
����������
�������

Citation: Gao, R.; Mu, B.; Lyu, S.;

Wang, H.; Yi, C. Review of the

Application of Wearable Devices in

Construction Safety: A Bibliometric

Analysis from 2005 to 2021. Buildings

2022, 12, 344. https://doi.org/

10.3390/buildings12030344

Academic Editors: Fahim Ullah and

Audrius Banaitis

Received: 27 January 2022

Accepted: 9 March 2022

Published: 11 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Review

Review of the Application of Wearable Devices in Construction
Safety: A Bibliometric Analysis from 2005 to 2021
Ran Gao 1, Bowen Mu 1, Sainan Lyu 2, Hao Wang 1,* and Chengdong Yi 1

1 School of Management Science and Engineering, Central University of Finance and Economics,
Beijing 102206, China; ran.gao@cufe.edu.cn (R.G.); mbw0312@163.com (B.M.); chdyi@cufe.edu.cn (C.Y.)

2 School of Civil Engineering, Hefei University of Technology, Hefei 230002, China; sainan.lyu@hfut.edu.cn
* Correspondence: hao.wang@cufe.edu.cn; Tel.: +86-135-8185-9827

Abstract: Wearable devices as an emerging technology to collect safety data on construction site is
gaining increasing attention from researchers and practitioners. Given the rapid development of
wearable devices research and the high application prospects of wearable devices in construction
safety, a state-of-the-art review of research and implementations in this field is needed. The aim of
this study is to provide an objective and extensive bibliometric analysis of the published articles on
wearable applications in construction safety for the period of 2005–2021. CiteSpace software was used
to conduct co-citation analysis, co-occurrence analysis, and cluster identification on 169 identified
articles. The results show that 10 research clusters (e.g., attentional failure, brain-computer interface)
were extremely important in the development of wearable devices for construction safety. The results
highlight the evolution of wearable devices in construction-safety-related research, revealing the
underlying structure of this cross-cutting research area. The analysis also summarizes the status quo
of wearable devices in the construction safety field and provides a dynamic platform for integrating
future applications.

Keywords: wearable device; bibliometric analysis; construction safety; CiteSpace

1. Introduction

The construction industry has long been regarded as one of the most dangerous indus-
tries worldwide [1,2]. It employs approximately 7% of the global workforce but contributes
to 30–40% of total fatalities [3]. Among all causes of construction accidents, unsafe behav-
iors of construction workers are the primary and immediate causes. For instance, a study
has reported that 88% of accidents are related to unsafe behaviors [4]. To reduce unsafe
behaviors and improve the safety performance of construction workers, various measures
have been proposed, such as establishing multiple training programs, applying academic
knowledge to work sites, and exploring new technologies [5,6]. Wearable devices that
offer a promising solution for construction safety management and risk identification are
increasingly adopted on construction sites [7]. Due to the dynamic and transient nature
of construction [8], traditional manual collection of construction safety data is time inten-
sive [9], and needs to be automated by an effective tool that provides timely information
for safety managers to take positive actions. As an emerging technology, wearable devices
can potentially realize real-time and accurate security monitoring [10]. They are products
controlled by electronic components and software that can be incorporated into clothing
or worn on the body like accessories. Wearable devices collect information through tiny,
easily worn sensors [11]. Such non-invasive devices avoid the obvious problems of large
and complex physical examination devices [12,13], and provide real-time information inter-
action with the wearer [7]. Timely monitoring and feedback ensure the effectiveness of the
information provision. Automated safety monitoring systems based on wearable devices
are another promising avenue of research. The data of construction sites collected through
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wearable devices have been evaluated by researchers and practitioners, providing early
warnings of the safety risks in construction environments [14–16], physiological signals
from construction workers [6,17,18] and automatic recognition of workers’ actions [11,19].
Wearable devices have also assisted safety training [20] and accident prevention [21]. For
example, the biomechanical gait-stability parameters can prevent falling and colliding
accidents, which are common occurrences on construction sites [21,22].

To reveal the possible connections among the studies on wearable-device applications
in construction safety, some studies have reviewed the past development and proposed
new research trends in this area. For example, Wang et al. (2015) reviewed the available
techniques for the risk assessment of work-related musculoskeletal disorders, and sum-
marized the advantages and limitations of wearable-device systems in this theme [23].
Awolusi et al. (2018) reviewed the application of wearable technologies in construction-
safety monitoring, and analyzed the relevant safety performance metrics [24]. Ahn et al.
(2019) recently reviewed and identified general wearable-sensing technology applications
in construction safety and health, and indicated the challenges and future research oppor-
tunities for advancing this field [6]. However, these reviews are often qualitative or based
on manual process and researchers’ subjective judgement. Such methods may overlook
some articles available for review and thus be vulnerable to biases.

This study aims to conduct a comprehensive and objective bibliometric analysis of the
research on the application of wearable devices in construction safety from 2005 to 2021
with the help of CiteSpace software. This research clusters the applications of wearable
devices in construction safety, reviews the whole development framework, and suggests
future research trends. Based on the bibliometrics, the study quantitatively summarizes
the status quo and establishes the important issues concerning the new technologies of
wearable devices in construction safety. The research hotspots are illustrated on visual
maps. This study extends traditional literature review methods to carry out a bibliometric
analysis to delineate the intellectual structure and quantitatively summarizes the related
knowledge in graphical form.

2. Research Method
2.1. Data Collection

The data collection consisted of two stages. In Stage 1, a comprehensive search
was carried out in the online academic database. This study used Scopus database for
literature search, as it could provide a comprehensive coverage of the sciences, social
sciences, arts, and humanities across journals, books, and conference proceedings and
was sufficiently large for most bibliometric analysis. Articles containing the specific terms
in the title/abstract/keyword’ were firstly retrieved. Five experts were interviewed to
provide the key search words for the research topic. Based on the analysis of interviews,
the following search string was used in the ‘title/abstract/keyword’ fields: (“Wearable
devices” OR “Wearable systems” OR “Wearable technology” OR “Wearable sensor”) AND
(“construction safety”). The search was further refined by limiting the time span into
the recent 16 years—‘from 2005 to 2021’ and the document type to ‘article, review and
conference paper’. At the same time, the same search string was used in the Web of Science
database to find the articles not included in the Scopus database. A total of 239 articles were
identified in this stage.

Given that the search results of Stage 1 may include irrelevant papers that contain
the search keywords but do not actually focus on wearable devices in construction safety,
Stage 2 was conducted to eliminate the irrelevant literature. To ensure the accuracy and
relevance of data, the titles and abstracts of all 239 articles retrieved in Stage 1 were
carefully scrutinized by authors. During this process, two authors examined these articles
independently and their results of screening were compared and consolidated. After
removing 70 irrelevant articles, 169 papers were retained as the basis of our bibliometric
analysis. The bibliographic records of the identified 169 literatures were downloaded from
the database, including the article title, article type, a list of authors, a set of keywords, the
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abstract, the journal name, publication year, volume, issue number, number of citations,
and a list of the cited references. These bibliographic records were further standardized
(e.g., correcting the different spellings of authors, journal, or keywords) through manually
checking for bibliometric analysis.

2.2. Bibliometric Analysis

The term of bibliometric was first introduced as “the application of mathematical and
statistical methods to books and other means of communication” by Pritchard (p. 349) [25].
Bibliometric analysis is a quantitative statistical analysis of the literature [26], which has
been widely used for identifying the relationships among authors, institutions, research
directions, and other variables [27–29]. A bibliometric analysis can be realized through
visualization tools to identify the emerging trends and knowledge structures in a specific
research field. The results are often presented intuitively in visual maps. The present study
focuses on author co-citation analysis, keyword co-occurrence network, and cluster identi-
fication. These techniques are advantageous over the conventional manual review method.

Co-citation analysis measures the semantic similarity among documents, authors, or
journals by computing their co-citation relationships. A co-citation relationship defines
the frequency at which two items are cited together [30]. Co-citation analysis assumes
that when two items are commonly cited together, their contents are relevant to each
other. Co-citation analysis can be performed on documents, authors, or journals, which
connects the cited documents, authors, or journals that researchers consider as valuable
and interesting. The present study conducts an author co-citation analysis, which identifies
the relationships among authors whose publications are cited in the same literature. More
specifically, an author co-citation analysis identifies and visualizes the knowledgeable
structure of a specialist research area by counting the co-citation frequency of two authors’
publications among the reference lists of cited literature [31].

Keywords represent the core content of a research article. A keyword co-occurrence
network constructs and maps the knowledge domain of a particular area over a specific time
span. This method acknowledges that when keywords frequently co-occur in publications,
their underlying ideas are closely associated [32]. A keyword co-occurrence network
constructs a similarity measure from the literature contents themselves, rather than linking
the literature indirectly through citations. In the present analysis, the bibliometric analysis
results of wearable devices in construction safety were demonstrated in a keyword network,
which identifies the keywords that co-occur in at least two different articles in a given
time span. High-frequency keywords are recognized as indicators of research hotspots or
directions over a specified period.

Cluster analysis is commonly applied in knowledge discovery, which identifies the
profound themes hidden in the textual data [33]. Cluster analysis categorizes a mass of data
into different units with common relevancy of terms, which identifies the research topics
and their interrelation within a research domain. In cluster analysis, the homogeneity or
consistency of clusters is evaluated from the mean silhouette of the network [34]. When the
silhouette value is 1, the clusters in the network are completely separated. Research trends
can also be effectively analyzed by cluster analysis [35].

At present, there are many widely used bibliometric tools, such as CiteSpace, VOSViewer,
and HistCite. In terms of cluster analysis, VOSViewer does not have as many algorithms as
CiteSpace to extract cluster labels. HistCite is relatively simple to operate, but its graphical
presentation is not as rich as CiteSpace’s. CiteSpace software has all the functions mentioned
above, as well as time slicing technology, which supports more intuitive performance of
time series in network analysis for systematic review [36]. CiteSpace is a Java application for
structural and temporal analyses of various networks derived from the academic literature
and has been optimized several times in recent years to improve its function and practica-
bility [27]. It supports networks with hybrid node types (e.g., institutions and countries),
and hybrid link types (e.g., co-citations and co-occurrence) [29,37]. CiteSpace can also detect
trends and citation bursts of academic papers by calculating publication indicators [34].
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Therefore, version 5.8R3 of the CiteSpace software was chosen as the bibliometric tool to
conduct a comprehensive analysis.

3. Results
3.1. Overview of Research

Tables 1 and 2 illustrate the trends of identified articles regarding the wearable devices
in construction safety by country, year, and journal/conference. The data in Table 1 are
derived from the article list filtering function in Scopus database. In term of the geographic
distribution, the contribution of the United States to the literature of wearable devices in
construction safety is the most (N = 88, P = 42.1%). In fact, it is much larger than the second
one, i.e., Hong Kong (N = 31, P = 14.8%) and the third one, i.e., Mainland of China (N = 23,
P = 11.0%) (see Table 1).

Table 1. Main research origin of papers published.

Country Institute/
University

Researchers
Involved Number of Papers Percentage

Contribution

United States 73 135 88 42.1%
Hong Kong 28 54 31 14.8%
China 36 72 23 11.0%
South Korea 25 48 22 10.5%
United Kingdom 16 28 10 4.8%
Australia 22 36 9 4.3%
Japan 22 40 8 3.8%
Italy 6 26 5 2.4%
Saudi Arabia 3 10 5 2.4%
Germany 7 15 4 1.9%
Canada 10 16 4 1.9%

Countries or regions with four or more papers are counted in the table.

Table 2. The publishing year of journals/conference proceedings contributing to the area of wearable
devices in construction safety.

Source
Publication Year

2005–2010 2011 2012 2014 2015 2016 2017 2018 2019 2020 2021 Total

Automation in Construction 3 10 7 6 3 7 36

Journal of Construction
Engineering and
Management

1 2 6 5 4 18

Sensors (Switzerland) 1 5 2 8

Advanced Engineering
Informatics 1 2 1 1 5

Congress on Computing in
Civil Engineering,
Proceedings

1 2 1 4

Engineering, Construction
and Architectural
Management

2 2 4

Safety Science 1 2 1 4

Construction Research
Congress 2020: Safety,
Workforce, and
Education—Selected Papers
from the Construction
Research Congress 2020

4 4

Others 6 2 4 3 3 6 6 11 10 20 15 86

Total 6 3 6 3 4 9 18 22 25 42 31 169

Journals and conference proceedings with less than four paper were classified into Others.
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As shown in Table 2, Automation in Construction and Journal of Construction Engineering
and Management have published the most articles at 36 (i.e., 21.3%) and 18 (i.e., 10.7%) out of
169 identified articles. The papers published in Automation in Construction are significantly
more than those published in other journals. The total number of publications on this
topic by year has increased. Until 2016, the number of articles was under 10 per year, but
from 2017 to 2021 the number of publications has increased to triple, e.g., 2021 (N = 31). It
indicates that the study on applying wearable devices in construction safety has attracted
increasing interest of researchers and practitioners.

Table 3 lists the top 10 cited papers of wearable devices in construction safety. Six
papers were published in Automation in Construction and two were published in Applied
Ergonomics. The remaining two papers were published in Journal of Construction Engineering
and Management and Journal of Computing in Civil Engineering. In terms of research content,
many of them focus on the construction workers’ posture and activity, including three
concerning about work-related musculoskeletal disorders (WMSDs) [23,38,39], and three
concentrating on ergonomic analysis, fall detection, and activity recognition [19,40,41].
In these studies, inertial measurement unit (IMU), accelerometer gyroscope, and linear
accelerometer, etc., were the most commonly used wearable sensors. The remaining of them
focus on workers’ fatigue or stress levels, collecting physiological data from construction
workers using heart rate, body surface temperature, and EEG data [18,42].

Table 3. Top 10 cited articles on wearable devices in construction safety.

Rank Authors Title Cited Frequency Journal Refs.

1 Awolusi et al. (2018)
Wearable technology for personalized
construction safety monitoring and
trending: Review of applicable devices

143 Automation in
Construction [24]

2 Yan et al. (2017)
Wearable IMU-based real-time motion
warning system for construction workers’
musculoskeletal disorders prevention

135 Automation in
Construction [38]

3 Aryal et al. (2017)
Monitoring fatigue in construction
workers using physiological
measurements

111 Automation in
Construction [42]

4 Valero et al. (2016)
Musculoskeletal disorders in construction:
A review and a novel system for activity
tracking with body area network

111 Applied Ergonomics [39]

5 Wang et al. (2015)
Risk assessment of work-related
musculoskeletal disorders in construction:
State-of-the-art review

109
Journal of Construction
Engineering and
Management

[23]

6 Jebelli et al. (2018) EEG-based workers’ stress recognition at
construction sites 101 Automation in

Construction [18]

7 Nath et al. (2017)
Ergonomic analysis of construction
worker’s body postures using wearable
mobile sensors

94 Applied Ergonomics [19]

8 Yang et al. (2016)
Semi-supervised near-miss fall detection
for ironworkers with a wearable inertial
measurement unit

92 Automation in
Construction [40]

9 Joshua et al. (2011) Accelerometer-based activity recognition
in construction 86 Journal of Computing

in Civil Engineering [41]

10 Choi et al. (2017)

What drives construction workers’
acceptance of wearable technologies in the
workplace?: Indoor localization and
wearable health devices for occupational
safety and health

85 Automation in
Construction [43]

3.2. Co-Authorship Analysis

Co-authorship analysis can identify main researchers and research communities in
this field. Figure 1 depicts the co-authorship network generated from the literature data,
and visualized by CiteSpace. The 212 nodes represent the authors in the cited literature, and
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the 340 links represent their co-authorship relationships. The color of the links represents
different ranges of years, e.g., gray, blue, green, yellow, orange, and red, and those colors
range from light to dark, corresponding to different years from 2005 to 2021, as shown in
Figure 1. A high ‘count’ parameter indicates a great influence of authors in the field. As
shown in Figure 1, the larger the ‘count’ parameter, the larger the author’s name label size,
e.g., Heng Li (Hong Kong, count = 19), Houtan Jebelli (USA, count = 15), SangHyun Lee (USA,
count = 13), Antwi-Afari Maxwell Fordjour (United Kingdom, count = 10), Changbum Ryan
Ahn (USA, count = 9), Jiayu Chen (Hong Kong, count = 8), Chukwuma Nnaji (USA, count = 8),
Kanghyeok Yang (South Korea, count = 7), Byungjoo Choi (South Korea, count = 7), Ibukun
Gabriel Awolusi (USA, count = 7).

Figure 1. Co-authorship network of wearable devices in construction safety.

When the links form a closed-loop circuit, the linked authors share a strong interaction
relationship. such as the circuit of SangHyun Lee, Houtan Jebelli, Yizhi Liu and Mahmoud
Habibnezhad. In addition, multiple research communities can be identified through these
closed loops and productive authors can be found within them. For example, Heng Li and
Antwi-Afari Maxwell Fordjour are the two crucial authors of a research community, including
Waleed Umer, Shahnawaz Anwer, Arnold Wong, etc., and Jiayu Chen is the crucial author of a
research community, consisting of Di Wang, Dong Zhao, Dai, Fei, etc.

In graph theory, a node with high betweenness centrality usually means that the node
is located in a more crucial position in the network. The top five authors with this property
were Heng Li (centrality = 0.05), JoonOh Seo (centrality = 0.03) Jiayu Chen (centrality = 0.02),
Cenfei Sun (centrality = 0.02), and SangHyun Lee (centrality = 0.01). An author with many
counts and a high betweenness centrality in Figure 1 will most likely lead the research
field of wearable devices in construction safety. Combined with the above metrics of main
researchers and the links of research communities in Figure 1, we can continue to explore
the research direction of specific communities and find the most influential articles based
on node information.
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3.3. Keyword Co-Occurrence Network

Figure 2 shows an overview of the keywords co-occurrence network with 379 nodes
generated from the dataset. Each node represents one keyword term specified in the articles.
Table 4 lists the top 28 terms (frequency > 10) with a total of 752 co-occurrence frequencies,
which account for 47.9% of all keyword frequencies.

Figure 2. Keyword co-occurrence network of wearable devices in construction safety.

Table 4. Occurrence frequencies of specified keywords in the literature of wearable devices in
construction safety.

Keywords Frequency Keywords Frequency

Occupational risk 77 Health risk 18
Wearable technology 73 Accident 17
Construction worker 66 Physiology 17
Construction industry 54 Electroencephalography 16
Wearable sensor 47 Machine learning 15
Construction safety 40 Safety engineering 13
Accident prevention 36 Inertial measurement unit 13
Risk assessment 30 Monitoring 12
Human resource
management 29 Heart 12

Construction site 27 Survey 12
Hazard 26 Wearable device 12
Health 19 Safety 11
Human 19 Physiological model 11
Ergonomics 19 Productivity 11

According to Figure 2 and Table 4, occupational risk is the most frequent keyword,
appearing 77 times, revealing that most studies are inspired by the occupational injuries
suffered by workers in the construction industry. The second most frequently mentioned
keyword is wearable technology (73 times), showing that wearable technology is the main
research focus in this field. Following these two keywords, construction workers, con-
struction industry, wearable sensor and construction safety are also mentioned frequently,
with 66, 54, 47 and 40 times, respectively. These terms constitute the background and
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objectives of the construction safety research domain. Most of the remaining keywords
appear less than 40 times. Some of these low-frequency keywords refer to specific wear-
able technologies, such as electroencephalography (16 times), inertial measurement unit
(13 times), and heart (generally refers to heart rate, 12 times). Some keywords explain
the method of analyzing data collected by wearable devices, e.g., ergonomics (19 times),
machine learning (15 times), and physiological model (11 times). In addition, some key-
words have high betweenness centrality, such as construction worker (centrality = 0.17),
risk assessment (centrality = 0.17), accident prevention (centrality = 0.15), construction
worker (centrality = 0.14), health (centrality = 0.13). These keywords constitute different
research topics and are interrelated. The co-occurrences of these keywords report the major
research interests of wearable devices in construction safety.

3.4. Cluster Identification

Knowledge domains can be identified and presented as clusters by the bibliometric
review method based on information with the relevant articles. CiteSpace extracts the
term from the titles, keywords, or abstracts of the literature as text resource, and then the
calculation can be carried out after setting parameters such as node type and selection
criteria. CiteSpace provides three assessment measures: Latent Semantic Indexing (LSI),
Likelihood Ratio Test (LLR), and Mutual Information (MI) index. One of the methods is
selected to extract clustering labels from the titles or abstracts of cited references [44].
In this paper, LLR, recommended by the software author, was chosen as the algorithm,
which calculates the p-value based on the likelihood ratio or compares it with a critical
value to decide whether to reject the null model, thus obtaining the clustering label of
the optimal confidence. Figure 3 illustrates a cluster view of the knowledge domains of
wearable devices in construction safety, by the loglikelihood ratio (LLR) algorithm. The
modularity score of the network is 0.6857. As this score lies between 0.4 and 0.8, the
clustering is deemed to be acceptable. The weighted mean silhouette metric measures
the average homogeneity of a cluster [45]. When the clustering size is similar, a higher
weighted mean silhouette indicates better consistency of the cluster [46]. Therefore, the
weighted mean silhouette score of 0.8447 indicates that the consistency of cluster members
is enough. The cluster ID ranges from 0 (largest) to 9 (smallest). The size and quality of
each cluster are decided by the number of papers assigned to the cluster and the silhouette
value of the cluster, respectively. In Table 5, the mean silhouette of each cluster exceeds
0.6, confirming an acceptable level of clustering validity. The hybrid node network is
composed of 379 nodes and 1430 links. The 10 major knowledge clusters are attentional
failure (#0), brain-computer interface (#1), activity tracking (#2), industrial work safety (#3),
corporate clothing (#4), construction site (#5), accelerometer-based activity recognition (#6),
intelligent monitoring (#7), building site (#8), and wearable wireless identification (#9). The
next section will discuss these clusters in detail.

Table 5. Top-ranked clusters and their main terms.

Cluster ID Size Silhouette Mean Year Cluster Label (LLR) Alternative Label Representative
Articles

0 47 0.731 2017 Attentional failure Fall-hazard condition;
hazard identification [47–51]

1 38 0.672 2017 Brain-computer
interface

Quantitative framework;
construction
safety management

[18,52–56]

2 34 0.857 2017 Activity tracking Body area network;
novel system [19,21,39,57,58]

3 33 0.770 2019 Industrial work safety

Health risk mitigation;
ann-based automated
scaffold builder
activity recognition

[57,59–62]
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Table 5. Cont.

Cluster ID Size Silhouette Mean Year Cluster Label (LLR) Alternative Label Representative
Articles

4 33 0.963 2011 Corporate clothing
Engineering industry;
cyber-physical
gaming system;

[58,63–66]

5 32 0.891 2014 Construction site Wearable biosensor;
physical demand [17,18,67–69]

6 31 0.779 2015 Accelerometer-based
activity recognition

Using body-mounted
sensor; automated
ergonomic
risk monitoring

[11,16,41,70,71]

7 30 0.929 2012 Intelligent monitoring Carbon monoxide
poisoning; gait pattern [48,58,72–74]

8 24 0.855 2012 Building site Risk mitigation system;
scaffolds monitoring [57,71,75–77]

9 21 0.979 2014 Wearable wireless
identification

Sensing platform;
self-monitoring alert [22,61,78–80]

Figure 3. Cluster view of knowledge domains for wearable devices in construction safety.

Figure 4 shows the timeline view of the network. Each horizontal line represents
one cluster and the size of each ring represents the centrality of the nodes. The curved
lines represent the relationships between the clusters and the authors. Unlike the cluster
view in Figure 3, the timeline view in Figure 4 shows the temporal evolution patterns of
the 10 clusters. Specifically, Figure 4 reveals that keywords in cluster #1 (brain-computer
interface) and cluster #7 (intelligent monitoring) have the longest time range covered, with
relevant keywords appearing from 2005 to 2021. In addition, cluster #0 (attentional failure),
cluster #3 (industrial work safety), cluster #5 (construction site), cluster #6 (accelerometer-
based activity recognition), and cluster #9 (wearable wireless identification) all emerged
after 2010. Cluster #4 (corporate clothing) and cluster #5 (construction site) contain some
central keywords, making the tree-ring circles in the figure larger. Moreover, it can be
found that red links are mostly distributed in the first five clusters (#0–#3), indicating that
the research hotspots in the recent five years are concentrated in these clusters.
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Figure 4. Timeline view of the co-occurrence network cluster of keywords.

4. Discussion

Wearable devices in construction safety have focused on technologies and applications.
Four clusters—brain–computer interface (#1), accelerometer-based activity recognition
(#6), and wearable wireless identification (#9)—are placed into the technology category,
which encompasses the basic functions of wearable devices and sensors. Most of the
tags in this category possess obvious technical attributes. Accelerometer-based activity
recognition, for example, are commonly employed as collectors of worker activity data
(e.g., identifying body posture and acceleration, and walking steps) in construction safety.
The remaining clusters—attentional failure (#0), activity tracking (#2), corporate clothing
(#4), and intelligent monitoring (#7)—are categorized as applications. Most of the works
in these clusters employ existing wearable technologies in novel assessment systems of
construction risk (e.g., worker pressure, worker falls and collision damage, and other
relevant occupational disease risk). In addition, cluster #3 (industrial work safety), cluster
#5 (construction site), and cluster #8 (building site) also illustrate the application scenarios
of wearable technology. The clustering results effectively identify the emerging research
hotspots in this domain.

4.1. Cluster #0 (Attentional Failure)

The most significant cluster is cluster #0 (attentional failure). The construction industry
is labor-intensive and necessarily involves repetitive manual labor [81]. Highly physically
demanding activities increase the risk of physical fatigue [43], which increases the like-
lihood of attentional failure and tends to have adverse consequences for construction
workers [82].The most common construction accidents are usually related to equipment
operation, and attention failure is the leading cause of equipment operator error [83,84].
Using eye-tracking technology, workers’ attention allocation, mental fatigue, and hazard
detection abilities can be well evaluated [84,85]. Eye-tracking devices can also be used
to measure some metrics of visual search patterns (e.g., fixation count, fixation rate, fix-
ation spatial density, and fixation time [86]) to determine workers’ perception of hazard
in empirical investigation [87]. Meanwhile, based on computer vision technology, the
data of eye-tracking devices can be uploaded to 3D point cloud to build a training envi-
ronment, which can further analyze the attention distribution of workers [20]. Besides,
Jebelli et al. (2019) reported that the physical state of workers is measurable [17]. As
fatigue is mainly related to work intensity, it can also be measured in terms of physical
demands [88]. In recent years, obtaining the physical demand levels of workers through
physiological signals has followed a common research path. Jebelli et al. (2019) revealed
that the physical demand levels and stress states of workers are important considerations
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in a construction environment, and that physical demand on the construction site can
be detected by wearable devices [17]. Aryal et al. (2017) monitored physical fatigue by
wearable devices, and subjectively collected the fatigue level by the Borg’s Rate of Perceived
Exertion scale [42]. Li and Gerber (2012) non-intrusively evaluated the physiological load
of construction workers using wearable sensors, and found that heartrate was sensitive to
rest breaks during the construction test [89]. Gatti et al. (2012) related the physical strain
measured by wearable devices to the productivity of construction, and identified heartrate
as a significant predictor with a strong parabolic relationship to productivity [90].

4.2. Cluster #1 (Brain-Computer Interface)

The second most significant cluster is cluster #1 (brain-computer interface). This
cluster label refers to the exchange of information between the brain and the device,
and the main way to achieve this in construction safety research community is through
wearable electroencephalography (EEG) devices. In the application stage, it has proved
feasible to identify workers’ stress status by brain waves. For example, wearable EEG
devices can assess the mental workload, attention, and vigilance of workers [78]. EEG
captures the electrical activity of firing neurons in the brain [91], and hence the mental
statuses (e.g., emotional states) of construction workers [18]. This widely used technique
assesses individuals’ stress by analyzing their brain waves [18]. The attention levels of
construction workers can also be effectively monitored by wearable EEG systems [92].
EEG rapidly indicates any changes in workers’ mental statuses. However, acquiring high-
quality EEG signals is more challenging than collecting other physiological indicators,
because the signals are interfered by automatic actions such as eye blinking. Previous
studies have also shown that displaying images of construction hazard in a laboratory
environment can lead to information distortion, and these images do not have as much
impact on the pupil or brain as they do in real life [93]. Therefore, hazard recognition
process can be simulated as far as possible by simulating construction hazards site with
virtual reality (VR) technology and collecting data through wearable electroencephalogram
in VR environment [94]. Jebelli et al. (2019) found that stress is less accurately recognized by
EEG than by physiological signals collected by a wristband-type sensor [67]. Additionally,
wristband devices can measure their physical demands. Wearable devices equipped with
photo plethysmography sensors can monitor a worker’s heart rate [95]. Besides, human-
robot collaboration can be achieved through brain-computer interface (BCI) [96]. Liu et al.
proposed a BCI based system that can control collaborative construction robots with 90%
accuracy using EEG signals [56]. This technology has the potential to improve productivity
and help workers to avoid hazardous working conditions.

4.3. Cluster #2 (Activity Tracking) and Cluster #6 (Accelerometer-Based Activity Recognition)

Cluster #2 (activity tracking) and cluster #6 (accelerometer-based activity recognition)
represent a similar research topic. For construction workers, lifting, squatting, walking,
and even turning screws and swinging tools can be repeated many times. Therefore,
the recognition of workers’ movements or behavior patterns is the first step to find the
abnormal situation of construction workers. Koskimaki et al. (2009) identified these
movements with accelerometer and gyroscope (angular speed) with 88.2% accuracy. The
study of Work-related Musculoskeletal Disorders (WMSDs) has been developed by many
researchers in recent years on the basis of the identification of worker postures and ac-
tivities [19,23,38,39]. According to relevant study, falling from heights is among the most
common accidents in the construction industry [97], which is strongly associated with loss
of balance [21]. Some previous empirical research on falling-risk assessment have shown
that wearable inertial measurement units (WIMUs) effectively gather the data of workers’
body responses (such as balance and gait) [12,21,98]. For example, Umer et al. (2018)
detected task-induced changes in the static balances of construction workers equipped with
WIMUs [99]. In addition, some systems (such as multi-parameter monitoring wearable
sensor (MPMWS)) composed of multiple sensors are widely used in analysis of worker’s
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trunk posture [100]. However, these devices need to be placed in multiple places on the
worker’s body, which can cause mobility inconvenience. It is worth noting that some
researchers have devoted to developing less invasive wearable measurement devices in
recent years. For example, utilizing a wearable insole system with higher accuracy than
previous wearable inertial devices to identify falling risk [48,101]. The wearable insole
pressure system provides more substantial safety gait metrics than the WIMU system, and
extends the current wearable technologies for construction safety [21,48]. In laboratory con-
ditions, built-in sensors of smartphones have been proven to recognize worker’s postures
effectively [16,19,102]. According to previous studies, accelerometers are usually placed
at the waist or back [38,103,104]. By contrast, wristband-type activity tracker has higher
flexibility and lower hardware costs [11]. Therefore, future research is promising to focus
on the portability and accuracy of wearable devices.

4.4. Cluster #5 (Construction Site)

It is worth noting that cluster #5 (construction site) has two alternative labels (“wear-
able biosensor” and “physical demand”). It appears that most of these studies are based
on wearable sensors that measure the workers’ physiological states. The measurement
and collection of safety data is essential for safety monitoring in the construction industry.
As shown in Figure 4, there are three large tree-ring circles in the timeline of cluster #5
(construction site), indicating that keywords in this cluster were widely cited by articles of
the construction safety research community. The wearable technologies applied in other
sectors can monitor and measure a wide variety of safety performance metrics within this
industry [24]. In addition to the EEG devices mentioned in cluster #1, Guo et al. (2017)
found that workers’ physical data (heart rate, skin temperature, calorie consumption, etc.)
could indirectly measure their psychological status [76]. Pillsbury et al. also effectively
assessed the physical and health status of workers by measuring heart rate, respiration
rate, and core temperature through physiological status monitors [61]. In addition, upper
body posture angle, traveling speed, and acceleration have also been shown to be added
to the system of physiological metrics [105]. These case studies have shown the practical
effectiveness of safety monitoring based on various physiological indicators collected by
wearable biosensor.

4.5. Relationships between Clusters

The remaining clusters represent specific techniques and knowledge domain in con-
struction safety research. For example, cluster #4 (corporate clothing) illustrates the appli-
cation potential of textile technology in wearable devices, cluster #7 (intelligent monitoring)
summarizes the prospect of intelligence and automatic monitoring for the construction
safety, and cluster #3 (industrial work safety), cluster #5 (construction site), and cluster #8
(building site) echo the application scenarios of wearable technology in this review. From
the above discussion, it can be found that these cluster labels well represent the respective
knowledge domain. In addition, different research directions may use the same wearable
devices, which means that the database of construction safety field has the potential to be
established. At the same time, further development of wearable technology in the future
will constantly open up new application scenarios for this field.

5. Conclusions

This paper provides an objective and accurate bibliometric analysis of wearable appli-
cations in the field of construction safety. The analysis was based on selected papers pub-
lished between 2005 and 2021. Many key areas were identified by keyword co-occurrence
analysis, such as ergonomics, electroencephalography, and inertial measurement unit. Ten
knowledge clusters were identified: attentional failure, brain-computer interface, activity
tracking, industrial work safety, corporate clothing, construction site, accelerometer-based
activity recognition, intelligent monitoring, building site, and wearable wireless identification.
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Through this systematic and quantitative bibliometric analysis, we could clearly
visualize and explain the knowledge clusters and the frontier of wearable devices in
construction safety. The present work highlights the developments and trends in this
research domain and provides a clear perspective based on comprehensive data and
statistical analysis. The developments have been clearly summarized by information
maps and statistical descriptions. In future work, the performance of wearable devices
should be further improved to reduce monitoring bias and to create low-cost systems
with potential for commercial promotion. Future construction safety might also employ
integrated wearable sensors for multi-parameter monitoring. In fact, to design an integrated
multi-functional wearable system is another developmental trend. It is worth noting
that some wearable technologies have been available for other industries for years, but
have only recently been applied to construction safety. Further research could focus on
whether mature equipment from other industries can be adapted to scenarios in the field of
construction safety.

Although the relevant literature has been carefully collected and analyzed, this re-
search has several limitations. Although this paper screened literatures from the Scopus
database and the Web of Science database, a manual review would inevitably be subjective.
At the same time, due to the limitation of the software algorithm, the discussion part is
based on the 10 clusters identified, which may result in the omission of some relevant
knowledge fields. Significant contributions could be ignored as a result of this deficient
coverage. In addition, some literature might be ignored when using keywords to search
for literature. Therefore, the research results could not completely cover the entire liter-
ature related to wearable devices in construction safety. Future studies should address
the limitations by utilizing various databases and broadening data sources to collect and
review literature.
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