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Abstract: This study presents experimental and numerical investigations on seven one-way, rein-
forced concrete (RC) slabs with a new technique of slab weight reduction using polystyrene-embedded
arched blocks (PEABs). All slabs had the same dimensions, steel reinforcement, and concrete com-
pressive strength. One of these slabs was a solid slab, which was taken as a control slab, while the
other six slabs were cast with PEABs. The main variables were the ratio of the length of the PEABs to
the length of the slab (lp/L) and the ratio of the height of the PEABs to the total slab depth (hP/H).
The minimum decrease in the ultimate load capacity was about 6% with a minimum reduction in the
slab weight of 15%. In contrast, the maximum decrease in the ultimate load capacity was about 24%
with a maximum reduction in the slab weight of 40%. Moreover, the mode of failure changed from
flexure to shear failure, especially for those slabs with an lP/L ratio equal to one. The geometric and
material non-linearity was adopted in the proposed finite element (FE) model to simulate the slabs
with PEABs using Abaqus software. Good agreement was obtained between the developed FE and
experimental results.

Keywords: reinforced concrete one-way slab; polystyrene-embedded arched blocks; experiment;
finite element; deflection; strains

1. Introduction

Slabs are pivotal members for any structural building to make spaces. Their role
is necessary for roof and floor constructions and decks of bridges. In this context, slab
construction may take various forms, such as ribbed slabs, cast-in-situ solid, and precast
units. Aside from this, they can extend in one or two directions to transport their loads to
concrete beams, walls, steel beams, and columns. In 2000, voided slabs were introduced as
a novel way to minimize the self-weight by effectively replacing a large volume of concrete
with inserts [1]. The voided concrete slabs are a system that removes the non-working
or excess concrete from the structural slab and replaces it with void formers. These void
formers are usually made out of plastic or any recycled materials. A variety of shapes can
be used for the void formers depending on the design of the slab. Spheres, boxes, ellipsoids,
and toroids are the common shapes of voids [2–4]. The voids are usually placed in a grid-
like arrangement, temporarily supported by a framework, which is eventually enveloped
in concrete. The voids are commonly located between the top and bottom reinforcement
meshes along the span. When a load starts acting on a voided slab, the compressive force
tends to be fully captured by the concrete above the void while the tensile force is captured
by the steel in tension zones. The reduction in self-weight of voided slabs is found to be in
the range of 20% to 30% compared to a similar, solid slab [5–10]. In general, the concept of
voided slabs using other types of voids is still in the process of being studied. The arched
shape void is one of them. The arch was originally used in construction of a footbridge [11].
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During the last decays, numerous analytical and experimental studies were conducted
to investigate the effect of voids embedded in concrete slabs in aspects of their materials
and geometry [12–15]. Generally, the main focus of these studies was on the reductions in
weight, as well as the flexural and shear strength. Voids, thin web, and thin flanges were
considered the weak points of the hollow-core slab. The structural damages in these hollow-
core units were not repaired or strengthened [12]. The deflections, as well as the concrete
compressive strains, under service load were a little higher than those of an equivalent,
solid slab [13]. Voided slab specimens with spherical and cuboid shapes of voids were
prepared and tested, which were manufactured using recycled polypropylene. The flexural
stiffness of voided specimens was approximately 50% less in comparison to solid slabs of
identical dimensions and reinforcement at the yield stage [16].

Currently, research on polystyrene-embedded arched blocks is very limited. This
manuscript adds valuable test data for voided slabs with polystyrene-embedded arched
blocks. From this source and the latest studies in this field of voided slabs, this study
presents experimental and numerical investigations on seven one-way, reinforced concrete
(RC) slabs with a new technique of slab weight reduction using polystyrene-embedded
arched blocks (PEABs). All slabs had the same dimensions, steel reinforcement, and
concrete compressive strength. One of these slabs was a solid slab, which was taken as
a control specimen, while the other six slabs were cast with PEABs. The main variables
were the ratio of the length of the PEABs to the length of the slab (lp/L) and the ratio
of the height of the PEABs to the total slab depth (hP/H). The geometric and material
non-linearity was adopted in the proposed finite element (FE) model to simulate the slabs
with PEABs, using Abaqus software. Validations of the developed FE model were obtained
using the experimental data.

2. Experimental Work
2.1. Material Specifications

According to the testing program, crushed coarse and fine aggregate, ordinary Port-
land cement (Type I), and tap water were used for casting all tested specimens. The concrete
mix design was intended to give a compressive strength of 40 MPa [C40]. However, the
compressive strength of concrete (fc’) at 28 days was 37.2 MPa. Steel bars of φ 8 mm, having
yield stress (fy) and ultimate strength (fu) of 543 MPa and 636 MPa, respectively, were used
for the top curved and straight reinforcement (see Figure 1), while steel bars of φ 10 mm,
having yield stress and ultimate strength of 618 MPa and 691 MPa, respectively, were used
for the bottom reinforcement. Furthermore, high-density polystyrene blocks, having a unit
weight of 16.7 kg/m3, were used to fabricate the arched voids within the tested slabs.
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Figure 1. Dimensions, steel reinforcement, and construction of the polystyrene-embedded arched
blocks. (a) Dimensions of a typical, tested specimen (all dimensions are in mm); (b) Construction of
the polystyrene-embedded arched blocks and steel reinforcement.

2.2. Description of the Specimens’ Parameters

The experimental study included testing seven RC slabs under two-line loading up to
failure. Each specimen had a total length of 2100 mm, a clear span (L) of 2000 mm, a width
of 570 mm, and an overall depth (H) of 250 mm. The control specimen (solid slab), which
was denoted as SD, was prepared without PEABs. The remaining specimens were prepared
with different depths and lengths of PEABs. The PEABs were used with a constant width
of 500 mm; different lengths (lP) of 1000 mm, 1500 mm, and 2000 mm; and different heights
(hP) of 135 mm and 170 mm. The length and height of the PEABs were determined as ratios
of the slab length and thickness, respectively. The heights of the PEABs were taken as 0.7
and 0.54 of the slab thickness, whereas the lengths of the PEABs were taken as 0.5, 0.75,
and 1.0 of the slab length. These parameters were selected to avoid premature failures due
to the shortage in the mass of concrete. Table 1 summarizes the details of the seven RC
slabs according to the type of slab (solid or voided), length, and height of the PEABs.

Table 1. Details of test specimen variables.

Specimens Height of
PEABs hP (mm) hP/H Length of

PEABs lP (mm) lP/L Reduction of
Weight (%)

SD - - - - -
AR-L1-H1

175 0.70
1000 0.50 19.97

AR-L2-H1 1500 0.75 29.56
AR-L3-H1 2000 1.00 39.63
AR-L1-H2

135 0.54
1000 0.50 15.27

AR-L2-H2 1500 0.75 22.73
AR-L3-H2 2000 1.00 30.64
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2.3. Details of the Tested Specimens

For the tested specimens with PEABs, longitudinal reinforcement of 5 φ 10 mm bars
was used as bottom reinforcement, while the top reinforcement consisted of 8 φ 8 mm bars
and was distributed as four straight top bars plus four arched bars, as shown in Figure 1. It
is worthwhile to mention that the four arched bars took the same curvature shape of the
PEABs within the slab. On the other hand, 12 φ 8 mm bars were distributed transversely as
bottom and top reinforcement across the slab width of each specimen. To ensure constant,
homogenous concrete compressive strength, all the seven specimens were cast on the same
day using the same concrete batch and under the same curing conditions.

2.4. Testing Setup and Instrumentations

All the specimens were tested under simply supported conditions (hinge and roller
supports) and two-line monotonic loading, as described in Figure 2. A hydraulic jack
with a capacity of 1000 kN was used to perform the laboratory tests. A load cell with
1000 kN capacity was used to measure the applied load, which was increased gradually at
an increment of 5 kN/min. The load was applied using one hydraulic jack and distributed
using a spreader beam. The distance between the two lines of loading was 800 mm.
An LVDT was used to record the vertical downward deflection at the mid-span of each
specimen. Moreover, the compressive strains in the top fibers of concrete at the mid-spans
of each specimen were recorded using strain gauges.
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Figure 2. Test setup.

3. Findings of the Test Results and Discussions

The ultimate load capacities, modes of failure, load–deflection responses, and strains
in concrete were observed during loading and are discussed below.

3.1. Ultimate Load Capacities and Modes of Failure

For the control slab SD, flexural cracks were created at the mid-span and propagated
in width and height until complete flexural failure occurred at a load capacity of 156 kN, as
shown in Figure 3.
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Figure 3. Crack pattern at the failure of slab specimen SD (flexural failure).

For the slab specimens with lP/L = 0.5 (i.e., slab specimens AR-L1-H1 and AR-L1-H2),
flexural cracks were created and propagated at different locations in the mid-span regions.
The cracks’ length and width increased until the flexural failure occurred at loads of 126 kN
and 147 kN, respectively (see Figures 4 and 5).
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For the slab specimens with lP/L = 0.75 (i.e., slab specimens AR-L2-H1 and AR-L2-H2),
flexural cracks initially were formed at different locations of the middle zone. After
successive applications of load, these cracks propagated, and shear cracks appeared near
supports. These shear cracks propagated towards the loading lines with an increase in the
flexural cracks. The failure occurred at loads of 123 kN and 140 kN, respectively. These
slab specimens failed in the shear-flexural mode, as shown in Figures 6 and 7.
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For the slab specimens with lP/L = 1.0 (i.e., slab specimens AR-L3-H1 and AR-L3-H2),
shear cracks initially appeared near supports. After successive applications of load, the
shear cracks propagated towards the loading lines, and a few flexural cracks were formed
in the middle zone of the specimens. The failure occurred at loads of 119 kN and 132 kN,
respectively. The shear mode of failure dominated, as shown in Figures 8 and 9. The main
reason for this state was associated with the smaller mass of concrete in the shear zone,
which was not enough to resist the applied shear force.

Based on these results, the mode of failure was changed gradually from flexural failure
for slab specimens with lP/L = 0.5 to shear failure for slab specimens with lP/L = 1.0 due to
the increase in the lP/L ratio, which resulted in a loss of mass of concrete near supports.
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For the slab specimens with hP/H = 0.7, the decreases in the ultimate loads were about
19%, 21%, and 24% for slab specimens with lP/L = 0.5, 0.75, and 1.0, respectively, relative to
the control slab specimen SD. For the slabs with hP/H = 0.54, these percentages became
6%, 10%, and 15%, respectively. Therefore, it can be observed that, at a certain value of the
hP/H ratio, the increase of the lP/L ratio led to reductions in the ultimate load capacity
and loss of stiffness. Increasing the lP/L ratio gradually changed the mode of failure from
flexural failure to shear failure due to the loss of mass of concrete near supports.

On the other hand, for the slab specimens with lP/L = 0.5, the reductions in the
ultimate load capacity were about 19% and 6% for the slab specimens with hP/H = 0.7 and
0.54, respectively, relative to the control slab specimen SD. For the slabs with lP/L = 0.75,
these reductions were about 21% and 10%, respectively. In contrast, these percentages
became about 24% and 15% for the slabs with lP/L = 1.0. Therefore, it can be observed that,
at a certain value of lP/L, the increase in the hP/H ratio from 0.54 to 0.7 led to reductions in
the ultimate load and losses of stiffness due to the decrease in the depth of the concrete
compression zone. The reduction in the concrete compression zone controlled the mode of
failure to be a compressive crushing of concrete instead of yielding steel reinforcement and
reduced ductility.
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Table 2. Ultimate loads and failure modes of the test slabs.

Specimens hP/H lP/L Ultimate Load
(kN)

Decrease in the
Ultimate Load

(%)

Mode of
Failure

SD - - 156 - Flexure
AR-L1-H1

0.70
0.50 126 19.23 Flexure

AR-L2-H1 0.75 123 21.15 Shear-Flexure
AR-L3-H1 1.00 119 23.72 Shear
AR-L1-H2

0.54
0.50 147 5.77 Flexure

AR-L1-H2 0.75 140 10.26 Shear-Flexure
AR-L1-H2 1.00 132 15.38 Shear

3.2. Load–Deflection Response

Figures 10 and 11 demonstrate the load–deflection responses of the tested slab speci-
mens. The presence of PEABs led to reductions in the stiffness and ultimate load capacity
and increases in the mid-span deflections at the same loading level corresponding to the
control slab specimen SD.

For the slab specimens with hP/H = 0.7, increasing the lP/L ratio from 0.5 to 1.0
led to growth in the mid-span deflections from 77% to 140%, relative to the control slab
SD. Moreover, for the slabs with hP/H = 0.54, the growth was from 34% to 106%. It is
worthwhile to mention that all of these percentages were calculated corresponding to a load
level of 70% of the ultimate load capacity of the slab specimens with lP/L = 1.0.
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The load versus mid-span deflection curves of the slab specimens with hP/H ratios
of 0.5, 0.75, and 1.0 are shown in Figures 12–14, respectively. It can be observed from
these results that increasing the mid-height of the PEABs led to reductions in the ultimate
strength and growth in the mid-span deflections due to the reductions in the concrete mass
at the top of the mid-spans (compressive zone).
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3.3. Strains in the Concrete

Figures 15 and 16 demonstrate the load–compressive strain curves of the tested con-
crete slabs. For the control specimen SD, the strain increased linearly up to 0.00015 at
the loading level of 60 kN. After that, the initial flexural cracks were formed and then
propagated, which led to increases in the strain values. The yielding of steel reinforcement
started at a loading level of 120 kN, where the load–strain curve behaved non-linearly. The
crushing of concrete started when the specimen reached a load level of 156 kN and a strain
value of 0.0033. The same behaviors were observed for the specimens with the PEABs,
with 50% reduction in the cracking loads of these specimens relative to the control one.
Crushing of concrete occurred at nearly the same strain level as the control slab.

Generally, the presence of the PEABs led to increases in the compressive strains of
concrete at the same loading level corresponding to the control slab specimen SD. For slab
specimens with hP/H = 0.7, increasing the lP/L ratio from 0.5 to 1.0 led to an increase in
the compressive strain from 22% to 27% relative to the control slab specimen SD. For the
slabs with hP/H = 0.54, the growth increased from 39% to 50%.
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At a certain ratio of hP/H, increasing the lP/L ratio caused an insignificant effect on
concrete compressive strain except for the case of lP/L = 1, where the mode of failure was
changed to be a shear failure. This might be attributed to the constant compression zone
of concrete at the mid-span. The load–compressive strain curves of concrete for the slab
specimens with hP/H = 0.5, 0.75, and 1.0 are shown in Figures 17–19, respectively. At
a certain lP/L ratio, increasing the hP/H ratio led to a significant effect on increasing the
concrete compressive strain. This might be attributed to the reductions in the compression
zone of concrete at the mid-span.
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Figure 19. Load–compressive strain curves of concrete for the slab specimens with lP/L = 1.0.

The embedded polystyrene blocks affected the neutral axis (NA) position, which
moved down due to the concrete cracking. Therefore, the specimens with the PEABs
showed higher levels of compressive strains in the extreme fiber of the cross-section relative
to the control solid slab specimen.

4. Finite Element Simulation

The Abaqus 2020 software [17] was used to conduct the FE simulation. The geometric
and material non-linearity simulations were presented.

4.1. Constitutive Models of Materials

In the FE model, the damage in concrete was simulated using the concrete dam-
age plasticity (CDP) model, which was implemented in Abaqus 2020 [17]. The concrete
compressive and tensile composition relationships, damage parameters for cracking and
crushing, and other material parameters, such as dilation (ϕ), eccentricity (ε), compressive
strength to uniaxial pressure ratio biaxial (fbo/fco), coefficient (K), and viscosity parameters
(µ), were implemented in the CDP model [18]. Table 3 lists these parameters that were used
in this study.

Table 3. Parameters of the concrete damage plasticity model.

Parameter Value

ϕ 39◦

ε 0.1
fbo/fco 1.16

K 0.667
µ 0.001

In this study, the compressive stress–strain curve of concrete suggested by Saenz [19]
was used and is shown in Figure 20a, whereas the tensile stress–strain curve developed by
Belarbi and Hsu [20] was utilized in this study, as shown in Figure 20b.
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Figure 20. The compressive and tensile stress–strain curves of concrete.

The steel reinforcement behavior was simulated using a bilinear model, which was
implemented in Abaqus [17]. The linear, isotropic part was defined by the modulus of
elasticity and the Poisson ratio of steel, which were 200 × 103 MPa and 0.3, respectively.
The reinforcement was plasticized completely when reaching the yield stress fy.

4.2. FE Mesh and Discretization

Concrete was simulated by solid element, C3D8. This element is capable of simulating
cracking in tension and crushing in compression after exceeding the stress limits. Three-
dimensional truss elements, T3D2, were used to model the steel reinforcement. A full bond
was assumed between the nodes of the concrete and reinforcement elements. The PEABs
were simulated as a mass block in the FE model with a full bond with concrete, taking into
account their density and modulus of elasticity. This technique was adopted in one model
only. However, the FE results were approximately the same for the models that did not
consider the PEABs. Therefore, to avoid the unconvergence issues and reduce the solution
time, the PEABs were not considered in the FE model.

To enhance the FE model and eliminate the unconvergence concerns, several trials
with various mesh sizes were conducted. Concrete cubes with maximum dimensions of
50 mm × 50 mm × 50 mm were employed. Figure 21 shows the FE mesh and discretization
for a typical, tested slab specimen with PEABs. The boundary conditions were modeled to
be similar to those experimental conditions. The translational degrees of freedom (DOFs)
in the X- and Y-axis were limited at one of the supports, indicating hinged support. For the
other support, which represented roller support, translational DOFs were constrained only
in the Y direction.
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4.3. Verification of the FE Results
4.3.1. Load–Deflection Relationships

In terms of the load–deflection responses, Figure 22 and Table 4 compare the experi-
mental and FE results. During the elastic stage, the slab responses from the two approaches
were fairly similar. The FE findings stiffened slightly as the applied load approached the
yielding load. The supposed complete contact between the concrete and reinforcement was
attributed to the disparity in response. However, there were good agreements between the
experimental and FE results.
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Table 4. The ultimate load capacities from the experimental and FE results.

Slab Designation Ultimate Load
Exp. (kN)

Ultimate Load
FE (kN) Exp./FE

SD 156 165 0.95
AR-L1-H1 126 131 0.96
AR-L2-H1 123 129 0.95
AR-L3-H1 119 125 0.95
AR-L1-H2 147 157 0.94
AR-L2-H2 140 148 0.95
AR-L3-H2 132 144 0.92

4.3.2. Damage of the Analyzed Beams

Figure 24 shows the damages of the slab specimens generated from the FE model in
contrast to the experimental failure pattern. The option used to establish the post-cracking
damage (stiffness degradation) attributed to the CDP model was utilized to describe the FE
crack patterns. From this figure it can be observed that the FE crack patterns were quite
similar to the experimental cracks, demonstrating that the proposed FE model accurately
captured the behavior of slab specimens with PEABs.
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5. Conclusions

This study presents experimental and numerical investigations on seven one-way RC
slabs with a new technique of slab weight reduction using PEABs. One of these slabs was
a solid slab, which was taken as a control slab, while the other six slabs were cast with
PEABs. The geometric and material non-linearity properties of the solid slab and slabs
with the PEABs were considered in the developed FE model. The following conclusions
could be drawn:

1. Inserting the polystyrene arched blocks into the slab core significantly reduced the
self-weight of the slab. On the other hand, this reduced the slab stiffness and led to
strength degradations. The minimum decrease in the ultimate load capacity was about
6% with a minimum reduction in the slab weight of 15%. In contrast, the maximum
decrease in ultimate load capacity was about 24% with a maximum reduction in the
slab weight of about 40%.

2. The mode of failure of the slabs with the polystyrene arched blocks was affected by
the ratio of the length of the PEABs to the length of the slab (lP/L). When the lP/L
ratio was more than 0.5, the failure mode gradually changed from flexural failure
to shear failure, and complete shear failure occurred when the lP/L ratio was equal
to one.

3. At a certain ratio of the height of the PEABs to the total slab depth (hP/H), the
ultimate strength was reduced by increasing the length of the PEABs. For the slabs
with hP/H = 0.7, the decreases in the ultimate loads were about 19%, 21%, and 24%
for slabs with lP/L = 0.5, 0.75, and 1.0, respectively. For the slabs with hP/H = 0.54,
these percentages were 6%, 10%, and 15%, respectively.

4. At a certain lP/L ratio, the ultimate load was reduced by increasing the depth of
the PEABs. For the slabs with lP/L = 0.5, the decreases in the ultimate loads were
about 19% and 6% for slabs with hP/H = 0.7 and 0.54, respectively. For the slabs with
lP/L = 0.75, the decreases in the ultimate loads were about 21% and 10% for the slabs
with hP/H = 0.7 and 0.54, respectively.

5. Increasing the lP/L ratio had an insignificant effect on the concrete compressive strain
except for the case of lP/L = 1, where the mode of failure changed to be shear failure.
This might be attributed to the constant compression zone of concrete at the mid-span.
In contrast, increasing the hP/H ratio had a significant effect on increasing the concrete
compressive strain.

6. To increase the ultimate strength of slabs with PEABs, the shear resistance of the slab
must be increased effectively by using higher compressive strength of concrete and/or
using shear reinforcement within the shear zone.

7. During the elastic stage, the slab responses from the FE and experimental were fairly
similar. The FE findings stiffened slightly as the applied load approached the yielding
load. The supposed complete contact between the concrete and reinforcement was
attributed to the disparity in response. However, there were good agreements between
the experimental and FE results.
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