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Abstract: Bouncing is one of the most common human crowd activities on civil infrastructures such
as sports stadiums and concert halls, where the audience tends to make their bodies jump up and
down to celebrate or participate in sport and musical events. Dynamic loads are thus generated and
exerted on the structures, giving unpleasant structural vibration, which may affect the functionality
of the structure or even lead to a panic of the crowd. Although researchers have studied human-
induced vibration from many perspectives including load models, calculation methods, criteria for
serviceability evaluation, etc., there has been minimal work regarding crowd-induced reliability
analysis, mainly because the stochastic feature of the crowd load as well as the mechanism describing
the crowd–structure interaction is still not clear. In this paper, a framework to calculate crowd-induced
structural vibration that considers the crowd–structure interaction effect is proposed and is validated
through an experimental test. The dynamic parameters of the bouncing person in the crowd are
adopted from a previous statistical study. The feasibility of a probability density evolution method
(PDEM) is proved to be effective to calculate structural stochastic vibration under the bouncing crowd.
The dynamic reliability of the structure is thus analyzed based on the stochastic responses. Results
show that the consideration of the crowd–structure interaction effect significantly affects the dynamic
reliability, which is also dependent on various factors including bouncing frequency, failure criteria,
limit threshold, human model parameter distribution, etc. This paper provides a foundation for the
performance-based vibration serviceability design of large-span structures.

Keywords: bouncing excitation; crowd–structure interaction; stochastic vibration; dynamic reliability;
probability density evolution method

1. Introduction

In recent decades, large-span structures become more and more popular in structural
design due to the requirement from building functionalities as well as from an aesthetic
point of view, especially for public facilities including sports stadiums, transport stations,
etc. While the developed construction technologies and new materials are capable to ensure
safety and durability, large-span structures such as sports stadiums usually suffer from
unpleasant vibrations when human crowd activities such as crowd bouncing take place,
leading to serviceability problems of the structure [1]. The well-known incident of the
Millennium Bridge triggered research on the human-induced structural serviceability prob-
lem [2]. Researchers have studied this problem from various perspectives, including the
human-induced load models [3,4], structural calculation methods [5,6], comfort criteria [7],
and vibration control technologies [8]. The human-induced vibration serviceability prob-
lem has nowadays become an important and sometimes dominant issue that must be
considered in the design stage of the large-span structures.

Although the research regarding the structural vibration serviceability problem has
gained tremendous popularity among many researchers in the past several decades, the
dynamic reliability problem of such vibration has rarely been investigated. In most design
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codes around the world, the serviceability of large-span structures is satisfied according to
the allowable response method [9–14], indicating that when the human-induced structural
response exceeds a predetermined value, the structure is determined as a failure from a
serviceability point of view. However, it is already widely acknowledged that human-
induced excitation is highly stochastic, featured by the so-called inter- and intra-subject
variability [15]. To fully reflect the stochastic effect, the concept of dynamic reliability needs
to be adopted. The failure of the structure should not be based on whether the structural
response exceeds the limit value or not. Instead, the dynamic reliability of the structure
under the crowd excitation needs to be higher than a predetermined target value.

It is known that the crowd–structure interaction (CSI) has a significant effect on
structural vibration, especially when the mass of the crowd is not negligible compared
with the mass of the structure, which, unfortunately, is always the case for the light-weight
large-span structures [16–19]. To develop the dynamic reliability analysis method for the
human-induced structural vibration, an analytical method that quantitatively considers
the interaction effect is necessary. Some researchers use a single degree of freedom (DOF)
system to represent the crowd and the structure and thus establish a 2 DOF equation of
motion of the crowd–structure interaction system [20], which is unable to consider higher
vibration modes that may interact with higher harmonics of the crowd load. Nimmen et al.
proposed a detailed crowd model as well as a simplified method that makes it possible
to evaluate the interaction effect for walking excitation [21,22]. However, there is still no
widely accepted solution to this problem.

One more factor that may affect the CSI result is that the dynamic parameters of the
human bodies in the crowd are not easily determined. Researchers have found that the
human body could be represented by a spring-mass damper (SMD) model with its own
mass, stiffness, and damping [5,23]. The values of these dynamic parameters are usually
investigated through modal analysis on the empty and the crowd-occupied structure [16,24].
However, when the structure is occupied by an active crowd, the operational modal analysis
becomes doubtful because the structure is under forced vibration. Moreover, the dynamic
parameters of the human body are highly stochastic, and a large number of tests are
necessary to obtain their probability distribution as well as their dependency on the motion
frequency. In 2017 and 2019, the particle filter technique is adopted to estimate the dynamic
properties of walking [25] and bouncing people [26], giving a reasonable description of
the SMD model parameters, which can be used for further analysis of the CSI effect on the
structural response calculation.

Due to the huge computational cost for reliability analysis, an efficient technique to
calculate stochastic vibration is usually necessary, especially when a refined structural finite-
element model is adopted. For such cases, the widely adopted Monte Carlo simulation
(MCS), although versatile for stochastic vibration calculation, has its drawback of high
computational cost in practical applications [27]. On the other hand, the probability density
evolution method (PDEM) is popular for its capability of reducing the computational cost
by the selection of limited representative points in the calculation process [28] and has the
potential to be used in the dynamic reliability analysis of crowd-induced vibration.

From the above statement, three difficulties that hinder the development of the dy-
namic reliability for crowd-induced serviceability problems can be roughly seen, including
(a) practical mechanism reflecting CSI effect, (b) stochastic feature of human body parame-
ters, and (c) efficient stochastic vibration calculation technique. Therefore, the aim of this
research is to develop an efficient framework for dynamic reliability analysis of structures
suffering crowd bouncing load from the perspective of vibration serviceability and provide
analytical results for the reference of engineering practice. In this paper, the governing
dynamic equations with and without CSI are first derived and proposed. Each individual
is regarded as a SMD model, and thus the effect of physical properties of each bouncing
person is included in the analysis. An experiment quantitatively showing the CSI effect by
including physical properties of the human body is carried out for validation and the effect
of CSI is further investigated by numerical simulation. PDEM is then used in this study
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to calculate the stochastic response under crowd excitation efficiently, and the dynamic
reliability is thus analyzed. The randomness originating from each bouncing person is
included using the probability distribution extracted from a previous study [26]. Finally, the
dependency of the dynamic reliability on various factors including the CSI effect, reliability
criteria, bouncing frequency, limit threshold, and parameter distribution is investigated for
engineering practice.

2. Analytical Model of Crowd–Structure Interaction
2.1. Human–Structure Coupled System

In this section, an analytical model of the crowd–structure interaction is given. The
description of this analytical model starts from the SMD model representing single person
bouncing on an arbitrary structure, which is illustrated by Figure 1. The equation of motion
for single-person bouncing is expressed as Equation (1):

m0
..
u0 + c0

( .
u0 −

.
v0
)
+ k0(u0 − v0) = p0(t) (1)

where m0, c0, and k0 are the mass, damping, and stiffness of the human body, u0 is the
displacement of the human system, v0 is the structural displacement response of the
structure at the human excitation point, and p0(t) is the time history of the biomechanical,
which could be defined by Fourier series as:

p0(t) = a0 + ∑
i
(ai cos(2π fbt) + bi sin(2π fbt)) (2)

in which a0, an, bn are Fourier coefficients, fb is the motion frequency, and n is the order of
the biomechanical force. The nth biomechanical load factor (BLF) is defined by:

BLF0n =

√
a2

n + b2
n

m0g
(3)
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Figure 1. Diagram of analytical model for single-person bouncing.

From the force equilibrium at the surface of the structure, the contact force F0(t)
between the human body and the structure is equal to the human’s inertia force, as shown
by Equation (4):

F0(t) = −m0
..
u0 (4)

The equation of motion of the structure is written for each mode according to the
modal decomposition principle. For the jth mode of the structure, its equation of motion is:

Ms, j
..
qj + Cs, j

.
qj + Ks, jqj = F0(t)φj0 (5)

where Ms,j, Cs,j, and Ks,j are the mass, damping, and stiffness of the jth decomposed mode,
qj is the jth modal coordinate, and φj0 is the jth mode shape value at the point of the
bouncing excitation.
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Through modal superposition, the physical displacement response at the excitation
point is calculated as:

v0 = ∑
j

qjφj0 (6)

It is clearly observed that Equations (1), (4) and (5) are coupled together, showing that
the human mechanical system parameters have an influence on the structural response,
which in return affects the human body response as well as the contact force.

2.2. Crowd–Structure Coupled System

The above derivation is extended to the case where multiple bouncing people excite the
structure, which happens more frequently in engineering practice (e.g., audience celebrating
in a grandstand of a sports stadium) and is more likely to give vibration serviceability
problems compared to the single-person case. The crowd bouncing case is illustrated
in Figure 2.
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For the crowd bouncing case, each person in the crowd is represented by a SMD model
with a pair of biomechanical forces. For the ith person in the bouncing crowd, the equation
of motion is indicated by:

mi
..
ui + ci

( .
ui −

.
vi
)
+ ki(ui − vi) = pi(t) (7)

in which the symbols share the same definition as in Equation (1).
Considering the multiple excitation points from the crowd, the equation of motion of

the jth mode of the structure becomes:

Ms, j
..
qj + Cs, j

.
qj + Ks, jqj = −∑

i
mi

..
uiφji (8)

where φji indicates the jth mode shape value at the location of the ith bouncing person.
From the modal superposition principle, the structural displacement at the location of

the ith bouncing person is expressed:

vi = ∑
j

qjφji (9)

The combination of Equations (7)–(9) governs the crowd–structure coupling system.
It is shown that the structural response is affected by all bouncing people in the crowd.
In return, the human model parameters of each bouncing person in the crowd have an
influence on the structural response.

2.3. Governing Dynamic Equations with and without Interaction Effect

The governing equations expressed by Equations (7)–(9) need to be solved to obtain
the structural responses. For the case of N people bouncing on a structure decomposed by
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Y vibration modes, the total number of degree-of-freedom is N + Y. The equations rewritten
in the matrix form is expressed by:[

m O
Zm Ms

][ ..
U
..
q

]
+

[
c Zc
O Cs

][ .
U
.
q

]
+

[
k Zk
O Ks

][
U
q

]
=

[
P
O

]
(10)

in which

m =

 m1 0 0

0
. . . 0

0 0 mN


N×N

, c =

 c1 0 0

0
. . . 0

0 0 cN


N×N

, k =

 k1 0 0

0
. . . 0

0 0 kN


N×N

(11)

Ms =

 Ms,1 0 0

0
. . . 0

0 0 Ms,Y


Y×Y

, Cs =

 Cs,1 0 0

0
. . . 0

0 0 Cs,Y


Y×Y

, Ks =

 Ks,1 0 0

0
. . . 0

0 0 Ks,Y


Y×Y

(12)

Zm =

 m1φ11 · · · mNφ1N
...

. . .
...

m1φY1 · · · mNφYN

, Zc = −

 c1φ11 · · · c1φY1
...

. . .
...

cNφ1N · · · cNφYN

, Zk = −

 k1φ11 · · · ckφY1
...

. . .
...

kφ1N · · · kNφYN

 (13)

U =
[

u1 · · · uN
]T, P =

[
p1(t) · · · pN(t)

]T, q =
[

q1(t) · · · qY(t)
]T (14)

and O indicate a zero matrix. In this work, a three-order Fourier series model is adopted to
simulate pi(t).

From Equations (10)–(14), it is observed that the crowd and the structure are coupled
together through the matrices Zc and Zk. For the purpose of comparing the structural
response with and without the CSI effect, the equation of motion without the coupling
term is obtained by replacing them with zero matrices, as shown by Equation (15):[

m O
Zm Ms

][ ..
U
..
q

]
+

[
c O
O Cs

][ .
U
.
q

]
+

[
k O
O Ks

][
U
q

]
=

[
P
O

]
(15)

Equations (10) and (15) can be easily solved by the typical numerical algorithm such as
the Runge–Kutta algorithm or the Newmark algorithm once the parameters are determined.
It is noteworthy that the above analysis applies to all types of structures since only the
modal parameters are needed.

3. Numerical and Experimental Test for Structural Response Calculation

In this section, a numerical example is given to calculate the structural acceleration
response following the procedure proposed above. The crowd parameter settings and the
structural analytical model are briefly introduced and the structural responses with and
without the consideration of the CSI effect are compared.

3.1. Analytical Model of a Large-Span Structure

A large-span structure with a size of 10 m × 6 m is adopted as the structural model
for the numerical example in this section. The floor is with line supports two long and
two short sides. The dynamic properties are acquired through modal tests conducted in
advance and are listed in Table 1. The mode shapes of the structure are depicted in Figure 3.
Considering crowd bouncing usually results in linear vibration, the modal decomposition
method is adopted using the modal parameters in Table 1 for efficiency instead of a finite
element model.
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Table 1. Dynamic properties of the structural model.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Modal mass (kg) 8583 2587 9625 2423 2898 4900
Frequency (Hz) 3.500 6.150 6.750 14.120 15.190 18.100

Damping ratio (%) 0.374 0.514 0.614 0.913 0.666 1.497
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3.2. Numerical Example Showing CSI Effect

As stated in the introduction section, the randomness of the structural responses
originates from the stochastic physical parameters of the crowd. In a previous study, the
physical parameters of a bouncing person as well as their probability distribution have been
investigated. It is reported that the physical parameters of a bouncing person, including
natural frequency, damping ratio, and BLFs, follow a skew-normal distribution [26] defined
by its location parameter µ, scale parameter σ, and shape parameter α, as shown by
Equation (16):

h(x) =
2

σ
√

2π
e−

(x−µ)2

2σ2

∫ α(
x−µ

σ )

−∞

1√
2π

e−
t2
2 dt (16)

where h(x) describes the probability density function (PDF) of parameter x that represents
either of the physical parameters of a bouncing person.

Moreover, the mass of crowd follows a normal distribution defined by parameter µ
and σ according to Ref [29]. The coefficients of the above distribution when the bouncing
frequency fb equals 1.75 Hz are listed in Table 2.
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Table 2. Distribution coefficients of parameters for the analytical model, adapted from Refs. [26,29].

Natural
Frequency (Hz)

Damping
Ratio (%) BLF1 BLF2 BLF3 Mass (kg)

µ 1.73 0.13 0.20 0.15 0.01 62.80
σ 0.37 0.16 0.10 0.13 0.06 10.90
α −3.52 4.00 2.61 0.75 8.01 ——

In this paper, random variables representing the physical parameters of each bouncing
person in the crowd are generated following the predetermined probability distribution.
In this manner, the crowd is coupled with the structure in the way described in Section 2.
Structural responses under the bouncing crowd with six different crowd sizes were cal-
culated. Considering the size of the structure, the number of people in each crowd is
decided to be 1, 3, 9, 15, 21, and 27, and their geometrical distribution of this crowd (i.e.,
the excitation points of the crowd) is illustrated in Figure 4. Because the structure has a
fundamental frequency of around 3.500 Hz (See Table 1), a bouncing frequency of 1.750 Hz,
which can be easily achieved for the audience activities in a sports stadium or in a concert
hall, is analyzed in this numerical example.
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As a typical illustration of the CSI effect, the structural mid-span acceleration with nine
bouncing people is calculated according to Equations (10) and (15), for structural response
with and without considering CSI, respectively. The calculated responses are given in
Figure 5. Note that the human model parameters of the bouncing crowd are generated
following the distribution given in Table 2. It is shown that the response with CSI is smaller
than that without CSI, which is explained by the fact that the people in the bouncing crowd
act as additional dampers that absorb energy from the structural vibration. A CSI index ε

is defined following Equation (17) to show the error if the CSI effect is considered.

ε =
RMSwithoutCSI − RMSwithCSI

RMSwithCSI
(17)

In this calculation, the root mean square (RMS) value of the time history without CSI is
calculated to be 4.78 m/s2, while the response considering CSI is 2.95 m/s2. Following the
above definition, the CSI index is calculated to be 62.03%, clearly showing that large errors
may occur if the CSI effect is not properly considered in the structural response prediction
at the design stage.
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Figure 5. Comparison of structural mid-span acceleration with and without CSI effect.

The CSI index for different numbers of bouncing people is calculated for each crowd
size. Because the physical parameters of the people in the bouncing crowd are random
variables (See Table 2 for their distribution), the structural responses with and without
the CSI effect are also random. The above process is repeated three times to show the
increasing trend of the CSI index against the increase in number of people, as shown by
Figure 6. With more bouncing people, the CSI effect tends to become larger, mainly because
the mass ratio between the crowd and the structure becomes higher. The results show that
the error from the negligence of CSI can reach up to 150% for such a large-span structure.
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3.3. Formatting of Mathematical Components

To validate the procedure of the structural response calculation under crowd bounc-
ing excitation, an experimental test was conducted on a prestressed concrete plate with
a weight of 16.5 t. The dynamic properties of this plate have been given in Section 3.1.
Accelerometers were attached at the bottom of the plate to capture the structural accelera-
tion. A test participant with a weight of 59.7 kg was asked to bounce at the mid-point of
the plate with a bouncing frequency of 1.75 Hz under the guidance of a metronome. The
physical parameters of this participant had been identified in advance using an inverse
analysis technique described in Ref. [26] and are listed here in Table 3. The overview of the
experimental setup is shown in Figure 7.

Table 3. Physical parameters of the bouncing person.

Parameter Natural Frequency
(Hz)

Damping Ratio
(%) BLF1 BLF2 BLF3

Value 1.49 41 0.345 0.267 0.046

The test participant was asked to bounce on the structure three times, each of which
lasted around 30 s. The structural mid-span acceleration of Test I was plotted in Figure 8
together with the prediction given by Equations (10) and (15). It was expected that the
measured structural acceleration was lower than the prediction because in the real case
the test participant could not keep his bouncing frequency as a constant, while in the
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calculation procedure the bouncing frequency was fixed at 1.75 Hz to assure resonance.
However, it is clear that the prediction with the consideration of CSI effect, i.e., responses
given by Equation (10), is much closer and sometimes equals to the measured acceleration
than the one without CSI effect.
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Figure 8. Comparison of predicted and measured mid-span acceleration.

The maximum value of the mid-span acceleration of each bouncing test was listed in
Table 4 and compared with the prediction with and without the CSI effect. It is shown that
although both predicted values are higher than the measured ones, the prediction with the
CSI effect is much closer to the measured values, indicating that the proposed method for
structural response calculation is reasonable.

Table 4. Comparison of predicted and measured mid-span RMS acceleration.

Case No CSI With CSI Test 1 Test 2 Test 3

Value (m/s2) 1.48 1.14 0.93 0.80 0.87

4. PDEM-Based Stochastic Vibration Analysis and Its Verification
4.1. Formatting of Mathematical Components

Because of the variability of the human-induced load, the structural responses under
crowd excitation should be considered from the perspective of random vibration. In view
of this, the governing equation expressed by Equation (10) is rewritten in the form of
Equation (18):

M(Θ)
..
X(Θ, t) + C(Θ)

.
X(Θ, t) + K(Θ)X(Θ, t) = F(Θ, t) (18)

where
X =

[
U q

]T, F =
[

P O
]T (19)

and K, C, and M represent the matrices in Equation (10) before X and its derivatives.
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The vector Θ in Equation (18) characterizes all random variables involved in the
crowd–structure coupling system. For example, if the dynamic parameters of the structural
model are considered deterministic, this vector will only contain human model parameters
and has the form of Equation (20):

Θ =
[

m1 · · · mN c1 · · · cN k1 · · · kN BLF11 · · · BLF1 N BLF21 · · · BLF2 N BLF31 · · · BLF3 N
]T (20)

where BLFij denotes the ith order coefficient of the bouncing load for the jth person, and
the others share the same definition with Equation (11). Therefore, the solution of Equation
(18) is the function of Θ and t, and is expressed as:

X = H(Θ, t) (21)

It is noteworthy that any physical quantities, i.e., acceleration, bending moment, etc.,
of the structural system could be expressed as a function of the solution X and/or its
derivatives, as shown by Equation (22):

Z = FZ(X) = HZ(Θ, t) (22)

where Z is the physical quantity of interest of the system and Hz is a deterministic vector
operator that describes the physical mechanism of the system expressed by Equation (18).

According to the density evolution theory [28], the evolutionary joint PDF of (ZT, ΘT)
T, denoted as pZΘ(z, θ, t), is governed by Equation (23).

∂pZΘ(z,θ, t)
∂t

+ ∑
j

.
Zj(θ, t)

∂pZΘ(z,θ, t)
∂zj

= 0 (23)

If only one physical quantity Z is of interest, Equation (23) will reduce to a one-
dimensional form with the initial condition as shown by Equations (24) and (25), which is
used more often in most situations.

∂pZΘ(z,θ, t)
∂t

+
.
Z(θ, t)

∂pZΘ(z,θ, t)
∂z

= 0 (24)

pZΘ(z,θ, t0) = δ(z− z0)pΘ(θ) (25)

Equation (24) governs the PDF evolution of the PDF of the structural response which
evolves with time and is thus denoted as the generalized density evolution equation
(GDEE). The purpose to solve the stochastic vibration problem is to obtain the PDF of the
response from that of the system parameters. For the crowd-induced structural vibration,
the acceleration response is usually much related to the serviceability of the structure in the
view of human comfort. Therefore, the physical quantity Z in this study is represented by
the structural acceleration

..
vi(t).

4.2. Procedure to Numerically Solve GDEE

For most engineering problems, the governing equation shown by Equation (24) needs
to be solved numerically. In this process, the coefficient of the partial differential equation,
.
Z(θ, t), which can be calculated from Equation (22), should be obtained in the first place.
This equation is solved by a point evolution method whose details are found in [27]. The
steps using this method are briefly reviewed.

A number of npt representative points in the distribution domain ΩΘ for vector Θ are
firstly selected and are denoted as:

θq =
(
θq,1 θq,2 · · · θq,Nθ

)
, q = 1, 2, · · · , npt (26)
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where Nθ denotes the dimension of vector Θ. The assigned probability corresponding to
the qth representative point is:

Pq =
∫

Ωq
pΘ(θ)dθ (27)

where Ωq is the subdomain for ΩΘ that satisfies Equation (28):{
Ωq ∪Ωp = �, ∀p 6= q
∪npt

q=1Ωq = ΩΘ
(28)

In each subdomain Ωq, it is assumed that the coefficient
.
Z(θ, t) is invariant with

respect to θ, as expressed as follows:

.
Z(θ, t) =

.
Z
(
θq, t

)
(29)

The governing equation is transformed to Equation (30) by integrating Equation (24)
over Ωq with respect to θ:

∂pq(z, t)
∂t

+
.
Z
(
θq, t

)∂pq(z, t)
∂z

= 0, q = 1, 2, · · · , npt (30)

where
pq(z, t) =

∫
Ωq

pZΘ(z,θ, t)dθ (31)

The corresponding initial condition is also transformed to:

pq(z, t0) = δ(z− z0)Pq, q = 1, 2, · · · , npt (32)

which could be solved through the finite difference method, giving the numerical solution
of pq(z, t). The PDF of Z at each time instant can be calculated by summation of the PDF of
each representative point, as shown by Equation (33):

pZ(z, t) =
∫

ΩΘ

pZΘ(z,θ, t)dθ =
npt

∑
q=1

∫
Ωq

pZΘ(z,θ, t)dθ =
npt

∑
q=1

pq(z, t) (33)

The PDF expressed in the above equation serves as the basis to evaluate the structural
dynamic reliability in further analysis.

4.3. Response Calculation through PDEM and Its Verification

Because the human physical parameters of the bouncing person in a crowd are ran-
dom parameters, the structural acceleration under such a crowd excitation needs to be
considered as a random process. In calculation, the GF-discrepancy method is used for
point selection [30]. A difference scheme known as total variation diminishing (TVD) is
adopted to solve the GDEE expressed by Equation (24), whose details are found in Ref [31],
to obtain the PDF of the structural responses. The mean value and the standard deviation
time histories are plotted in Figure 9 for the case described in Section 3.2, to characterize
the randomness. As in Figure 9a, the mean time history shares a similar shape with its
representative time history shown in Figure 5, while the standard deviation can reach as
large as 1.2 m/s2, indicating that the randomness of the physical parameters in the crowd
could not be neglected.
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Figure 9. The mean and the standard deviation time history of the mid—span acceleration: (a) Mean;
(b) Standard deviation.

Furthermore, the PDF evolution surface of the mid-span acceleration responses is
obtained and illustrated in Figure 10. The extreme value of the PDF decreases over time
within the first ten seconds, indicating that the structural responses are gradually stimulated,
and the variation keeps increasing. After around 15 s, the extreme value becomes nearly
constant, mainly because the structural responses have reached the stable stage. The PDF
thus starts to evolve with a regulated pattern, as already illustrated in Figures 5 and 8.
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Figure 10. Probability density evolution surface of the structural mid-span acceleration:
(a) Azimuth = −37.5◦ and elevation = 37.5◦; (b) Azimuth = 0 and elevation = 0.

The above results are obtained from the PDEM method on the basis of 1000 determin-
istic analyses, i.e., 1000 points are selected using the GF-discrepancy method. To verify its
accuracy, the distribution at some time instants is calculated through Monte-Carlo simula-
tion (MCS) using 100,000 examples. The random distribution is compared in the form of
cumulative density function (CDF) as shown by Figure 11. Good consistency is observed
from the comparison of CDF from PDEM and MCS, and the results obtained by PDEM are
thus demonstrated to be correct.
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Based on the results of the random vibration analysis above, the dynamic reliability of
the structure is evaluated, which will be discussed in the next section.

5. Dynamic Reliability Analysis for Crowd-Induced Structural Vibration
5.1. Failure Criteria

For the calculation of structural dynamic reliability, reasonable failure criteria need
to be defined. Because the human comfort on the structure is mainly related to structural
acceleration, most design codes require that the maximum acceleration response should not
exceed a predefined limit to maintain the vibration serviceability of the structure. Once the
acceleration exceeds such a limit, the structure is considered a failure from the perspective
of vibration serviceability. If the structural acceleration at the mid-point of the structure is
interested, the reliability could be expressed by the most frequently adopted first-passage
criterion shown in Equation (34):

R(t) = P
{∣∣ ..vmid(τ)

∣∣ 6 [ ..
v
]
, τ ∈ [0, t]

}
(34)

in which R(t) is the time-dependent dynamic reliability,
..
vmid is the acceleration at the

mid-point of the structure, and
[ ..
v
]

is the predefined limit threshold.
However, the mid-point of the structure may not always be the location where the

largest structural acceleration occurs, especially when higher vibration modes are excited.
Furthermore, the locations on which people are bouncing or standing are more interested
because the structural acceleration at these locations is directly perceived by people. In this
manner, it is more appropriate to define the dynamic reliability as the probability that the
acceleration responses at a series of selected locations do not exceed the predefined limit
threshold, as expressed by Equation (35):

R(t) = P
{

L
∩

l=1

∣∣ ..vl(τ)
∣∣ 6 [ ..

v
]
, τ ∈ [0, t]

}
(35)

where L is the number of locations of interest, and
..
vl indicates the structural acceleration at

the lth location.

5.2. Calculation of Dynamic Reliability

The reliability of a structure is usually defined as the probability that the structure
finished its expected function within a certain time period. Li proposed a method to
calculate the dynamic reliability by considering the structure as a probability dissipative
system in 2020 [32], whose GDEE is in the form of:

∂pUΘ(u,θ, t)
∂t

+
.

U(θ, t)
∂pUΘ(u,θ, t)

∂u
= −H[ f (U(θ, t))] · pUΘ(u,θ, t) (36)

where

H[ f (U(θ, t))] =
{

0, f (U(θ, t)) ∈ ΩS
1, f (U(θ, t)) ∈ ΩD

(37)

and u can be the time history of any physical quantity of the system, f (·) is a general
function that links u to the structural responses of interest, and ΩS and ΩD indicate the
safety domain and the failure domain of the system, respectively.

R(t) =
∫ ∞

−∞
pU(u, t)du (38)

5.3. Reliability Analysis Results

In this sub-section, the time-dependent dynamic reliability of the structure in
Section 3.3 is analyzed following the procedure described in the previous section. Fac-
tors that may affect the reliability are analyzed, including CSI effect, reliability criteria,
bouncing frequency, limit threshold, and parameter distribution. Note that the results
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in this section correspond to the same excitation described in Section 3.2, i.e., a crowd of
nine people bouncing at a frequency fb of 1.75 Hz, unless otherwise specified. Figure 12
exhibits a series of figures that show the relation between dynamic reliability and time. It is
observed that all curves decrease with time, in accordance with the absorbing feature of
the first-passage criteria.

Figure 12a shows the dependency of the dynamic reliability on the adopted failure cri-
teria, in which the limit threshold equals 5.0 m/s2 for both situations. If only the mid-point
structural acceleration is interested, the reliability becomes stable around 0.21. However, if
the structural accelerations at all bouncing locations are considered, the reliability decreases
to 0.18. This phenomenon indicates that the mid-point may not always be the location with
the largest acceleration response. It is better to consider the acceleration at more locations
during vibration serviceability design.

The bouncing frequency is another important factor that highly affects the dynamic
reliability of the structure. If the bouncing frequency or its harmonics are close to the
fundamental frequencies of the structure, the structural responses tend to become much
larger, and the dynamic reliability is thus decreased. In Figure 12b, it is clearly observed
that the dynamic reliability significantly fluctuates with the bouncing frequency. When fb
equals 1.75 Hz, whose harmonics give rise to the resonant response of the structure, the
dynamic reliability drops to its minimum value, while for other bouncing frequencies, the
dynamic reliability becomes much higher.

It is also observed from Figure 12c that if the CSI effect is considered, the dynamic
reliability is largely increased, especially for the case when fb = 1.75 Hz, which is explained
by the fact that the CSI mostly affects the resonant vibration. On the other hand, the
serviceability problem usually occurs when the structure is under resonant excitation.
Therefore, it is important to consider the CSI effect in the vibration serviceability design to
avoid under-estimation of the dynamic reliability.

The influence of human parameter distribution is also checked in this study, as shown
by Figure 12d. The line styles of the first column of the legend correspond to the results
obtained by assuming the human body model parameters follow the distribution in Table 2,
i.e., people in the bouncing crowd have independent parameters, while that of the second
column assume that all people in the crowd share the same human model parameters,
which equal to the mean value of their distributions, respectively. Results show that the
ignorance of human model parameter distribution may lead to either an over-estimate or
under-estimate of the structural reliability.

It is apparent that the dynamic reliability also changes with the predefined allowable
limit. Figure 12e clearly shows the increasing trend of the dynamic reliability against the
predefined threshold value.
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6. Concluding Remarks

The dynamic reliability of a large-span structure is evaluated through PDEM based on
the crowd–structure coupled model. The uncertainties of the coupling system come from
the random distribution of the model parameters of the human body and the biomechanical
forces in the bouncing crowd. The governing equations of motion of the coupled system
with and without the CSI effect are given. The features of the random vibration of the
coupled system are studied through PDEM and the results lead to the evaluation of dynamic
reliability from the perspective of vibration serviceability. Two failure criteria in terms of
one-point and multiple-point acceleration passage are adopted for the reliability evaluation,
and the affecting factors on the reliability are discussed. The following conclusions are
drawn from this study:

(1) The proposed calculation procedure to consider the interaction effect in the crowd–
structure coupled system can well predict structural responses and is validated to be
reasonable through an experimental test.

(2) The CSI highly affects the structural responses, especially when the crowd size is large.
(3) Through comparison with traditional MCS, the PDEM is tested as capable to conduct

human-induced random vibration analysis, which is the foundation of dynamic
reliability calculation considering the CSI effect. The PDEM has a great potential
when a refined model needs to be adopted or a more complex situation is considered,
where MCS becomes unavailable due to its high computational cost.

(4) The dynamic reliability of the large-span structure in terms of vibration serviceability
is affected by many factors, including failure criteria, excitation frequency, limit
threshold, distribution of human model parameters, and CSI effect.

The current design codes usually require that the structural vibration under human
activities does not exceed a predefined limit to maintain the vibration serviceability of the
structure. However, because of the uncertainties in the crowd–structure coupling system,
this requirement is actually satisfied with a certain degree of probability rather than in a
deterministic manner, thus leading to the concept of reliability. This paper presents the
procedure of dynamic reliability analysis for large-span structures in terms of vibration
serviceability. In future studies, the threshold of vibration perception of each person in
the crowd could serve as another random variable in the system. This paper provides a
foundation for achieving performance-based vibration serviceability design in the future.
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