, e.g., ergonomics (19 times), 
machine learning (15 times), and physiological model (11 times). In addition, some key-
words have high betweenness centrality, such as construction worker (centrality = 0.17), 
risk assessment (centrality = 0.17), accident prevention (centrality = 0.15), construction 
worker (centrality = 0.14), health (centrality = 0.13). These keywords constitute different 
research topics and are interrelated. The co-occurrences of these keywords report the ma-
jor research interests of wearable devices in construction safety. 
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Table 4. Occurrence frequencies of specified keywords in the literature of wearable devices in con-
struction safety. 

Keywords Frequency Keywords Frequency 
Occupational risk 77 Health risk 18 
Wearable technology 73 Accident 17 
Construction worker 66 Physiology 17 
Construction industry 54 Electroencephalography 16 
Wearable sensor 47 Machine learning 15 
Construction safety 40 Safety engineering 13 
Accident prevention 36 Inertial measurement unit 13 
Risk assessment 30 Monitoring 12 
Human resource management 29 Heart 12 
Construction site 27 Survey 12 
Hazard 26 Wearable device 12 
Health 19 Safety 11 
Human 19 Physiological model 11 
Ergonomics 19 Productivity 11 

3.4. Cluster Identification 
Knowledge domains can be identified and presented as clusters by the bibliometric 

review method based on information with the relevant articles. CiteSpace extracts the term 
from the titles, keywords, or abstracts of the literature as text resource, and then the cal-
culation can be carried out after setting parameters such as node type and selection crite-
ria. CiteSpace provides three assessment measures: Latent Semantic Indexing (LSI), Likeli-
hood Ratio Test (LLR), and Mutual Information (MI) index. One of the methods is selected 
to extract clustering labels from the titles or abstracts of cited references [44]. In this paper, 
LLR, recommended by the software author, was chosen as the algorithm, which calculates 
the p-value based on the likelihood ratio or compares it with a critical value to decide 
whether to reject the null model, thus obtaining the clustering label of the optimal confi-
dence. Figure 3 illustrates a cluster view of the knowledge domains of wearable devices 
in construction safety, by the loglikelihood ratio (LLR) algorithm. The modularity score of 
the network is 0.6857. As this score lies between 0.4 and 0.8, the clustering is deemed to 
be acceptable. The weighted mean silhouette metric measures the average homogeneity 
of a cluster [45]. When the clustering size is similar, a higher weighted mean silhouette 
indicates better consistency of the cluster [46]. Therefore, the weighted mean silhouette 
score of 0.8447 indicates that the consistency of cluster members is enough. The cluster ID 
ranges from 0 (largest) to 9 (smallest). The size and quality of each cluster are decided by 
the number of papers assigned to the cluster and the silhouette value of the cluster, re-
spectively. In Table 5, the mean silhouette of each cluster exceeds 0.6, confirming an ac-
ceptable level of clustering validity. The hybrid node network is composed of 379 nodes 
and 1430 links. The 10 major knowledge clusters are attentional failure (#0), brain-com-
puter interface (#1), activity tracking (#2), industrial work safety (#3), corporate clothing 
(#4), construction site (#5), accelerometer-based activity recognition (#6), intelligent mon-
itoring (#7), building site (#8), and wearable wireless identification (#9). The next section 
will discuss these clusters in detail. 
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Figure 3. Cluster view of knowledge domains for wearable devices in construction safety. 

Table 5. Top-ranked clusters and their main terms. 

Cluster 
ID 

Size Silhouette 
Mean 
Year 

Cluster Label (LLR) Alternative Label Representative articles 

0 47 0.731 2017 Attentional failure 
Fall-hazard condition; hazard iden-
tification 

[47–51] 

1 38 0.672 2017 
Brain-computer in-
terface 

Quantitative framework; construc-
tion safety management 

[18,52–56] 

2 34 0.857 2017 Activity tracking Body area network; novel system [19,21,39,57,58] 

3 33 0.770 2019 
Industrial work 
safety 

Health risk mitigation; ann-based 
automated scaffold builder activity 
recognition 

[57,59–62] 

4 33 0.963 2011 Corporate clothing 
Engineering industry; cyber-physi-
cal gaming system; 

[58,63–66] 

5 32 0.891 2014 Construction site 
Wearable biosensor; physical de-
mand 

[17,18,67–69] 

6 31 0.779 2015 
Accelerometer-based 
activity recognition 

Using body-mounted sensor; auto-
mated ergonomic risk monitoring 

[11,16,41,70,71] 

7 30 0.929 2012 
Intelligent monitor-
ing 

Carbon monoxide poisoning; gait 
pattern 

[48,58,72–74] 

8 24 0.855 2012 Building site 
Risk mitigation system; scaffolds 
monitoring 

[57,71,75–77] 

9 21 0.979 2014 
Wearable wireless 
identification 

Sensing platform; self-monitoring 
alert 

[22,61,78–80] 

Figure 4 shows the timeline view of the network. Each horizontal line represents one 
cluster and the size of each ring represents the centrality of the nodes. The curved lines 
represent the relationships between the clusters and the authors. Unlike the cluster view 
in Figure 3, the timeline view in Figure 4 shows the temporal evolution patterns of the 10 
clusters. Specifically, Figure 4 reveals that keywords in cluster #1 (brain-computer inter-
face) and cluster #7 (intelligent monitoring) have the longest time range covered, with 
relevant keywords appearing from 2005 to 2021. In addition, cluster #0 (attentional 
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failure), cluster #3 (industrial work safety), cluster #5 (construction site), cluster #6 (accel-
erometer-based activity recognition), and cluster #9 (wearable wireless identification) all 
emerged after 2010. Cluster #4 (corporate clothing) and cluster #5 (construction site) con-
tain some central keywords, making the tree-ring circles in the figure larger. Moreover, it 
can be found that red links are mostly distributed in the first five clusters (#0–#3), indicat-
ing that the research hotspots in the recent five years are concentrated in these clusters. 

 

 
Figure 4. Timeline view of the co-occurrence network cluster of keywords. 

4. Discussion 
Wearable devices in construction safety have focused on technologies and applica-

tions. Four clusters—brain–computer interface (#1), accelerometer-based activity recogni-
tion (#6), and wearable wireless identification (#9)—are placed into the technology cate-
gory, which encompasses the basic functions of wearable devices and sensors. Most of the 
tags in this category possess obvious technical attributes. Accelerometer-based activity 
recognition, for example, are commonly employed as collectors of worker activity data 
(e.g., identifying body posture and acceleration, and walking steps) in construction safety. 
The remaining clusters—attentional failure (#0), activity tracking (#2), corporate clothing 
(#4), and intelligent monitoring (#7)—are categorized as applications. Most of the works 
in these clusters employ existing wearable technologies in novel assessment systems of 
construction risk (e.g., worker pressure, worker falls and collision damage, and other rel-
evant occupational disease risk). In addition, cluster #3 (industrial work safety), cluster #5 
(construction site), and cluster #8 (building site) also illustrate the application scenarios of 
wearable technology. The clustering results effectively identify the emerging research 
hotspots in this domain.  

4.1. Cluster #0 (Attentional Failure) 
The most significant cluster is cluster #0 (attentional failure). The construction indus-

try is labor-intensive and necessarily involves repetitive manual labor [81]. Highly physi-
cally demanding activities increase the risk of physical fatigue [43], which increases the 
likelihood of attentional failure and tends to have adverse consequences for construction 
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workers [82].The most common construction accidents are usually related to equipment 
operation, and attention failure is the leading cause of equipment operator error [83,84]. 
Using eye-tracking technology, workers’ attention allocation, mental fatigue, and hazard 
detection abilities can be well evaluated [84,85]. Eye-tracking devices can also be used to 
measure some metrics of visual search patterns (e.g., fixation count, fixation rate, fixation 
spatial density, and fixation time [86]) to determine workers’ perception of hazard in em-
pirical investigation [87]. Meanwhile, based on computer vision technology, the data of 
eye-tracking devices can be uploaded to 3D point cloud to build a training environment, 
which can further analyze the attention distribution of workers [20]. Besides, Jebelli et al. 
(2019) reported that the physical state of workers is measurable [17]. As fatigue is mainly 
related to work intensity, it can also be measured in terms of physical demands [88]. In 
recent years, obtaining the physical demand levels of workers through physiological sig-
nals has followed a common research path. Jebelli et al. (2019) revealed that the physical 
demand levels and stress states of workers are important considerations in a construction 
environment, and that physical demand on the construction site can be detected by wear-
able devices [17]. Aryal et al. (2017) monitored physical fatigue by wearable devices, and 
subjectively collected the fatigue level by the Borg’s Rate of Perceived Exertion scale [42]. 
Li and Gerber (2012) non-intrusively evaluated the physiological load of construction 
workers using wearable sensors, and found that heartrate was sensitive to rest breaks dur-
ing the construction test [89]. Gatti et al. (2012) related the physical strain measured by 
wearable devices to the productivity of construction, and identified heartrate as a signifi-
cant predictor with a strong parabolic relationship to productivity [90]. 

4.2. Cluster #1 (Brain-Computer Interface) 
The second most significant cluster is cluster #1 (brain-computer interface). This clus-

ter label refers to the exchange of information between the brain and the device, and the 
main way to achieve this in construction safety research community is through wearable 
electroencephalography (EEG) devices. In the application stage, it has proved feasible to 
identify workers’ stress status by brain waves. For example, wearable EEG devices can 
assess the mental workload, attention, and vigilance of workers [78]. EEG captures the 
electrical activity of firing neurons in the brain [91], and hence the mental statuses (e.g., 
emotional states) of construction workers [18]. This widely used technique assesses indi-
viduals’ stress by analyzing their brain waves [18]. The attention levels of construction 
workers can also be effectively monitored by wearable EEG systems [92]. EEG rapidly 
indicates any changes in workers’ mental statuses. However, acquiring high-quality EEG 
signals is more challenging than collecting other physiological indicators, because the sig-
nals are interfered by automatic actions such as eye blinking. Previous studies have also 
shown that displaying images of construction hazard in a laboratory environment can 
lead to information distortion, and these images do not have as much impact on the pupil 
or brain as they do in real life [93]. Therefore, hazard recognition process can be simulated 
as far as possible by simulating construction hazards site with virtual reality (VR) tech-
nology and collecting data through wearable electroencephalogram in VR environment 
[94]. Jebelli et al. (2019) found that stress is less accurately recognized by EEG than by 
physiological signals collected by a wristband-type sensor[67]. Additionally, wristband 
devices can measure their physical demands. Wearable devices equipped with photo ple-
thysmography sensors can monitor a worker’s heart rate [95]. Besides, human-robot col-
laboration can be achieved through brain-computer interface (BCI) [96]. Liu et al. pro-
posed a BCI based system that can control collaborative construction robots with 90% ac-
curacy using EEG signals [56]. This technology has the potential to improve productivity 
and help workers to avoid hazardous working conditions. 
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4.3. Cluster #2 (Activity Tracking) and Cluster #6 (Accelerometer-Based Activity Recognition) 
Cluster #2 (activity tracking) and cluster #6 (accelerometer-based activity recogni-

tion) represent a similar research topic. For construction workers, lifting, squatting, walk-
ing, and even turning screws and swinging tools can be repeated many times. Therefore, 
the recognition of workers’ movements or behavior patterns is the first step to find the 
abnormal situation of construction workers. Koskimaki et al. (2009) identified these move-
ments with accelerometer and gyroscope (angular speed) with 88.2% accuracy. The study 
of Work-related Musculoskeletal Disorders (WMSDs) has been developed by many re-
searchers in recent years on the basis of the identification of worker postures and activities 
[19,23,38,39]. According to relevant study, falling from heights is among the most com-
mon accidents in the construction industry [97], which is strongly associated with loss of 
balance [21]. Some previous empirical research on falling-risk assessment have shown that 
wearable inertial measurement units (WIMUs) effectively gather the data of workers’ 
body responses (such as balance and gait) [12,21,98]. For example, Umer et al. (2018) de-
tected task-induced changes in the static balances of construction workers equipped with 
WIMUs[99]. In addition, some systems (such as multi-parameter monitoring wearable 
sensor (MPMWS)) composed of multiple sensors are widely used in analysis of worker’s 
trunk posture[100]. However, these devices need to be placed in multiple places on the 
worker’s body, which can cause mobility inconvenience. It is worth noting that some re-
searchers have devoted to developing less invasive wearable measurement devices in re-
cent years. For example, utilizing a wearable insole system with higher accuracy than pre-
vious wearable inertial devices to identify falling risk [48,101]. The wearable insole pres-
sure system provides more substantial safety gait metrics than the WIMU system, and 
extends the current wearable technologies for construction safety [21,48]. In laboratory 
conditions, built-in sensors of smartphones have been proven to recognize worker’s pos-
tures effectively [16,19,102]. According to previous studies, accelerometers are usually 
placed at the waist or back [38,103,104]. By contrast, wristband-type activity tracker has 
higher flexibility and lower hardware costs [11]. Therefore, future research is promising 
to focus on the portability and accuracy of wearable devices. 

4.4. Cluster #5 (Construction Site) 
It is worth noting that cluster #5 (construction site) has two alternative labels (“wear-

able biosensor” and “physical demand”). It appears that most of these studies are based 
on wearable sensors that measure the workers’ physiological states. The measurement 
and collection of safety data is essential for safety monitoring in the construction industry. 
As shown in Figure 4, there are three large tree-ring circles in the timeline of cluster #5 
(construction site), indicating that keywords in this cluster were widely cited by articles 
of the construction safety research community. The wearable technologies applied in 
other sectors can monitor and measure a wide variety of safety performance metrics 
within this industry [24]. In addition to the EEG devices mentioned in cluster #1, Guo et 
al. (2017) found that workers’ physical data (heart rate, skin temperature, calorie con-
sumption, etc.) could indirectly measure their psychological status [76]. Pillsbury et al. 
also effectively assessed the physical and health status of workers by measuring heart rate, 
respiration rate, and core temperature through physiological status monitors [61]. In ad-
dition, upper body posture angle, traveling speed, and acceleration have also been shown 
to be added to the system of physiological metrics [105]. These case studies have shown 
the practical effectiveness of safety monitoring based on various physiological indicators 
collected by wearable biosensor. 

4.5. Relationships between Clusters 
The remaining clusters represent specific techniques and knowledge domain in con-

struction safety research. For example, cluster #4 (corporate clothing) illustrates the appli-
cation potential of textile technology in wearable devices, cluster #7 (intelligent 
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monitoring) summarizes the prospect of intelligence and automatic monitoring for the 
construction safety, and cluster #3 (industrial work safety), cluster #5 (construction site), 
and cluster #8 (building site) echo the application scenarios of wearable technology in this 
review. From the above discussion, it can be found that these cluster labels well represent 
the respective knowledge domain. In addition, different research directions may use the 
same wearable devices, which means that the database of construction safety field has the 
potential to be established. At the same time, further development of wearable technology 
in the future will constantly open up new application scenarios for this field. 

5. Conclusions 
This paper provides an objective and accurate bibliometric analysis of wearable ap-

plications in the field of construction safety. The analysis was based on selected papers 
published between 2005 and 2021. Many key areas were identified by keyword co-occur-
rence analysis, such as ergonomics, electroencephalography, and inertial measurement 
unit. Ten knowledge clusters were identified: attentional failure, brain-computer inter-
face, activity tracking, industrial work safety, corporate clothing, construction site, accel-
erometer-based activity recognition, intelligent monitoring, building site, and wearable 
wireless identification. 

Through this systematic and quantitative bibliometric analysis, we could clearly vis-
ualize and explain the knowledge clusters and the frontier of wearable devices in con-
struction safety. The present work highlights the developments and trends in this research 
domain and provides a clear perspective based on comprehensive data and statistical 
analysis. The developments have been clearly summarized by information maps and sta-
tistical descriptions. In future work, the performance of wearable devices should be fur-
ther improved to reduce monitoring bias and to create low-cost systems with potential for 
commercial promotion. Future construction safety might also employ integrated wearable 
sensors for multi-parameter monitoring. In fact, to design an integrated multi-functional 
wearable system is another developmental trend. It is worth noting that some wearable 
technologies have been available for other industries for years, but have only recently 
been applied to construction safety. Further research could focus on whether mature 
equipment from other industries can be adapted to scenarios in the field of construction 
safety. 

Although the relevant literature has been carefully collected and analyzed, this re-
search has several limitations. Although this paper screened literatures from the Scopus 
database and the Web of Science database, a manual review would inevitably be subjec-
tive. At the same time, due to the limitation of the software algorithm, the discussion part 
is based on the 10 clusters identified, which may result in the omission of some relevant 
knowledge fields. Significant contributions could be ignored as a result of this deficient 
coverage. In addition, some literature might be ignored when using keywords to search 
for literature. Therefore, the research results could not completely cover the entire litera-
ture related to wearable devices in construction safety. Future studies should address the 
limitations by utilizing various databases and broadening data sources to collect and re-
view literature. 
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