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Abstract: Nowadays, the increasing demand for concrete is causing serious environmental impact
including pollution and waste generation, rapid depletion of natural resources, and increased CO2

emission. Incorporating natural fibers in concrete can contribute toward environmental sustainability.
This paper is concerned with the use of natural fibers obtained from the plant species Phragmites
australis (PA). The plant is invasive, and rapidly grows abundantly along rivers and waterways,
causing major ecological problems. This research is part of a wide range investigation on the use
of natural fibers produced from the stem of PA plants in concrete. Using a machine, plant stems
were crushed into fibers measuring 40 mm in length and 2 mm in width, and treated with 4%
NaOH solution for 24 h. A total of four concrete mixes were prepared with varying additions of
treated fibers, ranging from 0% to 1.5% (by volume) with water to cement ratio of 0.5% (by volume).
Concrete specimens were tested at 3, 7, and 28 days. Testing included compressive strength, density,
total water absorption, and capillary water absorption. The results show that incorporating PA
natural fibers reduces the water absorption by total immersion and capillary action by up to 45%.
Moreover, there is a negligible decrease in concrete density and strength when fibers were added. It
is concluded that adding up to 1.5% natural PA fibers to concrete is a feasible strategy to produce
an eco-friendly material which can be used in the production of sustainable building material with
adequate mechanical and durability performance.

Keywords: natural fibers; concrete; Phragmites australis; capillary water absorption; sustainability

1. Introduction

Concrete is one of the most used materials worldwide in the field of building con-
struction. Consequently, using natural and renewable resources, such as plant fibers and
waste materials which require minimal processing, in concrete will contribute towards
eco-friendly and sustainable construction and emission reduction [1–11]. Plant fibers can
be extracted from different parts of plants without extensive processing before use. In
fact, natural fibers were used in some applications in the construction field early in the
19th century [12]. Later, synthetic fibers began to be used in concrete due to their supe-
rior effects on its properties. However, due to scarcity in raw material and high energy
consumption, attention is drawn again towards natural plant fibers [13,14]. These fibers,
with their abundant supply in nature, represent a promising sustainable approach to en-
vironmental protection, energy saving, and resource conservation. Research shows that
using such fibers in concrete can have a significant improvement on concrete properties,
including making it more tensile and ductile [15,16]. The primary advantage of using fibers
in concrete is represented by the significant improvement in concrete properties and its
relatively low cost [17]. Furthermore, using Natural Fiber Reinforced Composite (NFRC)
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will contribute towards a healthier and more sustainable environment [18]. In addition, the
use of fibers in concrete will reduce the size and number of cracks, and produce concrete
with better resistance to flexure, impact stresses, and many other physical and mechanical
properties. In addition, it will reduce the cost of construction and maintenance [19,20].
Nevertheless, one of the main concerns about using plant fibers in concrete is their effect on
its performance, especially its durability [21–23]. The durability of concrete depends mainly
on its ability to resist the penetration of external aggressive agents, such as chloride ions,
sulfate, oxygen, and carbon dioxide. Therefore, reducing the rate of water penetration into
concrete will reduce or delay the ingress of these substances. Water or fluid ingress can be
examined by determining the permeability, and water absorption by total immersion and
capillary action [24–26]. These properties can give an indication about the pore network in
the concrete matrix or microcracks that can provide a transport path for water or aggressive
agents. Sorptivity is an index of moisture transport into unsaturated specimens, and is an
important index of concrete durability [25–27].

The principle chemical composition of plant fibers is mainly lignocellulose (cellulose,
hemicellulose, and lignin), with varying proportion of these constituents, depending on
plant species and developmental stage of plant, among other factors [28]. Furthermore,
plant fibers have low density and high specific properties. However, the hydrophilic nature
and weak moisture resistance of plant fibers represent a major disadvantage for their
application in construction [16]. Therefore, alkali treatment has been frequently used to
modify the inherent properties of fibers, overcome their limitation for specific application,
and enhance their tensile strength and roughness [15]. In addition, the alkali treatment
method, which is also named Mercerization, is a common fiber treatment chemical method
which is extensively used by researchers [29,30]. While this treatment partially eliminates
lignin and hemicellulose, it entirely removes pectin, wax, and other organics from the
fibers’ surface. After this treatment, cellulose molecules become exposed, promoting the
connection between the fiber and matrix [15]. Geremew et al. [31], in their research about
alkali treatment of natural Palm fibers, conclude that the method of treatment that produces
the higher tensile strength with the required roughness was obtained by treating the fibers
for a duration of 24 h in a solution of 4% sodium hydroxide. The modulus of elasticity and
percentage of elongation were not significantly affected by the treatment process [8,32,33].
Therefore, in the current investigation, it was decided to use this treatment method.

Phragmites australis (PA) is one of the most worldwide distributed plant species. It is a
tall, fast growing perennial plant that can grow to a height of over 4 m. It has broad, pointed
leaves of 15–60 cm length and 1–6 cm width, and dense, fluffy, gray or purple flower heads
of 15–40 cm. PA is found on every continent, especially around river basins [34,35]. Owing
to its fast growth capacity and unique properties, the plant has been frequently used since
ancient times in various construction applications [36]. The plant is considered invasive,
causing nuisance to farmers and people who live by rivers. Sometimes the plants are cut
and burnt in the open air, which causes pollution. Therefore, using the fibers produced
from these plants in concrete and other construction applications would offer economic
and environmental benefits [35]. Normally, synthetic and expensive fibers are used to
improve the tensile properties and control cracks in concrete. Instead, using natural and
less expensive fibers of abundant and fast growing plant species such as PA in concrete
production can be of high economic and sustainable benefits to the environment and to
humans. Interestingly, PA is also used worldwide in both natural and constructed wetland
systems in the removal of various pollutants of water and wastewater, due to its high
capacity to uptake and bio-accumulate nutrients, heavy metals, and a wide array of other
pollutants [35]. After phytoremediation by PA, the plant has the potential to be used as a
source of high value products, such as biofuel and construction material, contributing the
economic and sustainable management of water pollution and wastewater, as well as the
production of sustainable concrete [36,37]. Since it does not absorb water or moisture due
to its silicon covering, the stem, in particular, is used in the construction of walls, partitions,
fences, roof hatching, and as an insulation material [38,39]. Further, heat treatment of
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Phragmites samples have shown that drying at 120–160 ◦C increases its flexural strength and
the technical elasticity limit, highlighting the potential of Phragmites in the production of
cost-effective lightweight concrete blocks and as feedstock for construction materials [40].

The above promising findings have attracted an increasing interest to investigate the
incorporation of Phragmites fibers in concrete mixtures. In a study by Shon et al. [37], the
physical, mechanical, and thermal properties of a mortar mixture containing PA fibers
growing in Kazakhstan were examined. Fibers were prepared by using an automated
crusher after open-air drying, and added at three proportions (i.e., 2%, 4%, and 6%) to
mortar mixtures. Although the use of fibers in mortar mixture did not improve both
compressive and flexural strengths compared to the plain mixture (0% fibers), the authors
concluded that the addition of fibers had the advantage to produce a significant decrease
in heat loss due to the lower thermal conductivity and higher porosity to density ratio. To
this end, research about fibers, and precisely about natural fibers, shows that adding fibers
at higher percentages than 2% can cause serious reduction in concrete workability, strength,
and durability. For this purpose, it is preferable to use fibers in moderate percentages
between 1% and 2% of the concrete volume [41]. Thus, there is still a need for more research
regarding the effect of the incorporation of PA fibers on concrete properties, given the
variations existing in PA ecotypes and incorporation proportions [42]. For this purpose,
this study examines the effect of the incorporation of 0.5, 1.0, and 1.5% fibers of PA stems
harvested from Bekaa Valley, Lebanon, on the mechanical properties and durability of
concrete including density, compressive strength, ultrasonic pulse velocity, and absorption
by total immersion and capillary rise.

2. Experimental Methodology
2.1. Materials

The PA plant material was obtained from the Bekaa Valley in Lebanon, where it grows
in abundance along the river and waterways (Figure 1). Using a machine, plant stems
were used to prepare natural fibers measuring 40 mm in length and 2 mm in width. The
dimensions of the fibers were based on a previous study [15]. After that, the fibers were
treated by 4% NaOH solution for 24 h, as previously described by Machaka et al. [15]. The
fibers were then washed, dried, and stored in polyethylene bags ready for use. The bulk
density of PA fibers was approximately 665 kg/m3. While the fine aggregate used was
a natural sand with a maximum size of 5 mm, the coarse aggregate was prepared with
crushed limestone, with a maximum size of 19 mm. The grading of aggregate conformed to
ASTM C33 and C136.The physical properties of both fine and coarse aggregates are shown
in Table 1. The cement used is PA-L 42.5, which conforms to EN 197 European norms (CEM
II/A-L) and to Lebanese standards (LIBNOR).
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Table 1. Properties of coarse and fine aggregates.

Aggregate (Type) Bulk Density Absorption % Fineness Modulus (FM)

Fine aggregate
(Natural sand) 2.63 1.07% 2.85

Coarse aggregate
(Crushed stone) 2.57 2.00% NA

2.2. Mix Proportions

In total, three concrete mixes of PA-0.5, PA-1.0, and PA-1.5 were prepared with 0.5%,
1.0%, and 1.5% of PA fibers (by volume). These mixes had a proportion of 1 (cement):
2.1 (fine aggregate): 2.6 (coarse aggregate) by weight and water to cement ratio (W/C) at
0.5 in all mixes. A mix of 0.0% fibers (PA-0.0) was also prepared as a control. Table 2 shows
the details of all concrete mixes.

Table 2. Details of concrete mixes.

Mix Code Fiber (% by Volume) W/C
Quantities (Kg/m3)

Cement Water Fine Aggregate Coarse Aggregate Fiber

PA-0.0 (Control) 0 0.5 370 185 790 965 0.00

PA-0.5 0.5 0.5 370 185 790 965 3.33

PA-1.0 1.0 0.5 370 185 790 965 6.65

PA-1.5 1.5 0.5 370 185 790 965 9.98

2.3. Mixing and Specimen Preparation

The coarse aggregate was first placed in the mixer, followed by the addition of PA
fibers, and then mixed for one minute in order to prevent the balling effect of the fibers.
Then, the fine aggregate and the cement were introduced to the mix, and the mixing was
resumed for two more minutes until a homogenous dry mix was obtained. The water was
then slowly poured onto the dry materials and the mixing continued until a homogenous
concrete mix was achieved. Following this step, concrete specimens were prepared using
steel molds, and compacted using a vibrating table. For each mix, six cubes of 100 mm in
size and 12 prisms of dimensions 100 mm × 100 mm × 50 mm were cast. The cubes were
used to determine the density, compressive strength, and ultrasonic pulse velocity (UPV).
The prisms were used to determine the water absorption by total immersion and capillary
rise. All specimens were cured in water at 20 ◦C, and testing was conducted at the ages of
3, 7, and 28 days.

2.4. Testing Methods

The compressive strength test was conducted according to ASTM C 31, C 39, C 192, and
C 617. The density and UPV testing conformed to ASTM-C642 [43] and ASTM-C597 [44],
respectively.

Prior to the total water absorption and capillary water absorption tests, specimens were
removed from water, and dried in the oven at 80◦ until specimens reached a constant dry
weight (wd). This normally took approximately 48 h. For the absorption by total immersion,
the specimens were totally immersed in water, and the weight (ww) of specimens were
determined at 5 min, 10 min, 20 min, 1 h, 2 h, 4 h, 24 h, and 48 h. The total water absorption
(TWA%) was calculated as follows:

TWA% = 100×
(

ww − wd
wd

)
(1)
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ASTM C1585 [45] was used to conduct the capillary water absorption. The dry
specimens were sealed on all sides, except the side touching the water, as shown in Figure 2.
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Figure 2. The schematic diagram of the capillary absorption test.

The depth of water was 4 ± 1 mm above the submerged face in order to maintain the
supply of water to the specimens (Figure 2). The weight of the water absorbed (wa) after
1 min, 3 min, 5 min, 10 min, 20 min, 30 min, 1 h, 2 h, 4 h, 24 h, and 48 h was recorded. The
weight absorbed versus the square root of curing time was plotted, and the slope of the
initial part of the curve was taken to represent the sorptivity index S [45,46] as follows:

S =
∆wa

∆
√

t
(2)

3. Results and Discussion

The results presented below describe the properties of concrete mixes prepared with
PA fibers being a potential resource material for the production of sustainable and green
concrete. The plant material used was collected from Bekaa Valley in Lebanon, where
PA is highly abundant, and may be considered an invasive species for its highly capacity
to tolerate Mediterranean conditions and high levels of water pollution [34]. The tested
PA fibers were exposed to alkali treatment to alleviate their hydrophilic property and to
promote their incorporation in the cement matrix. Alkali treatment is well recognized to
remove lignin, pectin, and hemicellulose, thus exposing cellulose molecules and roughening
of the surface of fibers while enhancing their bonding in the matrix and the mechanical
properties of the composite material [15,31,47]. Alkali treatment increases the tensile and
flexural properties, as well as the durability of fibers [48]. It is also considered as an efficient
and economic approach for the treatment of different natural fiber types [15,49–54].

3.1. Density

Figure 3 shows the fresh concrete densities of mixes with 0.5%, 1.0%, and 1.5% of
PA fibers as compared to the control mix (0.0% fibers) and. The results show that adding
fibers slightly decreased the fresh density of concrete. This decrease was approximately 2%,
4%, and 5% when using 0.5%, 1.0%, and 1.5% of PA fibers, respectively. This may be due
to the lack of full compaction and the creation of voids in the presence of fibers and the
lower density of fibers. Nevertheless, this decrease would allow for the assumption that the
addition of PA fibers up to 1.5% has a promising potential in the production of lightweight
concrete [42]. It could be noted that the addition of the fibers did not considerably decrease
density, as the values of mixes still fell within the range of concrete manufactured from
granite chippings that is between 2300 and 2500 kg/m3 [54].
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Figure 3. The effect of PA fibers at 0.5%, 1.0%, and 1.5% additions on densities of concrete mixes as
compared to the control mix (0.0% PA).

3.2. Compressive Strength

Figure 4 shows the effect of adding PA fibers on compressive strength of concrete
for the four mixes at 3, 7, and 28 days of curing. At three days of curing, adding up
to 0.5% of PA fibers did not affect the compressive strength. Using 1% and 1.5% fibers
caused a reduction of 13% and 33%, respectively. At seven days of curing, the compressive
strength for mixes with and without fibers is similar. The trend is similar at 28 days of
curing, with the exception of the mix with 0.5% fibers, where there is a slight reduction
in compressive strength. The compatible resistance to compressive stress observed with
fiber–concrete mixtures with the control (0.0% PA) may be due the alkali pre-treatment
of fibers enhancing their binding forces and adhesion within the concrete matrix. These
findings are in agreement with the results obtained elsewhere [15,16]. However, these
results are not consistent with those of untreated PA fibers and cement mixes reported by
Shon et al. [37], where a decrease in strength was observed. In the latter study, the addition
of fibers to the mixture at 2%, 4%, and 6% resulted in proportional deceases in compressive
strengths, with the lowest value being obtained with 6.0% PA, indicating a 57% strength
reduction compared to the control mixture (0% PA). This was attributed to the interlocking
strength between the fibers and cement that was significantly lower than that between
the cement particles. It was also indicated that the lack of bonding and slipping action
between the fibers themselves at higher fractions may also play a role. Consequently, both
the proportion of PA fibers and pretreatment are among the factors that should be well
considered in the preparation of PA fiber and concrete mixtures.

3.3. Ultra-Pulse Velocity

Ultrasonic pulse velocity (UPV) testing of concrete can detect the presence of voids,
cavities, cracks and defects, honeycombing, or other discontinuities [55]. Table 3 shows the
guidelines for qualitative assessment of concrete based on UPV test results [44].

Figure 5 shows the UPV values for concrete at 3, 7, and 28 days of curing. There is a
small reduction, up to 10%, in UPV in the presence of PA fibers at three and seven days of
curing. At 28 days of curing, the UPV values are similar. All UPV values at 7 and 28 days
are above 4 km/s, indicating a very good to excellent concrete quality (Table 3).
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Table 3. Quality of concrete based on UPV value (ASTM C597 2016).

Pulse Velocity Concrete Quality

>4.0 km/s Very good to excellent

3.5–4.0 km/s Good to very good, slight porosity may exist

3.0–3.5 km/s Satisfactory but loss of integrity is suspected

<3.0 km/s Poor, and loss of integrity exists.

3.4. Total Water Absorption

Total water absorption (TWA) is one of the concrete properties that affect the durability
of concrete. Figure 6 shows the TWA by total immersion of concrete mixes with and without
fibers. The TWA of the concrete depends on many factors, including mixture proportions,
curing duration, air content, and the presence of chemical and mineral admixtures [56].
The results show that adding PA fibers to the concrete decreases the concrete total water
absorption at all ages of curing. This decrease is systematic in that, as the addition of fibers
increases, the TWA decreases. The decrease ranges from 21% to 26% for concrete containing
0.5% fibers (PA-0.5), and 35% to 39% for concrete with 1.5% fibers (PA-1.5). This may
indicate that the accessible volume of pores is reduced in the presence of fibers as a result
of the alleviation of the hydrophilic property of fibers by the alkali treatment, increasing
their surface roughness and adhesion in the concrete matrix [57]. The observed decrease in
TWA in the tested concrete mixes is fully in line with results reported by Jamshaid et al. [58]
on water absorption capacity of the natural cellulosic fiber-reinforced concrete mixes with
different plant fibers and varying loading ratios of fibers. Findings revealed that mixes
with up to 2% fiber loading ratios had a reduced absorption capacity, as compared to plain
concrete, enhancing the durability and stability of mixes.
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Figure 5. The effect of adding PA fibers on the UPV of concrete mixes at 3, 7, and 28 days of curing.
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Figure 6. The effect of adding PA fibers on the total water absorption (TWA) of concrete mixes at 3, 7,
and 28 days of curing.

Figure 7 shows the correlation between the compression strength and TWA of concrete
mixes containing 0.0, 0.5, 1.0, and 1.5% PA fiber additions at different curing ages. There
exists a strong inverse linear correlation between the compressive strength and TWA,
indicated by the R2 values of all the mixes (>0.97). The equations presented in the Figure
allow the prediction of the compressive strength of the amount of TWA at different curing
ages, which is crucial for the detection of the durability of mixes.
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Figure 7. Correlation between compressive strength and total water absorption at different
curing ages.

3.5. Capillary Water Absorption

Figure 8 shows the sorptivity index (water absorption by capillary action) of the four
concrete mixes with different additions of PA fibers. The capillarity water absorption repre-
sented by the term named the sorptivity index, which is the rate of absorption during the
first 20 min of water absorption test by capillary action, as described before in Equation (2).
The results indicate that adding PA fibers decrease the sorptivity index of the concrete. As
the percentage of fibers increases, the sorptivity index decreases. This is similar to the trend
observed for water absorption by total absorption. At three days of curing, the decrease in
sorptivity index ranged from approximately 47% to 58% at 0.5% and 1.5% fibers addition,
respectively. The corresponding reduction at seven days of curing was 18% to 32%, and
that at 28 days was 31% to 42%, respectively. The percentage decrease in sorptivity index is
clearly presented in Figure 9 for mixes with and without PA fibers at 3, 7, and 28 days of
curing. The decrease is in agreement with results reported by Kaplan and Bayraktar [59]
for concrete containing up to 2% natural fiber additions. This may indicate that fibers at
specific ratios may reduce concrete porosity [60].
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Figure 8. The effect of adding PA fibers on the sorptivity index of concrete mixes at 3, 7, and 28 days
of curing.
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Figure 10 shows the correlation between the compression strength and sorptivity
index of concrete mixes containing 0.0, 0.5, 1.0, and 1.5% PA fiber additions at different
curing ages. The graph suggests that as the compressive strength increases the sorptivity
decreases. With the exception of the control mix, there is a strong linear relationship with
R2 values above 0.91. The trend in the results is similar to those reported in Figure 7.

Buildings 2022, 12, x FOR PEER REVIEW 10 of 14 
 

As the percentage of fibers increases, the sorptivity index decreases. This is similar to the 
trend observed for water absorption by total absorption. At three days of curing, the de-
crease in sorptivity index ranged from approximately 47% to 58% at 0.5% and 1.5% fibers 
addition, respectively. The corresponding reduction at seven days of curing was 18% to 
32%, and that at 28 days was 31% to 42%, respectively. The percentage decrease in sorp-
tivity index is clearly presented in Figure 9 for mixes with and without PA fibers at 3, 7, 
and 28 days of curing. The decrease is in agreement with results reported by Kaplan and 
Bayraktar [59] for concrete containing up to 2% natural fiber additions. This may indicate 
that fibers at specific ratios may reduce concrete porosity [60]. 

Figure 10 shows the correlation between the compression strength and sorptivity in-
dex of concrete mixes containing 0.0, 0.5, 1.0, and 1.5% PA fiber additions at different cur-
ing ages. The graph suggests that as the compressive strength increases the sorptivity de-
creases. With the exception of the control mix, there is a strong linear relationship with R2 
values above 0.91. The trend in the results is similar to those reported in Figure 7. 

 
Figure 8. The effect of adding PA fibers on the sorptivity index of concrete mixes at 3, 7, and 28 days 
of curing. 

 
Figure 9. The effect of adding PA fibers on the percentage decrease in the sorptivity index of con-
crete mixes at 3, 7, and 28 days of curing. 

6.44

3.82 3.753.36 3.1
2.6

3.1 2.83
2.45

2.7 2.57
2.18

0

1

2

3

4

5

6

7

Day 3 Day 7 Day 28

So
rp

tiv
ity

 In
de

x (
g/

m
in

0.
5 )

Curing Age in days

0.00% 0.50% 1.00% 1.50%

48%

19%

31%

52%

26%

35%

58%

33%

42%

0%

10%

20%

30%

40%

50%

60%

70%

Day 3 Day 7 Day 28

Pe
rc

en
ta

ge
 o

f d
ec

re
sa

se
 in

 
So

rp
tiv

ity
 In

de
x

Curing Age in days

0.50% 1.00% 1.50%

Figure 9. The effect of adding PA fibers on the percentage decrease in the sorptivity index of concrete
mixes at 3, 7, and 28 days of curing.
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4. Conclusions

Natural fibers of abundant and fast growing plant species such as PA have the potential
to be incorporated in concrete mixes for the production of sustainable building materials
with enhanced mechanical and durability performance. The present experimental study
examined the effect of adding PA natural fibers on the concrete properties which included
density, compressive strength, UPV, TWA by total immersion, and sorptivity index by
capillarity. The following conclusions may be drawn from the current investigation:
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The density of concrete is slightly reduced by up to 5% in the presence of fibers,
possibly due to the lower density of fibers combined with the lack of complete compaction
and the possible creation of isolated pores.

There is a decrease in compressive strength in the presence of fibers. During the
early ages of curing (i.e., 3 days), this decrease is 34% at 1.5% fibers addition. However, at
later curing ages (i.e., 28 days), there is only a slight or negligible decrease in compressive
strength when fibers are added to the concrete mix.

Similarly to those of the compressive strength, the UPV values are slightly reduced
in the presence of fibers. This may be due to the creation of isolated voids in the con-
crete. Beyond seven days of curing, the UPV values are above 4 km/s indicating a good
quality concrete.

The TWA by total immersion and by capillary rise (sorptivity index) are decreased in
the presence of increasing amounts of PA fibers. This decrease is apparently not associated
with an increase in compressive strength or UPV. This may be justified that although the
presence of PA fibers may have caused the discontinuity of pores causing their isolation.

Finally, adding PA fibers to the concrete mix can produce concrete with adequate
mechanical properties, and may improve the durability if the ingress of water is reduced
(i.e., less water absorption by total immersion and capillary action). More investigation
should be conducted on the long-term performance of concrete with PA fibers in order to
assess the durability of concrete and impact of fibers on its structure.
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