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Abstract: By increasing the penetration of renewable energies in district heating (DH), the intermit-
tency of the supply-side increases for heating service providers. Therefore, forecasting the energy
consumption of buildings is needed in order to hedge against renewable power intermittency. This
paper investigates the application of data-driven approaches to forecast the heat consumption of
buildings in the winter, using high-priority weather data. The residential buildings are connected to
mixing loops of DH to supply space heating and hot water. The heating consumption of the building
is calculated using sensor data, including inflow/outflow temperature and mass flow. Principal
component analysis (PCA) is applied to determine the key weather data affecting heat energy con-
sumption. Then, the study compares the competences of artificial neural networks (ANNs), linear
regression models (LRM), and k-nearest neighbors (k-NN) in forecasting heat consumption, using
informative data. Based on the PCA analysis, ambient temperature and solar irradiation are shown
to be the highest priority weather data, contributing to 40.6% and 29.2% of heat energy forecasting,
respectively. Furthermore, the ANN exhibits a forecasting accuracy of more than 50% higher than
LRM and k-NN.

Keywords: building; data-driven; forecasting; heat energy

1. Introduction

During the last decade, the penetration of renewable energies has increased consider-
ably in power systems worldwide. Therefore, the supply-side encounters higher power
intermittency. In return, demand-side flexibility is a practical solution to counterbalance
renewable power fluctuations. Many studies have been conducted recently on the proposal
to integrate the flexibility potentials of residential [1], industrial [2], and agricultural [3]
demand sectors into energy systems. Furthermore, many countries have decided to re-
tire conventional fossil fuel vehicles and replace them with electric vehicles (EV). As a
result, private and public parking lots for EVs are addressed as the main source of demand
flexibility to provide local and global power system support [4].

In the residential sector, the penetration of renewable energies is increasing in district
heating (DH) to decarbonize the heating systems. In 2018, Sweden, Denmark, and Austria
experienced approximately 70%, 57%, and 48% renewable energy penetration in the DH,
respectively [5]. Due to the stochasticity of renewable energies, e.g., wind and solar,
the intermittency of heat supply increases in terms of both energy availability and price.
Therefore, heat service providers (HSP) investigate the technical approaches to forecast
the energy consumption of the contracted buildings, with high accuracy. Therefore, the
HSPs can optimize economic energy procurement strategies in the future and extract the
flexibility potentials of the buildings in response to renewable power availability [6].

In the literature, the data-driven approaches to forecast the energy consumption of
buildings are classified into the following categories [7]:

1. Artificial Neural Networks (ANNs);
2. Support Vector Machine (SVM);
3. Statistical Regression Models (SRM);
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4. Decision Tree Models (DTM);
5. Genetic Algorithm (GA).

First, the research study [8] presented a short-term heat forecast of buildings, using
data-driven approaches, including ANNs, SVM, and GA. In [9], a convolutional neural
network is suggested as a means of forecasting the heating consumption of smart district
heating systems from 72 to 12 h ahead. A novel approach based on hybrid spatial-temporal
attention long short-term memory (STALSTM) is proposed in [10] to forecast the mid-
term heat consumption of smart district heating systems. In [11], the ANN is addressed
to forecast the energy consumption of smart buildings, including heating and cooling
energies, from 24 h to 1 h ahead. The stacking ensemble learning approach is applied to
forecast the energy consumption of integrated energy systems, including electricity, heating,
and cooling [12]. Several machine-learning algorithms, e.g., ANNs, SVRM, and SRM, are
discussed in the research study [13] to forecast the heat consumption of DH at 48 hours’
notice. In [14], a novel stacking model is proposed to predict the energy consumption of
buildings. The simulation results exhibit better competency compared to ANNs, SVM, and
DTM. The heat demand forecasting of DH is studied by three machine-learning algorithms,
i.e., ridge regression, autoregression with exogenous input, and deep ANNs [15]. The
simulation results confirm that the ANNs achieve the best accuracy for all case studies.
A novel data-driven model, the so-called Q-algorithm, is suggested for the prediction of
heating demand in 42 buildings supplied by a DH network in Tartu, Estonia [16].

In contrast to the previous studies on short-term forecasting, the research study [17]
provides long-term heat forecasting, i.e., one year, for a significant number of Danish
single-family houses, using hierarchical archetype modeling. In the US, a research study
has examined nine machine-learning algorithms and three heuristic approaches to forecast
the heat consumption of buildings in the short-term from 24 h to 1 h ahead [18]. The results
reveal that the long short-term memory (LSTM) and extreme gradient boost (XGBoost)
show the highest accuracy of forecasting for 1 h and 24 h ahead, respectively. To provide a
general insight, Table 1 shows the key characteristics of the reviewed studies. Based on the
table, mean absolute error (MAE), root mean square error (RMSE), normalized mean bias
error (NMBE), and mean absolute percentage error (MAPE) are addressed in the literature
to examine the accuracy of forecasting methods. These criteria are used in this paper to
investigate the competency and proficiency of the suggested approach.

In addition to the machine-learning algorithms, the sets of input data play a key role
in the accuracy of the heat-forecasting approaches. Generally, two sets of input data affect
the thermal demand of buildings as follows:

(1) Weather data, i.e., ambient temperature, solar irradiation, wind speed, and humid-
ity [19];

(2) Residents’ behavior, i.e., domestic hot water (DHW) consumption, indoor temperature,
occupancy pattern, and waste heat of household appliances [20].

Note that the heat consumptions of buildings comprises space heating and DHW. If
the heat-forecasting approach is conducted for the space heating only, the share of residents’
behavior decreases [21]. In contrast, for residential buildings supplied by a mixing loop of
DH, the total heat consumption includes space heating and DHW consumption [22]. In
this way, the residents’ behavior, e.g., DHW consumption for showers, plays a key role in
the energy estimation approach.

Based on the literature, to the best of the authors’ knowledge, most research studies
are concentrated on short-term heat forecasting. Barely any studies are found to discuss
long-term heat forecasting of residential buildings. Meanwhile, the major part of studies
forecasts the heat consumption of space heating only. To narrow these gaps, this paper
proposes machine-learning-based approaches as a means of forecasting the heat consump-
tion of residential buildings connected to a mixing loop, which supplies both the space
heating and DHW consumption, without accessing the input data of residents’ behavior.
Besides, it determines the major factors that affect weather data by addressing the principal
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component analysis (PCA) to avoid training the algorithms with less-effective data. The
main contributions of the study can be stated as follows:

1. Classifying the most important weather data affecting the heat consumption of resi-
dential buildings supplied by mixing loops of district heating;

2. Mid-term forecasting of heat consumption of buildings with data scarcity, i.e., with
the high-priority weather data and without accessing the residents’ behavior;

3. Investigating the impact of weather uncertainties, in terms of envelope bounds, on
the forecasting accuracy of machine-learning approaches.

Table 1. Key features of 10 prominent studies on heat forecasting from 2019 to 2021.

Ref. Time Resolution
Term

Region Accuracy Interval
Short Mid Long

[8] Hourly 24 h Finland

MAPE (%) 3.14~7.78

RMSE (kW) 7.22~19.82

NMBE (%) 0.85~2.11

[9] Hourly 12 h 72 h China

MAE (GJ) 0.031~0.102

RMSE (GJ) 0.036~0.129

MAPE (%) 1.4~2.2

[10] Hourly 48 h China

RMSE (GJ) 0.0460

MAE (GJ) 0.0356

R2 0.9967

MAPE (%) 1.47

[11] Hourly 24 h Canada
RMSE (kWh) 228.0

MAPE (%) 4.16

[12] Hourly 24 h The US
MAE (MW) 0.146

MAPE (%) 5.4

[13] Hourly 48 h Slovenia MAPE (%) 2.94

[14] Hourly 24 h China

CVRMSE (%) 10.60

RMSE (kW) 23.53

MAE (kW) 16.14

MAPE (%) 7.66

[15] Hourly 24 h 72 h Poland MAPE (%) 2.6~11.2

[17] Hourly 1 Year Denmark
NMBE (%) 0.5

MAPE (%) 12

[18] Hourly 24 h The US CVRMSE 20.2~29.9

MAPE: Mean Absolute Percentage Error, RMSE: Root Mean Square Error, NMBE: Normalized Mean Bias Error,
MAE: Mean Absolute Error, R2: R-Squared, CVRMSE: Coefficient of Variation of Root Mean Squared Error.

The rest of the paper is organized as follows: In Section 2, first, the problem method-
ology is described qualitatively. Then, the mathematical structure and algorithms are
presented. In Section 3, the simulation results are presented and discussed. In Section 4,
the future works and the role of DH are briefly discussed in future Power-to-X structures.
Finally, Section 5 concludes the current study.

2. Problem Formulation

In this section, the proposed approach to forecasting the energy consumption of
residential buildings is explained. The study aims to forecast the energy injected into
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buildings through a mixing loop of DH. The energy drawn from the mixing loop is used
for space heating and DHW consumption.

Figure 1 shows a schematic diagram of a detached house supplied by a mixing loop.
As the diagram reveals, the space heating energy is mainly dependent on weather variables,
e.g., ambient temperature, solar irradiation, wind speed, humidity, and residents’ behavior,
e.g., comfort temperature, occupancy pattern, and heat waste of household appliances.
Furthermore, the DHW consumption is normally a function of some residents’ behavior,
e.g., showering, cooking/dishwashing, and laundering.
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Figure 1. A detached house supplied by mixing loop with weather disturbances.

The present methodology aims to forecast the future energy consumption of buildings
without needing full access to the affecting factors. Therefore, informative input data are
recorded by measurement sensors to train machine-learning algorithms.

2.1. General Framework

The suggested approach is comprised of four stages as follows:
Data Measurement by the Installed Sensors: In the first stage, the data from the

mixing loop and DH are recorded by the installed sensors for a specific period t ε [τi, τi+T ].
Let us assume the HSP supplies j ε [1, J] residential buildings. The measured data are
classified into weather and energy data. The weather data includes ambient temperature
θ

j
a ∈ R, solar irradiation π

j
s ∈ R, wind speed ϑ

j
w ∈ R, and humidity ρ

j
h ∈ R. The energy

data comprises forward water temperature θ
j
f ∈ R, return water temperature θ

j
r ∈ R,

forward mass flow µ
j
f ∈ R, and return mass flow µ

j
r ∈ R. Therefore, the complete set of

measured data can be stated as follows:

Ψ =
{

θ
j
a(t), π

j
s(t), ν

j
w(t), ρ

j
h(t), θ

j
f (t), θ

j
r(t), µ

j
f (t), µ

j
r(t), ∀t ∈ [τi, τi+T ]&j ∈ [1, J]

}
(1)

Data Priority Sorting: In this stage, the sensor data are sorted to find the top priorities.
It means that the sensor data are evaluated to find the most informative variables affecting
the energy consumption of the buildings. Regarding the weather data, the PCA is run to find
the most effective variables. In the case of energy data, the lowest variables are measured
to calculate the energy consumption of the buildings. Therefore, no data dimension
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reduction is conducted on the energy data. The reduced set of measured data are formulated
as follows:

Ψ =
{

ΠW
j,t , ΠE

j,t, ∀t ∈ [τi, τi+T ]&j ∈ [1, J]
}

(2)

where ΠW
j,t and ΠE

j,t are the reduced set of weather and energy data, respectively. Note that
the mathematical equation to calculate the energy consumption of the buildings using the
sensor data is expressed as follows:

π
j
h(t) = ηwater × µ

∗j
f (t)

(
θ
∗j
f (t)− θ

∗j
r (t + τcycle)

)
(3)

where π
j
h ∈ R is the heat consumption of the building, ηwater is the specific heat capacity of

the heat carrier, i.e., water. Note that the asterisk symbols for the mass flow and temperature
denote the data values after the mixing loop. Meanwhile, due to the heat carrier circulation
in the buildings, the return temperature is measured with τcycle delay time. The parameter
shows the time the heat carrier takes to complete one cycle in the heating pipes of the
building. At the end of this stage, the primary data set Ψ is transformed into the reduced
data set Ψ with lower and informative data.

Energy Model Estimation: In this stage, the set of reduced data Ψ is processed by
machine-learning algorithms to build a mapping function for the energy consumption
of the buildings. The mapping function estimates the energy consumption model of the
building, i.e., ΠE

j,t, in response to the reduced weather data ΠW
j,t . The estimation model is

expressed as follows:

π
j,e
h (t) = f

(
ΠE

j,t

∣∣∣∣ΠW
j,t

)
+ εe

error , ∀t ∈ [τi, τi+T ]&j ∈ [1, J] (4)

where f denotes the estimation function applied by machine-learning algorithms and εe
error

is the estimation error between the measured π
j
h and estimated energy π

j,e
h . In this study,

three algorithms, including ANN, k-nearest neighbors (k-NN), and linear regression model
(LRM), are addressed. Note that the mapping function is built for the training data period.

Future Energy Forecasting: In this stage, the estimation function f is used to forecast
the energy consumption of the buildings in the future, i.e., t ε [τi+T , τi+T+F], in response to
weather data forecasting. Note that T and F are the duration of training and forecasting
periods, respectively. Therefore, they are formulated as follows:

π
j, f
h (t) = f

(
ΠW

j,t

)
+ ε

f
error, ∀t ∈ [τi+T , τi+T+F]&j ∈ [1, J] (5)

where ε
f
error describes the forecasting error.

Uncertainty Characterization: In this stage, uncertain scenarios are generated for
future weather data. In order to forecast the energy consumption of the buildings in the
previous stage, the future weather data are forecasted. Therefore, deterministic weather
data may fail in real applications. To make the approach compatible with the real world,
scenario generation schemes are addressed to incorporate plausible weather uncertain-
ties into the forecasted weather data. In this way, two approaches, including stochastic
scenarios [23] and envelope bounds [24], are suggested as follows:

ΠW,U
j,t = ΠW

j,t + ωκ
j,t (6)

ωκ
t,j =


t ∈ [τi+T , τi+T+F]&j ∈ [1, J], ∀(ωκ

j,t, pκ
j,t) ∈ fpd f (.)

∀κ = 1, . . . , Kω :
Kω

∑
k=1

pk
j,t = 1

 (7)
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ωκ
t,j =

{
t ∈ [τi+T , τi+T+F]&j ∈ [1, J], ∀ωκ

t,j ∈ [α, α + δκ ]

∀κ = 1, . . . , Kω : δκ = κ × |α−β|
Kω

}
(8)

Equation (6) describes that the uncertain weather data ΠW,U
j,t is the summation of the

deterministic weather forecast ΠW
j,t and weather scenario ωκ

j,t, κ = 1, . . . , Kω . In Equation (7),
the stochastic weather scenarios are generated using different probability distribution
functions, (PDF), e.g., Normal and Weibull. Each scenario has an associated probability
pκ

j,t in which the summation of all probabilities for each time slot is equal to 1. In the
second scheme, an uncertain envelope is defined with upper and lower thresholds denoted
by α and β, respectively. The whole envelope is portioned into κ subintervals. Then,
each subinterval shows the uncertain weather envelope. The former scheme evaluates the
stochastic weather uncertainties on energy forecasting. Adversely, the latter investigates the
impact of uniform weather uncertainty, in the forms of underestimation and overestimation,
on energy forecasting.

Figure 2 provides a general overview of the suggested framework from measuring
sensor data to forecasting heat consumption.
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2.2. Data Priority Sorting

This section aims to find the key weather data that affect the energy forecasting of
residential buildings. Generally, the more data available, the more accurate the forecasting
approach will be. The share of some weather data on energy forecasting is relatively low.
Therefore, some weather parameters increase the computational burden of the forecasting
approach, while the impact on the forecasting accuracy is relatively low. To find the most
significant weather parameters, a backward elimination based on PCA is addressed [25].
This approach sorts all the weather variables based on the information they contain. The
weather data correspond to small eigenvalues, which have less impact on the heat con-
sumption of the buildings. If such variables are removed from the forecasting approaches,
little information will be lost. Therefore, the key weather data with high eigenvalues are
selected not only to lower the computational burden of the forecasting approaches but
also to decrease the need for sensor installations and measurement. The hybrid PCA +
Backward Elimination takes the following actions:
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Step (1) Collect all the sensor weather data plus the energy consumption of the
building j, calculated by Equation (3), and form matrix Γ with T + 1 rows and z + 1 columns
as follows:

Γj
(1) =


π

j
h(τi) θ

j
a(τi) π

j
s(τi) ν

j
w(τi) ρ

j
h(τi)

π
j
h(τi+1) θ

j
a(τi+1) π

j
s(τi+1) ν

j
w(τi+1) ρ

j
h(τi+1)

. . . . .

. . . . .
π

j
h(τi+T) θ

j
a(τi+T) π

j
s(τi+T) ν

j
w(τi+T) ρ

j
h(τi+T)


(T+1)×(z+1)

(9)

Note that z is the number of weather sensor data.
Step (2) Calculate the mean of all columns, mean

(
Γj), and deduce from the corre-

sponding columns (I is the unit matrix):

Γj
(2) =

[
Γj
(1)

]
(T+1)×(z+1)

− [I](T+1)×1 ×mean
(

Γj
)

1×(z+1)
(10)

Step (3) Form the covariance matrix:

Γj
(3) =

[
Cov(Γj

(2))
]
(z+1)×(z+1)

(11)

Step (4) Calculate the eigenvalues Γj,EValue
(4) .

Step (5) Sum the diagonal arrays of Γj,EValue
(4) (scalar value):

Γj
(5) = SumDiag(Γj,EValue

(4) ) (12)

Step (6) For z = 1:Z, remove column z and replicate steps 2 to 5.
Step (7) Calculate the difference between the scalar value of Γj

(5) for primary and

reduced Γj
(1) as follows:

Γj
(6) = Γj

(5) − Γj,Reduced
(5) (13)

Step (8) Form a matrix whose first column is Γj
(6) in descending order, and the second

column is the associated weather variable z. The highest z weather data show the highest
PCA rank. Note that to make the Γj

(6) values comparable, the weather data are normalized
based on the maximum value in the measurement period.

2.3. Energy Model Forecasting

This section aims to forecast the heat energy consumption of the buildings using
the processed data in Sections 2.1 and 2.2 To achieve this aim, three machine-learning
algorithms, including ANN, LRM, and k-NN, are addressed.

(1) Artificial Neural Network (ANN): the ANN is a fast, efficient and practical soft-
ware tool to forecast the future demand of power systems [26], renewable power genera-
tion [27], and heat demand of residential buildings. In this study, a multi-layer perceptron
(MLP) is used to train the forecasting engine with historical weather and energy variables
as input data. The MLP forecasts the energy consumption of the buildings for future time
slots in response to stochastic/uncertain estimation of future weather conditions. The ANN
is trained and simulated in MATLAB software.

(2) Linear Regression Model (LRM): The LRM is a simple method to find a linear
relationship between the input and outputs of a system. In this study, the LRM aims to
forecast the future heat consumption of the buildings in response to the weather data. The
LRM is trained by the historical energy consumption of the households in R software.
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(3) K-Nearest Neighbors (k-NN): The k-NN is a classic, simple, and efficient forecast-
ing method. This method observes the measured data and finds the k-nearest neighbors
for future estimation [28]. The forecast values are calculated based on the average of the
k-nearest neighbors. In this study, the approach investigates the similarity between the
weather variables of historical data and future forecasts. Detecting the nearest neighbors,
the future heat consumptions are calculated based on the weighted average of the k-nearest
neighbors.

2.4. Error Criteria

In this stage, the mathematical formulations of error criteria are stated. The error
indices convey the accuracy of the forecasting approaches. To make the approach compa-
rable with other studies, the error indices are described in terms of energy unit (kW) and
percentage (%). The former gives the HSP a general insight into the forecasting accuracy
concerning the nominal energy consumption. The latter makes it comparable with the
forecasting accuracy of other studies. Then, the error criteria are described as follows:

MAE =

N
∑

i=1

∣∣∣π j, f
h,i − π

j
h,i

∣∣∣
N

(14)

NMBE =

N
∑

i=1
π

j, f
h,i − π

j
h,i

N × π
j
h,i

(15)

MAPE =
1
N
×

N

∑
i=1

∣∣∣∣∣∣π
j, f
h,i − π

j
h,i

π
j
h,i

∣∣∣∣∣∣ (16)

MBE =

N
∑

i=1
π

j, f
h,i − π

j
h,i

N
(17)

CVRMSE =
1

π
j
h,i

×

√√√√√ N
∑

i=1

(
π

j, f
h,i − π

j
h,i

)2

N
(18)

where MAE, NMBE, MBE, and CVRMSE stand for mean absolute error, normalized mean
bias error, mean bias error, and coefficient of variation of the root mean squared error,

respectively; π
j, f
h and π

j
h are forecasted and measured energy data; π

j
h,i is the mean of

measurement data; and N is the number of measurement data.

3. Numerical Studies

To examine the proficiency of the suggested approaches, real sensor data are used.
The sensor data include (1) weather data, i.e., ambient temperature, solar irradiation, wind
speed, and humidity, (2) mixing loop data including inflow/outflow temperature and mass
flow. Five months’ worth of data from 1 November 2020 to 31 March 2021 is used. Among
them, the first three months are used for training, and the next two months are addressed
for forecasting. The data correspond to real sensor measurements from Aalborg Living
Lab (ALL) in Aalborg, Denmark. The suggested approaches are coded in MATLAB R2019
software and R language using computation hardware with a 2 GHz Intel processor and
16 GB RAM.

First, the PCA is run to determine the most informative weather data. The results
of the PCA analysis are stated in Table 2. As the table reveals, the ambient temperature,
solar irradiation, wind speed, and humidity are the most informative weather variables in
descending order. Among them, temperature and solar power are the highest priority, with
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around 40.67% and 29.28% impact factors, respectively. It means that if these two weather
variables are eliminated from the sensor data, a major part of important data will be lost.
Therefore, the two variables are selected as informative weather data to forecast the heat
consumption of the buildings.

Table 2. PCA ranks for 4 weather variables.

Weather Variable Difference of
Eigenvalues Γ

j
(6)

Normalized Impact
Factor (%) PCA Rank

Outdoor Temperature 0.0593 40.67 1

Solar Irradiation 0.0427 29.28 2

Wind Speed 0.0388 26.61 3

Humidity 0.0050 3.44 4

It is worth mentioning that other weather variables may affect the energy consumption
of buildings. These data may include cloud cover and snowfall [29].

Figure 3 describes the weather data, including ambient temperature and solar irra-
diation, for the 5 months’ study horizon. In the forecasting period, the upper and lower
forecasting thresholds are depicted in addition to the nominal forecasting.
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Figure 4 describes the forecasting of building heat consumption in response to the
nominal informative weather data, i.e., ambient temperature and solar power, from
1 February to 31 March 2021, using the ANN. Based on the graph, the ANN estimates
the heat consumption reasonably well. For this reason, the forecasting method tracks the
main trend of heat consumption with high accuracy. In contrast, there are some peak
periods in the daily heat profile with increased gaps between the measured and forecasted
data. To elaborate on the gaps, Figure 5 depicts one-day heat consumption of the building.
As can be seen, the heat profile experiences two peak periods, including hours 7–11 and



Buildings 2022, 12, 289 10 of 17

16–18. The peak periods convey the peaks of DHW for morning and evening showers. The
reason is that the suggested approach forecasts heat consumption in response to ambient
temperature and solar irradiation. Therefore, the occupancy patterns and DHW data are not
available to be captured by the algorithm. Generally, many residents are reluctant to reveal
the private data associated with their occupancy patterns. For this reason, energy meter
sensors for DHW and occupancy patterns are not installed in most living labs. It shows
the importance of the suggested approach to investigate the accuracy of the forecasting
approach without needing private data of occupancy patterns.
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Figure 5. One-day heat consumption of the building with morning and evening shower peaks.

Figure 6 shows the distribution of MBE and MAE in kW during the forecasting period.
The error criteria are compared with the nominal energy consumption of the building as
30 kW. Based on the bar graph, the major error is distributed in the interval [−1 + 1] kW.
Besides, the average MAE is less than 1 kW.

Figure 7 splits the error criteria in terms of hourly, daily, and monthly values. Regard-
ing the hourly distribution, the highest error occurs in hours 16–18 when residents are back
home after work. The immediate change of occupancy patterns has made the highest error
in the forecasting approach. In contrast, the lowest hourly errors are observed in hours 2–3
and 23–24 when residents are asleep and no change is expected in the occupancy patterns.

Based on the daily distribution, Sunday encounters the highest error compared to
weekdays. Following a similar pattern, the occupancy pattern at the weekend is different
to that on weekdays; therefore, the forecasting approach faces lower accuracy. Meanwhile,
the error percentage in March is higher than in February. One reason is that the average
temperature in March is higher than in February. Therefore, the temperature in February is
much closer to the temperature during the training period, i.e., from November to January.
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Table 3 compares the error criteria of the three machine-learning algorithms for the
test building. In the analysis, the error parameters are calculated based on both energy
and percentage units. As the table reveals, the ANN demonstrates better competence in
comparison to LRM and k-NN in all criteria. Comparing LRM and k-NN, the LRM shows
higher accuracy in MAE and MAPE. Therefore, the k-NN has lower residuals in MBA and
NMBE criteria.

Table 3. Comparison of error criteria for three machine-learning algorithms.

Forecasting Model MAE (kWh) MAPE (%) MBE (kWh) NMBE (%) CVRMSE (%)

ANN 0.96 8.95 −0.00 −0.02 7.83

LRM 1.94 16.14 −0.36 −2.28 14.89

k-NN 2.12 16.36 −0.03 −0.18 16.37

Figure 8 illustrates the impact of weather data uncertainty, i.e., ambient temperature
and solar irradiation, on the error criteria. The weather uncertainties are characterized in
terms of positive and negative deviation envelopes. The analysis is done for MAE, MAPE,
NMBE, and CVRMSE. Based on the graphs, the following issues are observed:

1. The concurrent uncertainties of outdoor temperature and solar power pose an error
in the energy estimation of up to 50% higher when compared to single weather uncertainty.
For this reason, two different patterns are detected. In some error criteria, e.g., Figure 8d,f,
the uncertainties of ambient temperature and solar power cause different error values. In
other cases, e.g., Figure 8e,g, the error criteria of both uncertain variables are approximately
the same. In both cases, the concurrent uncertainties of temperature and solar power
increases the energy forecasting error considerably.

2. In most cases, the ambient temperature uncertainties have a higher impact on the
accuracy of energy estimation compared to solar irradiation. This confirms the PCA results
in Table 2, conveying the contributions of 40.67% and 29.28% for temperature and solar
power, respectively.

3. For a specific error criterion, the negative and positive deviations follow different
patterns. In MAPE, the underestimation (i.e., negative deviations) poses higher errors than
the overestimation (i.e., the positive deviations). Regarding the CVRMSE, solar power
shows a higher impact on the energy estimation in positive deviations. In contrast, barely
any change is seen in the impact of solar power for negative deviations.

Figure 9 makes a comparison between the error criteria of the suggested approach and
10 prominent research studies between 2019 and 2022. Therefore, the percentage criteria,
including NMBE, MAPE, and CVRMSE, are addressed. In some studies, upper and lower
thresholds are presented for error criteria based on different forecasting methods and case
studies. Regarding the NMBE, the suggested approach exhibits the best accuracy compared
to the other 10 studies. For MAPE, although the other studies present better error values,
the obtained criterion is within the standard level. Considering the CVRMSE, the proposed
approach shows a higher accuracy than six studies out of ten.
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4. Future Works

This study suggested a data-driven approach as a means of forecasting the heat
consumption of residential buildings supplied by a mixing loop, using high-priority data.
For the sake of energy forecasting, the HSP benefits from the following advantages:

1. Cost-effective operation of the district heating and contracted buildings to turn
up/down the heat extraction when the energy price is low/high.

2. Flexible operation of the heating systems to provide demand flexibility for the
upstream networks during energy shortage, or when the system reliability is jeopardized
due to unforeseen failures.

3. Facilitate the integration of renewables into DH systems to decarbonize cities and
suburbs.

Although the abovementioned items are the key points for HSPs, the DH plays a
more critical role in future energy system structures. In countries with high renewable
power penetration, like Germany and Denmark, the Power-to-X (P2X) structure makes it
possible to convert, store and reconvert the surplus renewable power. In this structure,
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multi-carrier energy systems, e.g., power, gas, and heat, benefit from the economic, reliable,
and flexible operation of the P2X. The DH and heating systems are one of the major parts of
the P2X, not only to consume energy but also to provide flexibility for other P2X sectors, e.g.,
power-to-mobility and power-to-gas. The aim of future studies is to address the following
concerns:

1. How the heat consumption of DH and aggregated buildings can be integrated into
the P2X energy structure;

2. How the mixing loop controls can be coordinated to provide power flexibility for
other P2X sectors, including power-to-mobility, power-to-hydrogen, etc.;

3. How large the share of DH and heating systems in the P2X structure need to be to
provide a reliable, economic, and flexible operation for different sectors;

The abovementioned challenges can be addressed in future studies to investigate the
contribution of DH and residential heating systems in the P2X structure.

5. Conclusions

This study suggested a practical approach to forecast the heat consumption of resi-
dential buildings supplied by a mixing loop of district heating. The approach proposed
a data-driven method to extract the heating consumption using sensor data, including
energy variables (i.e., inflow/outflow temperature and mass flow) and the weather data
(i.e., the outdoor temperature, solar power, wind speed, and humidity). The PCA ranks and
backward elimination were applied to determine the highest priority data. Finally, three
machine-learning algorithms, including ANN, LRM, and k-NN, are addressed to forecast
the future heat consumption of the building.

The simulation results showed that ambient temperature and solar power ranked
first and second, (ahead of wind speed and humidity) with contributions to the heat con-
sumption of 40.67% and 29.29%, respectively. Regarding the machine-learning algorithms,
the ANNs showed a higher accuracy for heat consumption forecasting compared to LRM
and k-NN. Therefore, the DHW consumption posed morning and evening residual peaks
in the daily energy profile. In the hourly and daily error analysis, it was revealed that
Sunday and the hours 16–18 on weekdays have the highest error margins due to changes in
occupancy patterns. In comparison to some recent studies, the suggested approach showed
high accuracy in two error criteria, including NMBE and CVRMSE.

The suggested approach can be used to estimate the flexibility potentials of residential
buildings in response to renewable power intermittency. Meanwhile, it can provide cost-
effective operation for HSPs considering dynamic and time-of-use energy tariffs. Although
the proposed approach offers the abovementioned advantages, future studies will focus
mainly on the role of residential heating systems in the P2X energy structures.
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