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Abstract: Compressive strength is an important mechanical property of high-strength concrete (HSC),
but testing methods are usually uneconomical, time-consuming, and labor-intensive. To this end, in
this paper, a long short-term memory (LSTM) model was proposed to predict the HSC compressive
strength using 324 data sets with five input independent variables, namely water, cement, fine
aggregate, coarse aggregate, and superplasticizer. The prediction results were compared with those
of the conventional support vector regression (SVR) model using four metrics, root mean square
error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and correlation
coefficient (R2). The results showed that the prediction accuracy and reliability of LSTM were higher
with R2 = 0.997, RMSE = 0.508, MAE = 0.08, and MAPE = 0.653 compared to the evaluation metrics
R2 = 0.973, RMSE = 1.595, MAE = 0.312, MAPE = 2.469 of the SVR model. The LSTM model is
recommended for the pre-estimation of HSC compressive strength under a given mix ratio before the
laboratory compression test. Additionally, the Shapley additive explanations (SHAP)-based approach
was performed to analyze the relative importance and contribution of the input variables to the
output compressive strength.

Keywords: high-strength concrete; LSTM; SVR; compressive strength; shapley additive explanations

1. Introduction

Concrete has been widely used worldwide with its economic, monolithic, modular, and
durable advantages. High-strength concrete (HSC), which is defined by the compressive
strength of more than 40 MPa [1], was developed in the late 1950s and early 1960s in
the field of cementitious materials. The American Concrete Institute (ACI) defines HSC
as “concrete that meets specific performance and homogeneity requirements that cannot
always be achieved through the use of conventional materials and conventional mixing,
placing and curing procedures”. Nowadays, HSC has been widely used in large-span
bridges, high-rise buildings, and piers due to its uniform high density, low impermeability,
and high durability [2].

To better understand design methods and the performance of concrete structures
under external loads, it is of great importance to study the mechanical properties of
concrete. Among the wide variety of concrete properties, the most important property
is the compressive strength, as it is directly related to the safety of the structure and is
necessary to assess the performance of the structure throughout its life cycle. However,
concrete is a non-homogeneous mixture of cement, sand, gravel, supplementary raw
materials, and admixtures. These ingredients are randomly distributed in the concrete
mix ratio. Many factors affect the compressive strength of concrete, including waste
composition, particle size, water-cement ratio, and aggregate ratio. Therefore, it is quite
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difficult to accurately predict the concrete compressive strength in such a complex matrix.
The currently accepted method is to determine the compressive load-bearing capacity of
concrete by physical tests. Generally, cubic and cylindrical concrete specimens are prepared
according to certain mix ratios and cured for a period of time, and then the compressive
strength of concrete is measured by a compressive testing machine. This method has been
standardized around the world and is widely used for laboratory and field testing, but it is
inefficient, economical, and time-consuming. In fact, for any kind of concrete with expected
strength, the reasonable design of the mix ratio needs many attempts and laboratory tests.
Moreover, the design procedure for HSC concrete is more complex than that for normal
strength concrete, requiring experience and more in-depth knowledge of the chemical and
mechanical properties of the components, and usually, several batches of tests are required
to obtain the concrete with the desired properties. Thus, time and cost can be saved if the
compressive strength can be estimated early and accurately through calculations before
implementing the compression tests.

Empirical regression methods seem to be more suitable for assessing the compres-
sive load-carrying capacity of concrete than traditional experimental techniques. With
the development of artificial intelligence, it is very common and convenient to estimate
the compressive strength of concrete using machine learning methods. Actually, machine
learning algorithms such as artificial neural networks (ANN), random forest (RF), support
vector machine (SVM), and decision tree (DT) have been widely used for the prediction of
compressive strength of concrete [3–11]. Hai et al. [12] proposed a deep neural network
(DNN) to predict the compressive strength of rubber concrete, and achieved high accuracy
and reliability with R = 0.9874. Abobakr et al. [13] developed an extreme learning machine
(ELM) model to predict the compressive strength of high-strength concrete, and the results
showed that the ELM method has good prediction accuracy and fast learning speed com-
pared with the traditional back-propagation (BP) neural network. Muliauwan et al. [14]
employed three intelligent algorithms, linear regression, ANN, and SVM on 1030 sam-
ples to investigate the most accurate mapping relationships between input and output
in concrete mixtures, and results showed that these intelligent methods can predict com-
pressive strength with high accuracy in predictive models without expensive laboratory
experiments. Song et al. [15] utilized gene expression programming (GEP), ANN, DT,
and bagging algorithms to predict the compressive strength of fly ash admixture concrete.
The results indicated that the bagging algorithm outperformed the other three algorithms
with the highest prediction correlation coefficient R2 = 0.95. To explore the applicability of
integrated learning models, Furqan et al. [16] employed machine intelligence algorithms
with individual learners and integrated learners on 1030 data samples to predict the com-
pressive strength of sustainable high-performance concrete prepared from waste materials.
It was found that the use of integrated models in machine learning can improve the model
performance compared to traditional machine learning algorithms. The results of these
studies mentioned above demonstrated that machine learning showed good prediction
performance in regression prediction of concrete strength. However, the algorithms in
these studies are mostly traditional machine learning algorithms with limited predictive
capability. To get better prediction performance, model tuning is needed to get the appro-
priate model parameters, but this task is also a considerable challenge. Compared with
conventional machine learning algorithms, it may be a better choice to explore a deep
learning model with better prediction performance.

With the application of deep learning in civil engineering, as a special form of re-
current neural network (RNN), long short-term memory network (LSTM) has been well
performed in many regression problems which has the ability to learn long-term dependen-
cies. Harun et al. [17] estimated the geopolymerization process of fly ash-based polymers
using deep LSTM and machine learning models. The results showed that compared to the
prediction accuracy of 98.83%, and 91.62% for SVR and K-nearest neighbor (KNN), the
deep LSTM achieved a higher accuracy of 99.55%. Sarmad [18] used the LSTM model on
1030 samples to predict the compressive strength of high-performance concrete achieving
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high accuracy with R2 = 0.98. Harun et al. [19] employed two deep learning methods,
namely stacked autoencoders and LSTM network, to predict the compressive strength and
ultrasonic pulse velocity of concrete containing silica fume at high temperatures, and the
results showed that LSTM achieved better prediction results. Overall, the LSTM model
has exhibited good performance in the prediction of mechanical properties of concrete, but
there is still relatively little research in concrete strength prediction, and in-depth analysis
and research are needed before further popularization and application. For this reason,
this paper attempts to propose an LSTM-based prediction model to predict the HSC com-
pressive strength and compare the prediction results with the conventional support vector
regression (SVR) model.

2. Methodology
2.1. LSTM

The LSTM network was proposed by Hochreiter and Schmidhuber in 1997 [20], which
aims to solve the problems of “gradient disappearance” and “gradient explosion” by
introducing the gating function mechanism. As a powerful recurrent neural network
model, LSTM can extract the long and short-term dependencies of time series, to achieve
effective feature extraction of time-series data [21–23]. As shown in Figure 1, the LSTM
includes the forget gate, input gate, update gate, and output gate in the principal structure.
The main formulas of the LSTM structure are as follows [24,25]:

ft = σ(W f (ht−1, xt) + b f )
it = σ(Wi(ht−1, xt) + bi)
gt = tanh(Wg(ht−1, xt) + bg)
ct = ftct−1 + itgt
ot = σ(Wo(ht−1, xt) + bo)
ht = ottanh(ct)

(1)

where ft, it, gt, and ot determine the output values of the forget, input, update, and output
gates, respectively; Wf, Wi, Wg, and Wo are weight vectors, bf, bi, bg, and bo are bias vectors;
ct and σ are memory cell and sigmoid activation functions, respectively.

Figure 1. The structure of compressive strength prediction using LSTM.

2.2. Support Vector Regression

Support vector regression (SVR) is an application of SVM in regression problems.
Compared with ANN, SVM can handle nonlinear regression problems better and has the
advantage of obtaining better global optimal solutions rather than local optimal solutions.
Moreover, this model is accurate in prediction strength and easy to implement compared to
other methods [26]. As shown in Figure 2, SVR adopts the concept of the ε-insensitive zone,
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in which a margin is defined to control the deviation of the prediction points. In linear SVR,
the function f (x) is used as the solution of the problem [27]:

f (x) = wTx + b (2)

where w is the weight vector, x is the input vector, and b is the bias. For the nonlinear case,
a kernel function φ(x) can be used to map the data to a high-dimensional space with a
nonlinear kernel.

f (x) = wTφ(x) + b (3)

The linear regression algorithm can be implemented by mapping the data to a higher
dimensional feature space. The coefficients w and b can be determined by minimizing the
following functions [28]. 

Minimize 1
2 wT + C

n
∑

i=1
(ξi + ξ∗i )

yi − wTφ(x)− b ≤ ε + ξi
wTφ(x) + b− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(4)

where n is the number of samples, C is the penalty parameter, and C is greater than 0. ξi
and ξ∗i are two slack variables. Considering that the Gaussian radial basis function is the
most widely used, it is adopted as the kernel function in this paper. Its expression can be
expressed as follows [29].

K(xi, x) = exp(−g‖xi − x‖2) (5)

Figure 2. The structure of SVM [30].

3. Materials and Dataset
3.1. Dataset Description

The data set consists of 324 sets of samples collected from the literature [13], each
containing 5 input variables and 1 output compressive strength. The input variables are
water, cement, fine aggregate, coarse aggregate, and superplasticizer. For convenience,
the abbreviations of all variables can be found in the Abbreviations. Figure 3 shows the
distribution of these variables and the Pearson correlation coefficients between them. The
linear correlation between the individual input variables and the output was found to
be weak, indicating a complex nonlinear regression relationship between the five input
variables and the compressive strength. About 80% of the samples were randomly selected
and used for training, and the remaining 20% for testing. The statistical characteristics of
these data sets are shown in Table 1.
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Figure 3. Correlation coefficients and distribution of data variables.

Table 1. Statistical characteristics of input and output parameters.

Variable Water Cement Fine
Aggregate

Coarse
Aggregate Superplasticizer Compressive

Strength

Abbreviation Water Cement FA CA SP CSS
Unit kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 MPa

Training set

max 180 600 951 989 2 73.6
min 160 284 552 845 0 37.5

average 168.02 410.76 712.05 902.76 0.80 51.98
standard
deviation 5.19 81.93 103.45 37.34 0.52 9.36

kurtosis −1.01 −1.01 −1.01 −1.01 −1.01 −1.01
skewness 0.46 0.46 0.46 0.46 0.46 0.46

Test set

max 180 600 951 989 2 73.6
min 160 284 552 845 0 37.5

average 167.89 408.68 709.42 901.81 0.79 51.74
standard
deviation 5.38 84.99 107.31 38.73 0.54 9.71

kurtosis −1.05 −1.05 −1.05 −1.05 −1.05 −1.05
skewness 0.40 0.40 0.40 0.40 0.40 0.40
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3.2. Performance-Evaluation Methods

In general, when assessing the implementation of a prediction model, it is important
to use various measures of evaluation metrics to assess the model’s effectiveness. In this
paper, four metrics, root mean square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and correlation coefficient (R2), were used to analyze
the predictive performance. These metrics are defined as follows [31]:

RMSE =

√
1
n

n

∑
i=1

(t− y)2 (6)

MAE =
1
n

n

∑
i=1

(t− y) (7)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ t− y
y

∣∣∣∣ (8)

R2 =

(
n
∑

i=1
(t− t)(y− y))

2

n
∑

i=1
(t− t)

2 n
∑

i=1
(y− y)2

(9)

where t is the experimental value, y is the predicted value, t is the mean value of t, y is the
mean value of y.

4. Model Building and Training
4.1. Model Building

The LSTM model developed has five inputs and one output. The number of hidden
units was 300, and fully connected layers were 100 [18]. For the SVR model with RBF kernel
function, the parameters c and g have a great effect on the predictive performance. Usually,
the SVR model requires some optimization algorithms to obtain the best combination of
parameters, but this is not in the scope of this paper. For this reason, a basic SVR model
was used in this paper. According to the reference [32], the two parameters c and g were
set to 1 and 0.1, respectively.

4.2. Model Training

First, the SVR model was performed to train the training set using ten-fold cross-
validation. For comparison, the same training set was trained by the LSTM model. For the
LSTM model, the training method was selected as the “adam”. Moreover, the mini-batch
size was 64, the training epoch was 1000, and the gradient threshold used was 1. The
initial learning rate was 0.001. The learning rate was used as a dropped factor 0.1 during
the training with 250 epoch periods. The model was trained using MATLAB R2021a (The
MathWorks Inc., Natick, MA, USA) on a laptop with Intel (R) Core (TM) i7 and 16 GB
memory. Additionally, to speed up the training process, an NVIDIA™ GPU was used. The
training process of the model is shown in Figure 4. It can be found that both RMSE and
loss converged around 0 during the model training process, indicating that the model was
well trained.
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Figure 4. The training progress of the LSTM mode: (a) training loss; (b) RMSE.

5. Comparison of Prediction Results

The predictions of the two models for the dataset are shown in Figure 5. It is obvious
from the test set that the predicted values of the LSTM model match better with the actual
values. For a more visual representation, the scatter plot of the prediction effect for each
sample is shown in Figure 6. Compared with the SVR model, the scatter points in the LSTM
model are closer to the diagonal, indicating that the model prediction accuracy is higher,
which can also be seen from the fitted correlation coefficient between the predicted and
actual values. Meanwhile, the residuals histogram of the statistical distribution is shown
in Figure 7. The normal distribution curve of the residuals shows that the mean value of
the predicted residuals of the LSTM model is closer to zero and the standard deviation
is smaller.

Figure 5. The prediction performance of the LSTM and SVR models.
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Figure 6. Relationship between actual values of compressive strength and predicted values: (a) SVR
model; (b) LSTM model.

Figure 7. Residual error distribution of models: (a) training set; (b) test set.

The prediction output was statistically analyzed and the list of evaluation metrics is
shown in Table 2. Compared with SVR, higher model prediction accuracy was obtained by
the LSTM model with R2 = 0.997, RMSE = 0.508, MAE = 0.08, and MAPE = 0.653, which
could be recommended as a candidate for the compressive strength prediction tool of
HSC. Moreover, these results further validate the ability of the LSTM model to capture the
complex nonlinear relationship between the five input parameters and the compressive
strength of the HSC.

Table 2. Performance comparison of two models.

Model Type Dataset RMSE MAE MAPE(%) R2

SVR
Training set 1.447 1.083 2.134 0.976

Test set 1.595 0.312 2.469 0.973

LSTM
Training set 0.354 0.271 0.528 0.999

Test set 0.508 0.080 0.653 0.997

6. Importance Analysis of Input Variables on Output

The results of Section 4 show that given a mix ratio, a more accurate compressive
strength estimate can be obtained based on the LSTM model. For HSC, if the pre-estimated
compressive strength of the mix-design does not meet the designer’s expectation, then the
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content of each ingredient needs to be continuously adjusted to re-form a suitable mix-
design. However, without knowing the effect and contribution of each input variable to the
predicted output, these attempts are blind and require a lot of trial and error. For this reason,
a Shapley additive explanations(SHAP)-based method was proposed to investigate the
relative importance of each input variable to the output results and whether each variable
contributes positively or negatively to the output results [33]. A detailed description of the
SHAP approach can be seen in references [34,35].

As shown in Figure 8, the average SHAP values shown represent the relative impor-
tance of the input variables on the output. It can be clearly observed that among the five
variables listed in this paper, cement has the greatest effect on HSC compressive strength,
followed closely by water, coarse aggregate, superplasticizer, and fine aggregate. In ad-
dition, the summary plot used to elucidate the influence of the global characteristics of
the input features is shown in Figure 9, where each point represents the Shapley value
of a feature and a separate observation in the dataset. The position of each point on the
x-axis represents the Shapley value for each factor, showing the effect of each factor on
compressive strength, while the y-axis provides the order of importance of each factor. A
high feature value for each sample in Figure 9 indicates that this input variable is positive
for the output compressive strength. Conversely, the smaller the feature value, the more
negative the input variable is on the output. It can be clearly observed that cement and
superplasticizer are positive for the compressive strength and the compressive strength
increases with the increase of their amount. On the contrary, water, coarse aggregate, and
fine aggregate are negative for compressive strength, and an increase in the amount of
these three ingredients leads to a decrease in the compressive strength of HSC.

Figure 8. Global importance of the input features.

The findings in this section can help designers and constructors understand the
importance of each component in concrete to the output compressive strength and whether
it is positive or negative to the output compressive strength. Moreover, it can help operators
significantly reduce the time and cost of adjusting the amount of each component when
preparing a mix ratio for the desired strength concrete.
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Figure 9. Summary plot for elucidating the global feature influences of the input features.

7. Conclusions

In this paper, the LSTM model was employed to predict the HSC compressive strength,
and the predicted results were compared with a conventional SVR model. The main
conclusions are summarized as follows.

(1) The LSTM model can capture the complex nonlinear relationship between the five
input parameters and the compressive strength of HSC with R2 exceeding 0.99 in both
training and testing stages.

(2) Compared with the conventional SVR model, the prediction capacity of the LSTM
model is superior, which is recommended as an alternative method for the compres-
sive strength prediction of HSC. The pre-estimate HSC compressive strength can be
obtained prior to the implementation of laboratory compression tests using the LSTM
model, which will greatly reduce the time and cost of laboratory compression tests.

(3) Among the five input variables shown in this paper, cement and water are the two
most sensitive and important variables for compressive strength.

(4) Cement and superplasticizer are positive for compressive strength, the value of
compressive strength increases with their increase, while water, coarse aggregate, and
fine aggregate are negative for compressive strength, their increase will lead to the
decrease of compressive strength of HSC.
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Abbreviations

The following abbreviations are used in this manuscript:
HSC High-strength concrete
RMSE Root mean square error
MAE Mean absolute error
MAPE Mean absolute percentage error
SHAP Shapley additive explanations
DNN Deep neural network
RNN Recurrent neural network
KNN K-nearest neighbor
CA Coarse aggregate
SP Superplasticizer
LSTM Long short-term memory
ANN Artificial neural network
RF Random forest
DT Decision tree
SVM Support vector machine
SVR Support vector regression
GEP Gene expression programming
ELM Extreme learning machine
FA Fine aggregate
CCS Compressive strength
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