
����������
�������

Citation: Liu, X.; Zhao, S.; Wang, P.;

Wang, R.; Huang, M. Improved

Data-Driven Stochastic Subspace

Identification with Autocorrelation

Matrix Modal Order Estimation for

Bridge Modal Parameter Extraction

Using GB-SAR Data. Buildings 2022,

12, 253. https://doi.org/10.3390/

buildings12020253

Academic Editors: Minshui Huang

and Jianfeng Gu

Received: 13 January 2022

Accepted: 18 February 2022

Published: 21 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Improved Data-Driven Stochastic Subspace Identification with
Autocorrelation Matrix Modal Order Estimation for Bridge
Modal Parameter Extraction Using GB-SAR Data
Xianglei Liu 1, Songxue Zhao 1, Peipei Wang 2, Runjie Wang 1,* and Ming Huang 1

1 Key Laboratory for Urban Geomatics of National Administration of Surveying, Mapping and Geoinformation,
Engineering Research Center of Representative Building and Architectural Heritage Database, Ministry of
Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
liuxianglei@bucea.edu.cn (X.L.); 210813j120005@stu.bucea.edu.cn (S.Z.); huangming@bucea.edu.cn (M.H.)

2 Software Engineering Center Chinese Academy of Sciences, Beijing 100190, China; ppwang@sec.ac.cn
* Correspondence: wangrunjie@bucea.edu.cn

Abstract: With the advantage of non-contact measurement, ground-based synthetic aperture radar
(GB-SAR) has been widely used to obtain the dynamic deflection of various bridges. Data-driven
stochastic subspace recognition (Data-SSI), a popularized time-domain technique, is commonly used
for modal parameter identification of bridges. To improve the computational efficiency and accuracy
of the Data-SSI method for bridge modal parameter estimation using GB-SAR, this paper proposes
an improved Data-SSI method. First, boxplot data filtering is applied to screen out the error points to
generate a Hankel matrix. Second, the Hankel matrix compression method is presented to reduce the
ill-conditioned vectors in the column vectors of the Hankel matrix to improve calculation efficiency.
Finally, the exact modal order (EMO) modal estimation algorithm based on the autocorrelation matrix
is adopted to reduce the generation of false modes and improve the calculation efficiency. The results
of simulation and field experiments show that the natural frequency values for the improved Data-SSI
method are 2.3208 and 2.3189 and the damping ratio coefficient values are 8.10 and 8.08, under
windows 1 and 2, respectively. The operation times using the improved Data-SSI method are 2.02 s
and 7.61 s under windows 1 and 2, respectively. This proves that the proposed improved Data-SSI
method has higher accuracy and computational efficiency.

Keywords: bridge; modal parameter extraction; GB-SAR; dynamic deflection; Data-SSI; modal
order estimation

1. Introduction

Bridge dynamic deflection is one of the most important indicators to reflect bridge
structural abnormality, including the quality, operating state, and stiffness, and further
provide obvious feedback on the overall deformation of bridges [1]. Compared with the
traditional contact transducers, such as piezoelectric accelerometers, optical fiber sensors,
strain gauges, and inductance meters, ground-based synthetic aperture radar (GB-SAR),
a non-contact measurement technology, can perform all-weather, large-scale, and long-
distance dynamic deflection measurement for the monitored bridges [2–4]. By treating the
reflection points as virtual sensors, the traditional point sensors can be reduced or even
eliminated [4]. Accurate comparison has been carried out between GB-SAR and accelerom-
eters on various large bridges, which showed that the accuracy of GB-SAR was better than
0.1 mm [5,6]. With the advantages of a wide frequency response range, high sensitivity of
the displacement and easy installation, GB-SAR has been widely applied in non-contact
dynamic deflection monitoring of various bridges. Structural modal parameters are impor-
tant indices to reflect the dynamic characteristics of the monitored bridge, which can be
identified from the corresponding dynamic deflection. It is of great significance to under-
stand the current characteristics of the monitored bridges with the determined structural
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modal parameters, which can provide a basis to perform state evaluation and abnormal
monitoring of the bridges [7,8].

The stochastic subspace identification (SSI) method, an extension of the subspace state
space system identification method, has been widely used in operational modal analysis
(OMA) [8,9]. As the latest development of the time domain identification method, the SSI
method can directly extract structural modal parameters from the output response signal
of the structure under environmental excitation. With the characteristics of robustness,
high identification accuracy, and stability, the SSI method can be used to accurately identify
the frequency and damping ratio of the response signal. It has been widely used to
extract modal parameters from the dynamic deflection of the monitored bridges [10–18].
Data-driven stochastic subspace identification (Data-SSI) and covariance-driven stochastic
subspace identification (COV-SSI) are the two favorite modal parameter identification
techniques [8,11]. They are all derived from the different weight matrices before the
singular value decomposition (SVD). Compared with the COV-SSI method, the Data-SSI
method has the ability to process a large amount of input and output data at the same time,
which can ensure higher stability and accuracy. Furthermore, for the Data-SSI method,
the state space matrices can be identified with robust numerical methods, such as SVD,
least squares, and quadrature rectangle (QR) decomposition. Therefore, Data-SSI has
been validated as one of the most robust and accurate identification methods to extract
more effective information in many experiments and engineering applications [6]. George
et al. proved that the Data-SSI method is accurate and effective to identify the structural
abnormality in a structural abnormal monitoring experiment for simple structures with
few components [9]. Dilena and Morassi performed a dynamic deflection measurement
experiment for a cracked steel beam, which had a high accuracy in obtaining the crack
position using Data-SSI method [7]. Boonyapinyo used the Data-SSI method to extract the
modal parameters of a bridge model excited with the wind, and the results showed that
the bridge coupling aerodynamic derivative extracted by the Data-SSI method was closer
to the true value than the COV-SSI method [19].

However, the accuracy of Data-SSI is limited by the noise existing in monitored data.
During the dynamic deflection acquisition of the monitored bridges using GB-SAR, noise
and abnormal data due to environmental incentives will inevitably be generated. Moreover,
modal omissions and false modalities may be caused for mode estimation using the singular
value average method, due to empirical judgment for dividing the singular value inflection
point of the projection matrix. In addition, the steady-state graph modal estimation method
is still based on empirical judgments; it has a complicated structure and requires a large
amount of calculation. Ubertini proposed a Data-SSI method to filter the error modalities for
automatic modal identification of two field bridges. The results indicated that the Data-SSI
method used is effective for natural frequency identification [20]. Hoofar et al. proposed an
improved Data-SSI with a weight matrix to perform structural health monitoring and modal
parameter identification for Alamosa Canyon Bridge; the experimental results showed
that the improved Data-SSI has a high robustness [21]. However, as the Hankel matrix
is directly composed of dynamic response signals, the number of columns of the Hankel
matrix tends to infinity, which requires a large amount of memory, theoretically. Moreover,
QR-decomposition and SVD decomposition operations increase the computational burden
in the identification process greatly.

For the bridge dynamic deflection value collected by GB-SAR, it has an important
impact on the collected data of the noise generated by the environmental excitation. The
traditional Data-SSI method not only has a low calculation efficiency, but also contains
ill-conditioned column vectors during the process of generating the Hankel matrix. They
easily produce false modals and reduce the accuracy of the results. Therefore, to efficiently
obtain the accurate structural modal parameters of the monitored bridge based on the
dynamic deflection collected by GB-SAR, in this study, an improved Data-SSI method with
autocorrelation matrix modal order estimation is proposed. In order to reduce the influence
of noise and abnormal data for the dynamic deflection of the monitored bridge obtained by
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GB-SAR, boxplot data filtering is used to screen out the error points to generate the Hankel
matrix. To reduce the ill-conditioned vectors in the column vectors of the Hankel matrix,
the Hankel matrix compression method is presented to improve calculation efficiency. To
reduce the generation of false modes and improve the calculation efficiency, an exact modal
order (EMO) estimation algorithm based on the autocorrelation matrix is adopted.

2. Methodology

The entire workflow of the improved Data-SSI method is shown in Figure 1, which
can be used to extract the accurate structural modal parameters of the bridges based on
the dynamic deflection acquired by GB-SAR. It includes the following three key steps:
(1) boxplot data filtering is adopted to reduce the effects of noise and abnormal data to
generate the Hankel matrix, (2) the Hankel matrix compression method is presented to
reduce the ill-conditioned vectors in the column vectors of the Hankel matrix, which
can improve calculation efficiency, and (3) an EMO estimation algorithm based on the
autocorrelation matrix is adopted to reduce the generation of false modes and improve the
calculation efficiency.

Figure 1. Workflow of the improved Data-SSI method.
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More detailed Data-SSI algorithm principles and processes can be found in [10,11].
This article will not discuss them further due to space limitations.

2.1. Boxplot Data Filtering

As a basic tool for visualizing the arrangement and statistical characteristics of data, a
boxplot can provide univariate information for multivariate display [22]. The noise and
abnormal data often are produced to pollute the obtained dynamic deflection, which are
much larger (or smaller) than the vibration amplitude of the bridge itself. Therefore, in this
study, boxplot filtering is performed to remove these abnormal data.

A schematic diagram of the working principle of boxplot filtering is shown in Figure 2.
For a set of original signals, it needs to calculate 5 important values to build a box-plot
model, including the median M, upper quartile UQ, lower quartile LQ, upper limit UL,
and lower limit LL. In this study, the dynamic deflection is sorted in descending order in
the boxplot. Therefore, M, UQ, and LQ can be easily found individually. UL and LL are
obtained by the following equations:

UL = UQ + k× IQR (1)

LL = LQ− k× IQR (2)

IQR = UQ− LQ (3)

Figure 2. Schematic diagram of the working principle of box-plot filtering.

For the coefficient k in Equations (1) and (2), Frigge et al. have explored k in depth and
conducted experiments with a large number of small-to-medium Gaussian samples [23].
The experiment mainly discusses the effect of k being 1, 1.5, 2, and 3 on the removal
efficiency of data outliers under different sample sizes. The results show that when k = 1.5,
the outer proportion of each sample is about 25%, which is more suitable for removing
outliers. Although the values of k and n (sample size) both affect the outlier removal rate of
the boxplot, k = 1.5 is suitable and works well for any data size [23].

The skewness and distribution of the data can be estimated according to the positions
of LQ, UQ, and M. Potential outliers in the input dataset can be calculated and removed
directly by filtering the boxplot data. During the calculation of statistical data, due to
potential outliers being considered, the boxplot has the ability to identify and resist the
outliers in the data.

2.2. Hankel Matrix Compression

For the traditional Data-SSI method, the Hankel matrix is mainly constructed from
the output data of structural dynamic response under environmental excitation [13]. The
purpose of Hankel matrix construction is to obtain column subspace through projection.
However, if some column vectors in the matrix have some small values, the subspace
may lead to low-resolution projections, which will affect the identification results. In
addition, theoretically, the number of columns of the Hankel matrix tends to infinity,
which undoubtedly increases the computational pressure and memory consumption of the
computer [24,25]. In this study, the “ill-conditioned” column vectors can be regarded as
column vectors with lower specifications, which not only consumes computing memory,
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but may also cause invalid matrix projection. Therefore, it can compress the Hankel matrix
by eliminating the “ill-conditioned” column vectors in the matrix.

Denote the denoised signal {x′} using boxplot filtering, and construct the Hankel
matrix with Equation (4).

H =

[
Yp

Yf

]
=



x0 x1 . . . xj−1
x1 x2 . . . xj
. . . . . . . . . . . .

xi−1 xi . . . xi+j−2

xi xi+1 . . . xi+j−1
xi+1 xi+2 . . . xi+j
. . . . . . . . . . . .

x2i−1 x2i . . . x2i+j−2


(4)

where H is the constructed Hankel matrix and Yp is the row space representing the “past”
composed by the upper half of the matrix. Yf is the row space of representing the “future”
composed by the lower half of the matrix. i is the row and j is the column of matrix H.

The choice of parameter i depends on various factors related to the type of structure
to be identified, including the length s of the input signal and the sampling frequency f s.
The choice of i is related to the lowest frequency f1 of the considered structural system.
Assuming that there are nc or more cycles of the lowest frequency f1 within the range of
signal length i, then:

i
f s

f1 > nc (5)

Since it contains at least one cycle, i can be expressed as:

i ≥ nc
f s
f1

= ncβ (6)

β =
f s
f1

(7)

Although a larger value of i can make a larger time window to ensure the algorithm
is more stable, too large a value of i will lead to a decrease in computational efficiency.
Therefore, to extract enough information from the observable range space, the number
of rows of the “future” output matrix is relatively large. According to Equation (6), the
minimum value of i can be determined through a complete minimum frequency cycle, but
the value of i in different situations needs to be judged empirically.

The Hankel matrix can be divided into m column vectors according to each column,
and further calculate the norm of each column vector. Define hmax as the largest norm. The
“ill-conditioned” column vector with too low values can be deleted to limit the number of
matrix column vectors using Equation (8).

‖hi‖ ≥ αhhmax, i ∈ (1, mh) (8)

where hi represents any i-th column vector in the Hankel matrix. ah represents the compres-
sion ratio of the matrix between the range of (0, 1) and hmax represents the largest column
vector in the Hankel matrix. mh represents the number of columns of the Hankel matrix.

2.3. Autocorrelation Matrix EMO Estimation Algorithm

For the EMO method, it is basically flat for the white noise power spectral density
curve [26]. Since the power spectral density of the input signal can be represented with
the eigenvalues of the autocorrelation matrix (Rx), the connection point between the
signal and the noise subspace will change significantly. This kind of change cannot be
directly identified because it is impossible to define a threshold for the changed signal
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and the corresponding signal-to-noise ratio (SNR). Therefore, the relative difference RD
of continuous eigenvalues can be used to enhance the discrimination between the noise
subspace and signal.

RD =
λi − λi−1

λi+1
(i = 2, 3, · · · , M− 1) (9)

where λi is the i-th eigenvalue and the diagonal matrix of eigenvalues is sorted in descend-
ing order. M is the number of eigenvalues and we define RDI as the row number sequence
I of the RD.

As shown in Figure 3, the peak of the relationship between RD and RDI is the potential
demarcation point between the signal and noise subspace. The two consecutive eigenvalues
of a special complex frequency component pair are almost equal, so the value of the odd
position in the RD diagram is close to zero. Under normal circumstances, the appropriate
mode order can be selected according to the RDI corresponding to the first two peaks, but
when the amplitude of the harmonic component changes greatly, the selection range is
extended to the five peaks to make the result more reliable.

Figure 3. RD and RDI of signal {x′}.

The largest RDI is selected as the preliminary estimation of the modal, and the selected
initial value is restricted to guarantee the signal component belonging to the signal subspace.
The verification conditions are given as:

λj ≥ β×
λj+1 + λj+2 + λj+3 + · · ·+ λm

m− j
(10)

where the highest RDI value j is the initial value of the mode order. β is the sensitivity
factor in the range 2–5 to determine the sensitivity of the estimated value. On the one
hand, the lower the value of β, the higher the sensitivity of the estimation algorithm, which
can cause overestimation, so that it can identify the small harmonic components. On the
other hand, if the value of β is high, it is likely to miss some very small order of magnitude
components, leading to underestimation of the modal order. However, as for the second
point, due to the low amplitude of the missing component, this has no great effect on signal
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reconstruction. If the algorithm fails to verify, the second highest value in the remaining
peak value is used as the estimated value, and the condition judgment is performed again.

The main steps of the proposed EMO estimation algorithm are as follows:

1. Construct order Hankel matrix X of order based on signal {x′},

X =


x′(0) x′(1) · · · x′(m− 1)
x′(1) x′(2) · · · x′(m)

...
...

. . .
...

x′(n−m) x′(n−m + 1) · · · x′(n− 1)

 (11)

2. Construct autocorrelation matrix Rx,

Rx =
X

n−m
× XH (12)

where X is the Hankel matrix of order m, n is the length of the signal {x′}, and XH

represents the Hermitian transpose of the matrix X;
3. Carry out eigenvalue decomposition on Rx and make the eigenvalue λ in descending order;
4. Calculate RD of continuous eigenvalues in descending order according to Equation (9)

and draw a histogram of RD and the corresponding eigenvalue row number RDI;
5. Select the maximum value of RDI corresponding to five peaks as the initial value of

the modal order estimation;
6. According to Equation (10), determine whether the spectral components belong to the

signal subspace. If the initial modal order value satisfies the verification condition,
modal order is RDI/2. Otherwise, select the next highest RDI as the new value of
modal order estimation, execute step 4 in sequence until the selected RDI satisfies the
verification condition.

Each mode of Rx can be represented by using two main eigenvalues [27]. Therefore,
the dominant eigenvalue will be twice the value of the modal order in the signal. Compared
with the main eigenvalues, the remaining eigenvalues of Rx are very small for the noise
subspace. When the value of i is twice that of the modal order, the value of RDI will rise
rapidly. The reason is that λi is a major eigenvalue belonging to signal subspace, and it is
also quite low due to belonging to the noise subspace. After λi to λm, the average value of
consecutive eigenvalues is also much smaller than λi. In the EMO algorithm, this logic is
used to accurately estimate the modal order.

3. Simulation Experiment
3.1. Modal Order Estimation Validation

To validate the accuracy of the autocorrelation matrix EMO estimation algorithm for
modal order estimation, a simulated signal S1 was selected with known modal parameters,
which has 4 frequency components. Signal S1 was used to test the strong anti-noise ability
of the autocorrelation matrix EMO estimation algorithm, which was added with Gaussian
noise under SNRs of 15, 20, and 25 db.

S1 = 2 cos(2π ∗ 0.25t + 1.5π)· exp(−0.17t) + 2 cos(2π ∗ 0.33t + 1.5π)· exp(−0.12t)
+2 cos(2π ∗ 0.78t + 0.5π)· exp(−0.13t) + 2 cos(2π ∗ 0.87t + 0.5π)· exp(−0.0702t)

(13)

Table 1 shows the modal parameters of signal S1 obtained by the autocorrelation matrix
EMO estimation algorithm, matrix pencil (MP) algorithm and eigen-system realization
algorithm (ERA) [4,28–30]. The inspection of this table highlights the following. (1) As
the parameterized methods for the above three methods, the accuracy of the frequency
and attenuation coefficient (AF) obtained by the autocorrelation matrix EMO estimation
algorithm is comparable to that of the MP method and the ERA method. (2) For the
simulated signal with lower SNR, the modal order was overestimated using the MP method
and the ERA method, which can cause false modes and mathematical modes. For example,
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for the simulated signal with SNR of 15 db, the modal order 4 can be accurately estimated
using the autocorrelation matrix EMO estimation algorithm, which is consistent with the
true modal order of signal S1. However, with the MP and ERA methods, modal orders
were 107 and 113, respectively. Therefore, an independent algorithm is needed to filter
out redundant modes. The results show that the autocorrelation matrix EMO estimation
algorithm can more accurately identify the modal order of the simulated signal S1 with
various SNRs, which has a stronger anti-noise performance.

Table 1. Comparison of modal order and modal parameters among the autocorrelation matrix EMO
estimation algorithm, MP method, and ERA method.

SNR 15 dB 20 dB 25 dB

Method Modal
Order

Frequency
(Hz) AF Modal

Order
Frequency

(Hz) AF Modal
Order

Frequency
(Hz) AF

Actual
value

none

0.230 0.140

none

0.230 0.140

none

0.230 0.140
0.290 0.090 0.290 0.090 0.290 0.090
0.460 0.110 0.460 0.110 0.460 0.110
0.690 0.030 0.690 0.030 0.690 0.030

EMO
estimation 4

0.2301 0.1410

4

0.2307 0.1400

4

0.2301 0.1410
0.2902 0.0908 0.2900 0.0920 0.2901 0.0910
0.4603 0.1101 0.4602 0.1100 0.4609 0.1120
0.6900 0.0315 0.6900 0.0300 0.6902 0.0320

ERA 113

0.2304 0.1420

104

0.2311 0.1402

54

0.2497 0.1410
0.2901 0.0990 0.2919 0.0922 0.3304 0.0920
0.4609 0.1110 0.4604 0.1102 0.7802 0.1110
0.6900 0.0315 0.6907 0.0308 0.6904 0.0300

MP 107

0.2300 0.1402

59

0.2300 0.1400

8

0.2298 0.1410
0.2901 0.0918 0.2901 0.0906 0.2900 0.0910
0.4602 0.1103 0.4600 0.1107 0.4600 0.1110
0.6900 0.0319 0.6901 0.0301 0.6900 0.0301

3.2. Sensitivity and Efficiency Validation

To verify the sensitivity and efficiency of the improved Data-SSI method. Signal S2
was simulated to make comparison with the traditional Data-SSI method and the Fourier
method, which has 3 frequency components.

S2 = 2 cos(2π ∗ 0.4t + 1.5π)· exp(−0.17t) + 2 cos(2π ∗ 0.28t + 0.5π)· exp(−0.05t)
+2 cos(2π ∗ 0.75t + 4.5π)· exp(−0.13t)

(14)

Table 2 shows the frequency and attenuation factor obtained by the Fourier method,
the traditional Data- SSI method, and the improved Data-SSI method. In this study, S2 was
added with Gaussian noise under the SNRs of 15 db and 20 db. The frequency and AF of S2
are identified with the average of 50 independent simulation estimations. For the Fourier
method, the length and distance of the window are set to 500 and 50, respectively. For the
improved Data-SSI method and the traditional Data-SSI method, the rows and columns
of the Hankel matrix are set to 200 and 1000. The inspection from this table highlights
the following. (1) Compared with the traditional Data-SSI, there is a great improvement
for the obtained frequency and attenuation factor using the improved Data-SSI method.
Especially, for the two close low-frequency parts, there is an improvement of more than 2%.
The results show that the improved Data-SSI method has a better sensitivity to distinguish
signals with close frequency. (2) The improved Data-SSI method can effectively identify
the three different frequency parts. In this study, the 0.3 Hz mode and the 0.35 Hz mode
were identified as a mixed mode by using the Fourier method. Therefore, for the modal
analysis of a dense frequency system, the Fourier method cannot effectively detect all
modes, especially for the modes with close frequencies in the signal, which is not suitable
for short-range mode signal estimation.
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Table 2. Sensitivity analysis among the improved Data-SSI method, traditional Data-SSI method, and
Fourier method.

SNR 15 dB 20 dB

Method
Estimated Value Std (%) Estimated Value Std (%)

F (Hz) AF F (Hz) AF F (Hz) AF F (Hz) AF

Actual
value

0.30 0.15 0.30 0.15
0.35 0.03 0.35 0.03
0.67 0.11 0.67 0.11

Improved
Data-SSI

0.308 0.153 0.27 1.12 0.299 0.150 0.11 0.82
0.350 0.033 0.05 0.40 0.349 0.030 0.04 0.25
0.670 0.111 0.09 0.17 0.670 0.113 0.05 0.37

Traditional
Data-SSI

0.310 0.151 2.27 3.71 0.301 0.153 2.14 4.11
0.3541 0.032 2.13 3.18 0.351 0.031 2.12 4.09
0.6701 0.112 0.06 0.19 0.679 0.112 0.05 0.39

Fourier
0.3503 0.032 0.01 0.10 0.353 0.032 0.01 0.03
0.6701 0.111 1.37 1.08 0.674 0.116 0.55 0.43

Table 3 shows the estimated modal order and the corresponding calculation time
for signals S1 and S2 with different SNRs between the improved Data-SSI method and
traditional Data-SSI method. The inspection from Table 3 highlights the following. (1) For
the traditional Data-SSI method, there is a problem that the initial value of the modal order
is overestimated. Therefore, to obtain the accurate modal order, a separate algorithm is
needed to filter out the true modals from the initial values. During the process, the modal
order is changed to a higher value from the initial value. Different state matrices can be
generated using these modal orders, of which the common eigenvalues represent the main
modals of the signal. Therefore, although the traditional Data-SSI method can be used to
obtain the accurate modal order, it requires a lot of calculation time for the establishment of
state matrices and the corresponding eigenvalue decomposition. (2) Due to the accurate
estimation of the modal order using the improved Data-SSI method, it is not necessary to
perform refinement screening operations to reduce false modalities, which can improve
the calculation efficiency. As shown in Table 3, the calculation time is less than 1.51 s for
signals S1 and S2 with different SNRs, which has an efficiency improvement of more than
two times. The results indicate that the improved Data-SSI method is more competitive in
computational efficiency than the traditional Data-SSI method.

Table 3. Comparison of the computation time and modal order between the improved Data-SSI
method and the traditional SSI method.

Simulation
Signal SNR (dB)

Traditional Data-SSI Method Improved Data-SSI Method

Initial Modal
Order

Final Modal
Order

Calculation
Time (s) Modal Order Calculation

Time (s)

S1
15 42 4 3.21 4 1.51
20 42 4 3.14 4 1.21
25 42 4 3.54 4 1.26

S2
15 57 3 3.10 3 1.12
20 60 3 3.19 3 1.16
25 51 3 3.09 3 0.91

4. Field Experiment and Analysis
4.1. Dynamic Deflection Acquisition

The Beishatan Bridge, located in the northwest of Beijing, China, was selected as the
experimental bridge in this study. Beishatan Bridge comprises the right sub-bridge (RSB)
and left sub-bridge (LSB) with the same length and width, as shown in Figure 4. Since
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the bridge has been determined to be damaged, it is periodically monitored to ensure its
operation safety. The currently known damaged area (15 m from the RSB) has a maximum
deflection change of about 8 cm. The image structural interferometry (IBIS-S) instrument, a
ground-based microwave interferometric radar, was used to obtain the dynamic deflection
of the two sub-bridges in this experiment [4]. Without installation of multiple units on the
monitored bridges, it has a higher range resolution of up to 0.5 m and a higher accuracy of
up to 0.01 mm [31,32]. The measurement condition of the RSB is shown in Figure 4a. The
instrument was assumed to be diagonally below the bridge, and the altitude angle of the
instrument was 32◦. To obtain the dynamic deflection of the same position of the LSB, the
same altitude angle and distance were used as shown in Figure 4b.

Figure 4. Layout of IBIS-S to obtain dynamic deflection. (a) Layout of IBIS-S of RSB and (b) layout of
IBIS-S of LSB.

The obtained dynamic deflections of the two sub-bridges are shown in Figure 5a,b.
Each group contains the dynamic deflection of 6 points with the sampling frequency of
98 Hz. During the acquisition of dynamic deflection, there are many sources of interference
that can generate noise and abnormal data to pollute the obtained dynamic deflection. For
example, for the dynamic deflection of points Rbin 42 and 48 shown by the red rectangle in
Figure 5b, they were deviated from baseline (0 mm) at the beginning caused by the passing
vehicles. Therefore, it is necessary to eliminate the effects of noise and abnormal data in the
dynamic deflection obtained using GB-SAR.

In order to control the influence of other environmental variables on the experiment,
the duration of the whole experiment was less than 40 min. Except for the processes of
sunrise and sunset, the temperature changes on the surfaces of similar structures at the
same location were not significant within a time interval of 40 min. Therefore, the effect of
temperature on the experiment was negligible.
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Figure 5. The acquired dynamic deflection of the Beishatan Bridge. (a) Dynamic deflection of the
RSB and (b) dynamic deflection of the LSB.

4.2. Results and Analysis

Figure 6 shows the results of boxplot data filtering for dynamic deflections of Beishatan
Bridge. The inspection from this figure highlights the following. (1) As shown in Figure 6a,
Rbin 49 and Rbin 19 of the RSB have no valid data remaining between UL and LL after
the boxplot, which is presumed to be caused by environmental impact and some other
interference sources. Results on these two points are no longer discussed in later studies as
no valid data are available. (2) As shown in Figure 6b, only the part with the maximum
displacement less than 10 mm is shown. It can be seen more clearly from the enlarged
part in the upper-right corner; although Rbin 42 and Rbin 48 still have some valid data
after the boxplot, the valid data content is too low. At the same time, there was a large
deviation for the sample quartiles of points Rbin 42 and Rbin 48 of the LSB, which were
directly discarded in this study. One of the important reasons for the large deviation of
these values is the difference in material and flatness around the reflection point. Other
influencing factors such as wind, temperature, and ground vibration (vehicle passing near
GB-SAR) also contribute. The results for the rest of the points indicate that the boxplot data
filtering method has a good ability to reduce the influence of abnormal data.

The lowest frequency fmin of 2.123 Hz was obtained by Fourier transform for the
original data set. The sampling frequency f s of the data was 98 Hz, and the minimum
value of i was calculated to be 46 by Equation (6). Through a complete cycle of the lowest
frequency, the minimum proportion of the “future” subspace of the Hankel matrix can be
calculated as hmin = 0.47 for the required modal recognition. According to the Hankel
matrix compression method described in Section 2.2, the empirical values i = 200, h = 0.85
were used for modal parameter estimation in this experiment.

As shown in Table 4, the modal parameters of the obtained dynamic deflection for
Beishatan Bridge were estimated using the improved Data-SSI, the traditional Data-SSI,
and Fourier transform. Window 1 and window 2 represent the same real-time signal of
the RSB in different time windows. Window 1 intercepts the signal from 20 s to 70 s for
a total of 50 s, and window 2 intercepts the same signal from 20 s to 220 s for a total of
200 s. To study the modal parameters of the RSB, the experiment fits the reference values
of the modal parameters through the data of the LSB, including the natural frequency f of
2.318 Hz and the damping ratio coefficient ζ of 8.3%. The inspection of this table highlights
the following. (1) The improved Data-SSI and the traditional Data-SSI method can correctly
estimate the first-order natural frequency. The natural frequencies of the improved Data-SSI
and the traditional Data-SSI method are 2.3208 Hz and 2.3266 Hz under window 1, and
2.3189 Hz and 2.3181 Hz under window 2, which are better than the results of the Fourier
transform. (2) Compared with the traditional Data-SSI method and Fourier transform, the
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damping ratio coefficient values from the improved Data-SSI method are 8.10% and 8.08%
under windows 1 and 2, respectively. They are more accurately estimated compared with
the reference values. Table 5 shows the operation time for modal parameter identification
between the improved Data-SSI and traditional Data-SSI methods. Compared with the
traditional Data-SSI method, the operation times are 2.02 s and 7.61 s under windows 1 and
2 using the improved Data-SSI method, respectively. It is proved that the efficiency of the
proposed method has a great improvement with the help of Hankel matrix compression.

Figure 6. Results of boxplot data filtering for dynamic deflections of Beishatan Bridge. (a) Results of
boxplot data filtering of dynamic deflections for the RSB and (b) results of boxplot data filtering of
dynamic deflections for the LSB.

Table 4. Estimated modal parameters of Beishatan Bridge for the improved Data-SSI, traditional
Data-SSI, and Fourier transform.

Windows
Reference Values of LSB Improved Data-SSI Traditional Data-SSI Fourier Transform

f (Hz) ζ (%) f (Hz) ζ (%) f (Hz) ζ (%) f (Hz) ζ (%)

Window 1 2.318 8.3 2.3208 8.10 2.3266 7.77 2.3497 7.73
Window 2 2.318 8.3 2.3189 8.08 2.3181 7.96 2.3497 8.10
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Table 5. Operation time of the improved Data-SSI and the traditional Data-SSI methods.

Windows Time Span
Operation Time

Improved Data-SSI Traditional Data-SSI

Window 1 50 s 2.02 s 10.13 s
Window 2 200 s 7.61 s 36.42 s

Table 6 shows the results of modal parameter identification of two time-windows
under different intensities of noise using the improved Data-SSI method. It can be seen
that the improved Data-SSI method can accurately identify the first-order and second-
order natural frequencies regardless of whether it is under high- or low-SNR conditions,
and the obtained damping ratio coefficient is also close to the comparison value. There-
fore, compared with the traditional Data-SSI method, the improved Data-SSI method is
more accurate for identifying the modal parameter of dynamic deflection under random
environmental excitation.

Table 6. Frequencies and damping ratios under different intensities of noise of Beishatan Bridge
using the improved Data-SSI method.

SNR 15 dB 20 dB 25 dB 30 dB

Windows f (Hz) ζ (%) f (Hz) ζ (%) f (Hz) ζ (%) f (Hz) ζ (%)

Window 1
2.3204 8.03 2.3211 7.95 2.3196 8.08 2.3189 8.08
4.6723 12.97 4.6723 12.93 4.6723 12.87 4.6723 12.91

Window 2
2.3192 8.10 2.3184 8.07 2.3185 8.13 2.3188 8.12
4.6769 12.85 4.6769 12.91 4.6769 12.87 4.6769 12.82

To evaluate the safety of the Beishatan Bridge, the monitored point of the RSB with a
distance of about 15 m to the IBIS-S instrument was selected to make comparison with the
same position of the LSB, which is the location of the maximum deflection. Considering
the vibration characteristics under the influence of different states, the first 6-order modal
parameters were used as a reference. As shown in Table 7, when taking the LSB as a
completely lossless structural model, the RSB experienced a large-scale drop in frequency
and an increase in damping ratio. Compared with the results of parameter identification at
a distance of about 5 m, as shown in Table 8, it can be seen that the frequency difference and
damping ratio coefficient difference for the non-damaged area are not much different from
those of the lossless model. Therefore, this method can preliminarily identify the location
where damage has occurred, and provide a basis for subsequent further safety assessments.

Table 7. Modal parameters identified at distance of about 15 m.

Frequency (Hz) Damping Ratio (%)
Modal LSB RSB Difference Ratio LSB RSB Difference Ratio

1 1.597 1.895 18.7% 16.4 21.0 28%
2 3.161 2.586 18.2% 7.8 6.0 23%
3 4.75 4.112 13.4% 8.5 7.4 12.9%
4 6.336 5.876 23% 5.0 3.6 28%
5 7.96 6.918 13.1% 2.9 3.3 13.8%
6 9.588 7.912 17.5% 19.5 23 17.9%
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Table 8. Modal parameters identified at distance of about 5 m.

Frequency (Hz) Damping Ratio (%)
Modal LSB RSB Difference Ratio LSB RSB Difference Ratio

1 1.587 1.568 1.9% 3.9 3.7 5.1%
2 3.170 3286 3.66% 7.6 6.9 9.2%
3 4.762 4.512 5.24% 7.8 7.61 2.4%
4 6.364 6.276 1.4% 6.1 6.2 1.6%
5 8.073 7.918 1.9% 18.5 18.1 2.16%
6 9.561 9.712 1.6% 4.5 4.4 2.2%

5. Conclusions

With the advantages of robustness, numerical stability, and high identification accu-
racy, the Data-SSI method has been successfully applied to modal parameter extraction
of various civil engineering structures under operating conditions. To improve the com-
putational efficiency and accuracy of the Data-SSI method for bridge modal parameter
estimation using GB-SAR, an improved Data-SSI with autocorrelation matrix modal order
estimation was proposed in this study. The results presented in this study clearly highlight
the following.

1. Compared with the Hankel matrix constructed directly from the original data, a box-
plot filter can be used to construct a more stable Hankel matrix to improve the accuracy
of the bridge dynamic deflection. The results indicate that the boxplot has a good
ability to reduce the influence of the environmental noise and abnormal data.

2. The small ill-conditioned column vectors can be filtered and deleted in the Hankel
matrix using the improved Data-SSI method. Therefore, as the number of columns
of the Hankel matrix is reduced, it not only speeds up the generation of the Hankel
matrix, but also produces fewer projection errors.

3. The maximum value of RDI is adopted to judge the modal order after SVD decom-
position. The results of simulation and field experiments show that it has a stronger
anti-noise performance and a more competitive advantage in computational efficiency
than the traditional Data-SSI method.

After the natural frequency and damping ratio of the structure are accurately identified,
the operating state of the bridge can be further obtained and safety assessment can be
carried out by means of finite element analysis or other methods.
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subspace methods for health monitoring of structures: A bridge case study. Appl. Sci. 2020, 10, 3132. [CrossRef]

22. Aggarwal, C.C.; Bhuiyan, M.A.; Al Hasan, M. Frequent Pattern Mining Algorithms: A Survey Frequent Pattern Mining; Springer:
Cham, Switzerland, 2014; pp. 19–64.

23. Frigge, M.; Hoaglin, D.C.; Iglewicz, B. Some implementations of the boxplot. Am. Stat. 1989, 43, 50–54.
24. Reynders, E.; De Roeck, G. Reference-based combined deterministic–stochastic subspace identification for experimental and

operational modal analysis. Mech. Syst. Signal Process. 2008, 22, 617–637. [CrossRef]
25. Magalhaes, F.; Cunha, A.; Caetano, E. Online automatic identification of the modal parameters of a long span arch bridge. Mech.

Syst. Signal Process. 2009, 23, 316–329. [CrossRef]
26. Jain, S.K.; Singh, S.N. Exact model order ESPRIT technique for harmonics and interharmonics estimation. IEEE Trans. Instrum.

Meas. 2012, 61, 1915–1923. [CrossRef]
27. Jain, S.K.; Jain, P.; Singh, S.N. A fast harmonic phasor measurement method for smart grid applications. IEEE Trans. Smart Grid

2016, 8, 493–502. [CrossRef]
28. Hua, Y.; Sarkar, T.K. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise.

IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 814–824. [CrossRef]
29. Sarkar, T.K.; Pereira, O. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE

Antennas Propag. Mag. 1995, 37, 48–55. [CrossRef]

http://doi.org/10.1088/1742-6596/1061/1/012004
http://doi.org/10.1061/(ASCE)1084-0702(2006)11:6(707)
http://doi.org/10.1080/15732470903068557
http://doi.org/10.1080/014311600750037561
http://doi.org/10.1016/j.jsv.2009.02.030
http://doi.org/10.1016/j.jsv.2003.07.021
http://doi.org/10.1016/j.ymssp.2015.04.018
http://doi.org/10.1006/mssp.1999.1249
http://doi.org/10.1137/0611003
http://doi.org/10.1016/j.engstruct.2005.04.016
http://doi.org/10.1061/(ASCE)1084-0702(2007)12:6(746)
http://doi.org/10.1115/1.1410370
http://doi.org/10.1016/j.jweia.2010.07.003
http://doi.org/10.3390/app10093132
http://doi.org/10.1016/j.ymssp.2007.09.004
http://doi.org/10.1016/j.ymssp.2008.05.003
http://doi.org/10.1109/TIM.2012.2182709
http://doi.org/10.1109/TSG.2016.2590599
http://doi.org/10.1109/29.56027
http://doi.org/10.1109/74.370583


Buildings 2022, 12, 253 16 of 16

30. Juang, J.N.; Pappa, R.S. An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid.
Control Dyn. 1985, 8, 620–627. [CrossRef]

31. Rödelsperger, S.; Läufer, G.; Gerstenecker, C.; Becker, M. Monitoring of displacements with ground-based microwave interferom-
etry: IBIS-S and IBIS-L. J. Appl. Geod. 2010, 4, 41–54. [CrossRef]

32. Suksmono, A.B.; Bharata, E.; Lestari, A.A.; Yarovoy, A.G.; Ligthart, L.P. Compressive stepped-frequency continuous-wave
ground-penetrating radar. IEEE Geosci. Remote Sens. Lett. 2010, 7, 665–669. [CrossRef]

http://doi.org/10.2514/3.20031
http://doi.org/10.1515/jag.2010.005
http://doi.org/10.1109/LGRS.2010.2045340

	Introduction 
	Methodology 
	Boxplot Data Filtering 
	Hankel Matrix Compression 
	Autocorrelation Matrix EMO Estimation Algorithm 

	Simulation Experiment 
	Modal Order Estimation Validation 
	Sensitivity and Efficiency Validation 

	Field Experiment and Analysis 
	Dynamic Deflection Acquisition 
	Results and Analysis 

	Conclusions 
	References

