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Abstract: The BIM-based building energy simulation plays an important role in sustainable design
on the track of achieving the net-zero carbon building stock by 2050. However, the issues on
BIM-BEM interoperability make the design process inefficient and less automatic. The insufficient
semantic information may lead to results inaccurate while the error-prone geometry will terminate
the simulation engine. Defective models and authoring tools lagging behind the standard often
cause failures in creating a clean geometry that is acceptable to the simulation engine. This project
aims to develop a workflow that helps with the documentation of a lightweight geometry in gbXML
format. The implemented workflow bypasses the modeling inaccuracies and irrelevant details by
reconstructing the model based on extrusions on patched floor plans. Compared with other gbXML
files exported by BIM authoring tools, the resulting gbXML is more lightweight with airtight space
boundaries. The gbXML has been further tested against EnergyPlus to demonstrate its capability in
aiding a seamless geometry exchange between BIM and BEM.

Keywords: building information modeling; building energy modeling; gbXML; plugin development;
model simplification; interoperability

1. Introduction

Emissions from the operation of buildings reached an all-time high of 9.95 Gt CO2 in
2019 [1], drifting off the track to a net-zero carbon building stock by 2050. The buildings
were responsible for 28% (38% if adding construction [2]) of total global energy-related CO2
emissions, which emphasizes the urgent need to reduce the energy demand, decarbonize
the power sector and innovate materials. With the ever tightened sustainability goals, the
building information modeling (BIM) in conjunction with the building energy modeling
(BEM) provides a life-long regulation on carbon emission. BIM is a digital representation
of a building entity. It serves as a shared knowledge resource for communication among
architecture, engineering, construction and facility management industries [3], along with
the whole life cycle of the building project. At the current developing stage, research
on BIM application is revolutionized to be incorporated with other technologies, such as
BEM [4]. Mutually, by tapping into the data of BIM, there is an opportunity to make BEM
a time-saving, low-cost, automatic, consistent and accurate process [5]. Such BIM-based
BEM permits efficient feedback among various disciplines on energy-use intensity, indoor
environment and life-cycle analysis, helping with the decision-making process. With the
ever-growing software ecosystem, more and more real-world practices are implementing
the BIM-BEM workflow to tap into the energy-saving potential of buildings [6,7], in design,
construction and operation, to meet the net-zero carbon goals.

However, the interoperability between BIM and BEM is not a seamless task, which
is understood as the possibility of communication, exchange, and the use of data among
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software applications [8]. Data exchange schema may act as the middle-ware between
BIM authoring tools (Revit, ArchiCAD, etc.) and the building performance simulation
(BPS) tools (IES-VE, EnergyPlus, etc.). Two widely acknowledged schemas are the industry
foundation class (IFC) [9] and the green building extensible markup language (gbXML) [10].
IFC aims to enable information sharing and process improvement during the whole build-
ing life cycle against the context of the entire AEC industry [11]. It is comprehensive and
detailed yet cumbersome in interaction. Although it could come in forms of different
phases, level of details or model view definitions, there is still lots of redundant information
for energy simulation, both geometric and semantic. On the contrary, gbXML is mainly
developed to facilitate data transformation from BIM to BEM. Its data structure, both
geometric and semantic, is in line with the requirements of simulation engine. IFC supports
sweep volume, constructive solid geometry and boundary representation (B-rep) [12],
while gbXML only accepts surfaces represented by boundary loops, which contributes to
B-rep spaces (Figure 1a). There are two modeling conventions of gbXML: one with gaps
among spaces, originated from BIM that already has the surface-matching information in
store; another without gaps, which follows the manual modeling convention picking the
wall center line as the separation for thermal zones (Figure 1b). Apart from the bias in the
surface area, models by these two conventions remain the same in mathematics.

Boundary Representation Constructive Solid Geometry Sweep Volume

IFC example gbXML example

Aggregation of boundary 
surfaces, which enclose the 
body completely

3D primitives combined by boolean 
operations (union, intersection, 
difference)

Extrusion of a face 
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IfcWindow
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Opening

a b
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Figure 1. (a) Three types of geometry representation in IFC. (b) Different geometry representations
by IFC and gbXML, an example. (∗) Modeled by wall center line (without gaps). (†) Modeled by wall
faces (with gaps).

There is a semantic gap caused by insufficient simulation parameters, such as the
weather data, thermal properties of components and the HVAC system. Such a gap could
be bridged by energy modeling presets. Cerezo et al. issued an XML based template system,
aiming to quickly set up thermal zones in the schematic or urban design explorations [13].
Moreover, the National Renewable Energy Laboratory developed the open-access building
component library that is embedded in BPS tools as modeling templates. The current
version of IFC and gbXML schema gradually supports the HVAC system on its topology
and control logic. On the other side, the geometric gap has long been arousing discussion.
The current software ecosystem still lacks robust tools to do the geometric transformation
that can seamlessly connect to the simulation engine. The issue comes along with the
coarsely modeled geometry not oriented for BEM, which may have components that are
missing or disjoint, resulting in leaky spaces. Additionally, authoring tools are not that
perfect in geometry export. Due to the information loss during data exchange and the
huge number of entities in an architecture project, it is hard or even impossible to fix the
geometry manually. Sometimes, the modeler has to abandon the semi-automated workflow
of BIM-BEM and turn to energy modeling from scratch.

This paper mainly focuses on the geometric part and proposes an automatic work-
flow to reconstruct the BEM geometry to help with the BIM-BEM interoperability. Such a
workflow extrudes the boundary-represented space based on corrected floor plans, which
may tolerate defective model input and produce sealed spaces. To demonstrate its capa-
bility, EnergyPlus is selected as the simulation engine to test the usability of the exported
geometry.
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In the following discussion, the acronyms “BIM” and “BEM” are used to represent
both the model itself and the modeling process. It is a common practice in the research
community and by software developers that the two are used alternately [14]. The BIM au-
thoring tool is exemplified by Revit and the simulation engine by OpenStudio/EnergyPlus,
as they are well accepted by the market. The IFC used is version 4.0.2.1 in line with the
norm ISO 16739-1:2018 [9] and the targeting gbXML is version 6.0.1 [10].

The rest of the paper is organized as follows: Section 2 leads a literature review,
focusing on the geometry interoperability, and explains why the workflow of reconstruction
is selected. Section 3 comes to the core algorithm of this approach along with pseudo code
and schematic diagrams. Section 4 demonstrates the capability with model tests and
remarks on its pros and cons. Section 5 is the conclusion.

2. Literature Review

Building performance simulation proves to be of great help in the design process. At
the concept stage, BEM may give feedback on multiple design variants, thus achieving
“performance-driven”. At the development stage, a detailed load estimation by BEM may
help with the design of the HVAC system, to cut down the energy use and carbon emission.
BEM is also essential in standard and code compliance, such as LEED labeling. The design
process calls for intensive cooperation and instant feedback. That is where the concept
of BIM-based BEM comes in with the most obvious advantage: the quick and accurate
generation of the energy model [15]. A BIM model has the ability to offer abundant,
immutable data for energy simulation, which saves the user from gathering and recreating
such information [5]. One limitation of the conventional BEM is the manual preparing
process of geometry that is time consuming and highly dependent on the modeler’s thermal
view toward the original data source [15]. However, BIM-based BEM ensures that the
automatic geometric transformation is implemented under explicit rules in the algorithm
in order to prevent arbitrary data improvisation and preserve the data integrity [16]. This
makes the BEM and the simulation result consistent among all users. For a seamless data
exchange in BIM-based BEM, the interoperability is a crucial base.

2.1. Software Ecosystem

Over decades, the interoperability has been supported by standard data exchange
schemas, such as IFC and gbXML, as well as software both academic and commercial.

As its initial purpose, the exchange schema lies at the center of BIM and BEM authoring
tools. This schema-centered system demands all software interchange their data explicitly
with one single BIM document. Such an architecture applies to traditional BEM authoring
tools that incorporate modeling and simulation on the same platform, most of which
have their own simulation engine. Some well-known examples are: Trace 700, Green
Building Studio (GBS), EDSL-Tas, IES Virtual Environment (IES-VE) and OpenStudio. The
geometry interoperability thereby is decided by how well the BIM is documented (by the
BIM authoring tool) and accepted (by the BEM authoring tool). According to the official
compatibility matrix [17], only a few tools, such as IES-VE and OpenStudio, have been
validated for their support to the latest IFC format. Some tools implant algorithms for
necessary geometric transformations while others may only access to the tailored geometry
in gbXML. However, there is no thorough validation available for their support to gbXML.
According to an official report [18], OpenStudio is the only one that has passed for now.
When the transformation error either resulting from BIM export or BEM import is unknown,
the modeler has to revise the geometry iteratively, then export it to BEM for checks.

To ease the iterative manual fix on geometry models, another ecosystem centered
around certain computer-aided design (CAD) software has gained more popularity. The
logic of geometry exchange stays the same but more implicitly, or even without IFC or
gbXML. A good example is Autodesk Revit which embeds two cloud services on BPS: GBS
(based on DOE-2) and Insight (based on EnergyPlus) [19]. The user may obtain an instant
simulation result on model revisions in the BIM authoring interface. Under the hood,
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gbXML still acts as the data schema. Another parametric toolkit, LadybugTools, features
in two workflows that may access BIM information by Revit Application Programming
Interface (API) other than the explicit file exchange. One is the Pollination Revit Plugin [20]
that exports clean models for cloud simulation, and the other is the Revit-Rhino. Inside-
Grasshopper-Honeybee tool chain that invites the BIM information into a parametric
modeling environment. Such workflows could bypass the information loss during the
data exchange and build up an energy model based on its own schema (hbJson [21]) more
efficiently.

Other than traditional physical modeling engine, such as EnergyPlus and DOE-2, the
Modelica-based BEM is a nascent field. Modelica is an equation-based, object-oriented
language that is developed for component-level modeling of a physical system’s topology
by means of component-connection representation [22]. The LBNL Modelica library and the
platform Dymola, OpenModelica, are within such an ecosystem. Andriamamonjy et al. [23]
developed an automatic IFC-based workflow to build up a Modelica model for energy sim-
ulation. Kim et al. [24] implemented Revit2Modelica for Modelica-based BEM by developing
a plugin via RevitAPI. A similar approach can be found in the research of Jeong et al. [25],
which also demonstrates how portable it is to access data directly within BIM author-
ing tools.

In summary, the software ecosystem can be categorized by its simulation engine
(EnergyPlus or OpenModelica), or by how it is organized (schema-centered or CAD-
centered), or, more narrowly, by different data exchange schemas (IFC-based or gbXML-
based). No matter what, the geometry interoperability persists to be an issue due to different
representations in CAD and mathematics. The CAD-software-centered ecosystem is better
for small projects pursuing parametric analysis while the schema-centered ecosystem is still
the major choice for mega projects. More schema-centered workflows targeting EnergyPlus
will be addressed in the next section, as they are representative and universal in practice.

2.2. Geometry Workflow

Figure 2 depicts the current workflows of the geometric transformation that targets
the simulation engine EnergyPlus (.idf), with typical tool or practice listed in Table 1. Since
OpenStudio is a graphical application built around EnergyPlus, the workflow is suited
for its data format (.osm) as well. All workflows begin with BIM authoring tools that are
represented by main-stream software Revit (.rvt) and ArchiCAD (.pln). The diagram can be
viewed horizontally or vertically. The X-axis represents the forwarding design phases from
BIM to BEM authoring, in two isolated paths according to the different documentation
schema implemented: IFC or gbXML. When moving downward, there is a loss of geometry
information. On quantity, it is because the BEM requires merely a subset of BIM, while
on quality, as the multiple representing BIM turns into serialized coordinates of boundary
loops, the richness level degrades.
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Figure 2. Typical workflows from BIM to BEM (EnergyPlus based). Notes of each indexed path in
Table 1. (∗) IFC without the information of second boundary. (†) gbXML with gaps among spaces.
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Table 1. Typical tool or practice implemented by the indexed workflow in Figure 2.

No. Process Tool/Practice Lang. Function Refs.

2 gbXML authoring Revit (Room Volumes) C# export gbXML by room definition Autodesk®

Revit (Energy Model) C# export gbXML by component relation Autodesk®

3 IFC to gbXML IFC-to-gbXML-converter Python with 2nd level boundary Visschers [26]

4 IFC to IDF

GST/SBT/Simergy™ C++ by calculated center-line Bazjanac et al. [15,27–29]
CBIPtoIDF - by calculated 2nd level boundary Giannakis et al. [30]
OBES - with 2nd level boundary Choi et al. [31]
Green2.0 - create center-line boundary El-Diraby et al. [32]

5 gbXML to IDF gbEplus Java implement OpenStudio reverse trans-
lator

Xu et al. [33]

idfXML schema - map gbXML to IDF via idfXML Dimitriou et al. [34]
6 BEM authoring LadybugTools plugin Python modeling plugin via RevitAPI Roudsari et al. [35]

7 IFC fixup N/A - fix clashing elements, reversed surface,
align space with surrounding elements

Lilis et al. [36]

SBs generator C#
2nd level boundary generation
tolerate minor element clash
convert curved wall and shadings

Ying et al. [37]

8 gbXML fixup Spider gbXML fixer Python fix duplicate adjacent spaces, invalid
surface type, missing gbXML at-
tributes...

LadybugTools [38]

9 IDF fixup EnergyPlus C++ auto-fix sliver facet, flipped surface... NREL
10 BIM manual fix Solibri Model Checker - inspect modeling failures [27] Solibri®

When the BIM authoring tool handles the geometric transformation and the gbXML is
well documented, it is comparatively easy to implement gbXML-IDF conversion (path-5)
because the two formats share the same geometry representation by vertices loop of simple
polygon without holes. Many BEM authoring tools support this conversion, such as
OpenStudio and DesignBuilder, and it is easy to develop, as XML and IDF are highly
human-readable and explicitly defined. gbEplus, an open-sourced tool developed by
Xu et al. [33], adopts the OpenStudio reverse translator to ensure a qualified geometry
conversion. It also provides interface and templates for users, to inject semantic information
during the translation. Dimitriou et al. [34] proposed an intermediate schema idfXML
to map the objects of IDF with gbXML nodes, while acting as a template file for loads
and HVAC assumptions. In a web application, Niu et al. [39] developed a Revit plugin
in C# to relay the exported gbXML further into IDF. Likewise, Oh et al. [40] coded such
a conversion by MATLAB. Since the workflow of gbXML shifts all calculation to the BIM
side, its geometric quality determines the IDF quality.

Diverting to the workflow of IFC, if the 2nd-level boundary is accessible, it is straight-
forward to cast those boundaries directly as the surface of the thermal zones. This logic
applies to practices such as the IFC-gbXML converter by Visschers [26], and the IFC-IDF
interface by Ahn [41] and Choi [31]. It is worth noting that the 2nd-level boundaries are, by
Bazjanac [42], “continuously visible regions of building element surfaces with a constant
one-dimensional thermal flow rate across their area”, which mandates that the boundary
of the interior wall will always have its “pair” with the same shape and size. This kind of
boundary is addressed as IfcRelSpaceBoundary2ndLevel in IFC and adopted by gbXML [10]
as the space boundary.

In the case that the 2nd-level boundary is not generated or ill-documented by BIM
authoring tools [28], several algorithms are available to fix it up. Rose and Bazjanac [29]
presented a graph-based algorithm that traverses the pre-generated graph model that
caches building elements with connection relationships to obtain the space boundary.
Based on the algorithm, a tool named SBT-1 [43] is open-sourced to directly output such a
boundary to a ready-to-use IDF. Giannakis et al. [30] proposed an algorithm called common
boundary intersection projection (CBIP) to generate space boundaries, then deliver them
to EnergyPlus or TRNSYS. The algorithm calculates the boundaries between the space
object and surrounding objects, and the boundaries between building elements, then splits
them into space boundaries. These algorithms require building elements correctly defined
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without gaps or clashes, and space objects touching the surrounding building elements
or space. Upon previous methods, Ying et al. [37] provided a more robust algorithm that
could tolerate some element collisions. Additionally, it can handle curved surface, as well
as shading device modeled in ifcWall or ifcSlab.

Usually, the space boundary inherited from IFC by previous methods has gaps in
between. Such a geometry representation contradicts the traditional, center-line-based
energy modeling convention. Nevertheless, it is allowed by simulation engines (such as
EnergyPlus) given the right surface-matching relations. The net surface difference ratio be-
tween them is above 5% on average [44], which is deemed to be non-negligible in Modelica
algorithms. However, in building performance simulation, center-line modeling is still the
prevalent strategy with many applications. In a web-based collaborative design platform
Green2.0, ElDiraby et al. [32] implemented several steps, including solid wall collapse and
surface trim to construct center-line boundaries for OpenSudio. A similar workflow was
addressed by Ladenhauf et al. [45]. They all require IFC to have full definitions on building
elements and spaces without gaps or clashes.

A critical step of all workflows is the geometric transformation from the BIM elements
(represented in types of Solid, Sweep or B-rep) to a B-rep space boundary in BEM. Its
complexity depends on how well the BIM is documented. If rich enough, the BEM software
could read out the matched-surfaces directly without the geometry manipulations that may
not be their strength. In path-2, Revit has two modules for gbXML documentation. One
is by “Room Volumes” that generates gbXML based on the boundary of the space and its
surrounding elements. The other is by the “Energy Model” that looks for an enclosed space
by building elements’ relationships. If the BIM authoring tools fail to export the accurate
geometry, the pressure is all on the BEM software to process all the model defects at a lower
information level (path-6).

2.3. Geometry Defects

In real-world projects, gbXML is more acceptable by BEM authoring tools because it
shifts the burden of geometry manipulation to the BIM side, in the documentation process.
There are few reports on the BEM tool that fails to import a well-documented gbXML.
Such a gbXML not only needs an official certificate of validation, but also needs to be
neat without having shattered and twisted facets. When it comes to the defective gbXML,
different simulation engines have different tolerance levels. In the load calculation of Trace
700, the static method may proceed given that the surfaces are clung to certain space, even
though the space is not enclosed. On the contrary, EnergyPlus only accepts a space that is
almost sealed. It also demands the sub-surface (corresponding to Opening in gbXML) to be
rectangular. The gbXML must be documented by the most stringent requirements for a
general application.

In the geometry transform by Revit-gbXML-OpenStudio workflow, Porsani et al. [46]
reported space missing in the “Energy Model” export module of Revit. The gbXML of a
small residential building has unexpected shading surfaces in place of walls or roofs. In the
case of a large warehouse, the output gbXML with shattered roof terminates the simulation
due to missing walls/floors. Chen et al. [47] reported a failure in representing curved
walls during Revit-gbXML export. Based on actual projects and other well-documented
research [28], typical failures are summarized in three levels (Figure 3), either by incapable
authoring tool or unprofessional modeling.

Level-1 (Figure 3a) concerns with incapable algorithms during BIM documentation.
The BIM is flawless but the geometry algorithm fails to export it correctly for BEM. There
can be redundant facets generated due to gaps in the boundary surface mapping or glitches.
These twisted, tiny facets may drag the radiation calculation or even sometimes terminate
it by causing temperature divergence. The same situation applies with the tessellation of
a curved surface. Too many shatters only burden the calculation unnecessarily. During
transformation, the window has to be reshaped to a rectangular surface before it can be
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accepted. Another neglect could be the equivalent shading surfaces for windows embedded
in thick walls, which may affect the indoor solar gains.

Figure 3. Typical defective BIM geometry that leads to failed gbXML export. (a) The export algorithm
is not optimally oriented for BEM. (b) The space boundary components are not well defined and
aligned. (c) The floor plan topology is incomplete.

Level-2 (Figure 3b) has ill-defined boundary components. The misalignment of space
geometry and building element may cause a missing boundary or a boundary of the wrong
type [28]. If the upper limit of a room is not set to the roof component, the exported gbXML
will have a space whose upper face is of Air type and a shading surface transformed by roof.

When columns within the space act as boundary components, the exported gbXML
will have holes punctuated by these columns with an exterior boundary condition. This
is often the case when the integrity of the floor plan topology is violated. Another issue
is about the generation of the 2nd-level boundary. When a seamless space boundary
is required, it is hard for the software to extract a center line that is clean and straight,
especially encountered with walls with multi-thickness or embedded columns. Under this
circumstance, the 2nd-level boundary matching fails and there will be a hollow in space.

Level-3 (Figure 3c) includes the BIM that has major deficiencies in the space topology.
The model lacks correct space definition. There are disjoint building elements which cannot
be patched by a global tolerance. It is hard for the authoring tool to recognize enclosing
spaces, not to say that the semantic information is related.

BIM-BEM interoperability is a practical topic, and one cannot expect perfect models.
One reason for these flaws may originate from the documentation process of BIM. The
authoring tools, either commercial or academic, are not fully targeting the requirements of
BEM, and few of them have the certification on schema support. Another reason is harder
to overcome: BIMs are often created without future use cases other than the generation of
plans and visualizations in mind, which makes them “non-BIMs” [45].

In real-world projects, the automatic/manual fix has been a typical routine to improve
the interoperability. Lilis et al. [36] provided tools that could solve inaccuracies in IFC
files, which include reversed surface, clashing B-rep solid, and space object disjoint with its
surrounding elements. The BEM geometry is highly serialized and hard to fix manually,
even within the CAD environment. However, there can be uplifts on grammar or minor
geometric flaws by scripts. The Spider gbXML fixer [38] can fix surfaces with a wrong type
name, with duplicate planar coordinates and so on. The simulation engine may tolerant
some errors, and EnergyPlus even corrects some automatically, such as mismatching the
surface area, wrong boundary type or tilt angle. According to a testing by Fernald et al. [48],
the imported gbXML gets more arbitrary diagonal surfaces after an automatic correction
by IES-VE’s “geometry correction” function, which in turn increases the complexity of
manual revision. Such an automatic fix could be risky when the model defection is highly
unpredictable. A manual fix on BIM is a way out, but sometimes it turns out to be
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more tedious and time consuming than remodeling the geometry. In a trial of the Revit-
gbXML-IES workflow, the exported model iterated the manual fix 10 times, reducing
10,609 unmatched edges to 121, yet was still rejected [48].

The pressing issue on BIM-BEM interoperability is to make it work with real-world
projects, then make it work well. Therefore, an automatic workflow is developed to
reconstruct the BEM geometry from BIM (path-2 in Figure 2), mimicking how modelers
build it from scratch, to counter with the following gaps. First, the documentation of
BIM lacks consideration on the simulation engine’s requirements, resulting in rejection or
low-efficient simulation. Second, the current geometric transformation demands BIM with
space definition and joint components, which is often a luxury in real-world projects.

3. Methods

The proposed approach regenerates the floor plan by center lines of enclosing elements
of BIM. Then it recognizes enclosed (or almost enclosed) polygons as space boundaries,
which are further extruded vertically into B-rep spaces. Finally, by adhering openings and
shadings, it serializes the geometry to standard gbXML. All geometric calculations are
within the 2D plane, with float precision algorithms applied. This approach may tolerate
defective models with no space definition, elements detached or overlapping and ensures
that all spaces are airtight. The resulting model is more lightweight and safe for EnergyPlus
without debris or voids. Figure 4 gives an overview on how geometry information is
utilized and processed. Details are in three parts.
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Figure 4. Overview of the workflow. (a) Data interface. (b) Geometry reconstruction. (c) gbXML
serialization.

3.1. Data Interface

The workflow needs one semantic database and three categories of geometric infor-
mation nested by each story. Some of them are listed in the left column of Figure 4. In
the first category, it is a must to have a comprehensive definition of all building stories,
as well as the location line and the nameplate of the enclosing structures (wall or curtain
wall). If accessible, the location line of a rectangular wall is just its sweeping axis projected
to the story plane (usually the center line). If not provided, it can be calculated by the
intersection of the component’s surface and the story planes it spans. The geometry of
the floor slab is optional, including its outline and the boundary of inner holes. Since
the gbXML represents geometry by vertices loop, curves are reduced to polylines by the
Douglas-Peucker algorithm, which produces lesser segments than the common tessella-
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tion based on curvature. The second category includes the location and nameplate of the
affiliated component as well as room/space. As to a window, its label “2000 × 1400” is
cached as an indexation for its geometric dimensions, such as the height, width and depth,
as well as its thermal properties. The third category collects supporting lines, such as room
separations, axis and grid system, to help with the alignment of geometry elements, though
it is not mandatory. On top of the geometry, relative semantic information is cached within
the program as a database for reference, such as the project information, thermal properties
of the components and the space program settings.

A data interface is needed for the program to tap into the BIM information. As is well
accepted by all software ecosystems, the IFC format has the most extensibility. There are
open-sourced toolkits, such as ifcOpenShell or xbim, that can decode the IFC. However,
some IFC files are ill documented because of modeling failures and the compatibility issue
with BIM authoring tools. It is more ideal to retrieve the data directly from BIM authoring
tools due to less information loss and more flexibility in model fixing. Software, such as
Revit or ArchiCAD, all provide API to the community. The drawback is also obvious, as it
is highly dependent on certain software and needs to be developed repeatedly.

3.2. Element Alignment

Floor plan patch. The reconstruction pre-processes all geometries into a hierarchical
structure by Algorithm 1, floor by floor. At each level, all wall center lines are clustered
into several groups by a “fuzzy” intersection check, which compares the expansion boxes
of target segments (controlled by the grouping tolerance). As an example in Figure 5, the
group “L1::B3::G0” will be merged with “L1::B2::G0” if the tolerance surpasses 1.84 m,
because the expansion boxes are thereby intersected. Groups with their bounding rectangles
overlapped are merged into a block. Within each block, the algorithm will try to obtain its
outer boundary (marked as block shell) by Algorithm 2 based on line segments that are
aligned and extended. If it fails due to highly discontinuous wall lines, the algorithm will
calculate the minimum concave hull of the target set of line segments as the substitute. It
starts from the orthogonal convex hull and clips inward, similar to Algorithm 3. Moreover,
the floor outline outside the block shell will be severed and cast as the shading surface;
the floor outline concave to the block shell will be cast as separation lines, while the
remaining hollow region as “void” space, indicating an atrium, staircase, shaft or air gap.
Figure 5 depicts a real-world example on this issue. The floor plan boundary consists
of discontinuous lines representing the wall (in black), floor (in gray) and curtain wall
(in blue/green) from inside out. Each sorted block shell has been highlighted with red
dashed lines. There are 5 panes (shaded with line) clipped out as the shading surfaces,
and 3 regions marked as “void” subtracted from the block shell by the outline of floor slab,
representing the atrium space. The clipped floor slabs within each block are merged.

After the block shell is set, a band will be generated by offsetting it inward, controlled
by the perimeter tolerance. Any endpoint of wall center lines within the band will be pulled
onto the block shell (Figure 6a). This allows the curtain wall to be overwritten: any block
shell segment subtracted by the “projected” wall represents the glazing area, regardless
of whatsoever holds the place before. Such a process means to mend the possible space
gap in the perimeter regions. The gap usually holds the space for mullions or mechanical
equipments. If minor perimeter tolerance is selected, the air cavity between the curtain wall
and interior wall will be modeled. However, this may lead to some unintended situations
that a space “overflow” to another. In case that the wall center lines are split up by columns,
there is a rule-based method to join them back together. As illustrated in Figure 6b, the
center-lines will be extended and trimmed within the column outline. If failed, some axes
of the outline will be added to help with the trim. They can be lines across the centroid
for central symmetry shapes or center line collapsed from any polygon, but the current
algorithm lacks stability when handling special-shaped columns.
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Algorithm 1 Floor Boundary Patch.
Input: Ls , list of line segments L representing walls and curtain walls; Ps , list of vertices loop P representing boundaries of floor

slabs;
Output: Bs , nested list of the center lines; shades, list of horizontal shading surface; voids, list of void region;
1: for all L in Ls do
2: let Lexp be the outward expansion box for L, with the offset distance equals the grouping tolerance;
3: end for
4: cluster L in Ls by the intersection of corresponding Lexp into sub-list: Gs ;
5: let Gbox be the bounding box of G;
6: cluster G in Gs by the containment relations of corresponding Gbox into parent-list: Bs ;
7: for all B in Bs do
8: let shell be the the minimum orthogonal hull of B;
9: let slabs cache all vertices loop within shell;

10: for all P in Ps do
11: if P is counter clockwise then
12: append the Boolean subtraction of P by shell to shades;
13: append the Boolean intersection of P and shell to slabs;
14: elseappend P to voids
15: end if
16: end for
17: let f loor be the Boolean union of slabs;
18: offset shell inward by distance equal to the perimeter tolerance, as shellin ;
19: for all L in corresponding B do
20: if endpoint Pt of L is inside shell and outside shellin then pull the Pt onto the shell;
21: end if
22: end for
23: for all Pt in f loor do
24: if Pt is inside shell and outside shellin then pull the Pt onto the shell;
25: end if
26: end for
27: let void be the Boolean subtraction of shell by f loor, append edges of void to B[0], append void to voids;
28: end for
29: return Bs , shades, voids;
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Figure 5. Different component boundaries organized into hierarchical floor plan (Level-Block-Group-
Region). (∗) denotes region recognized as shaft. (†) denotes staircase.
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Figure 6. (a) Perimeter patch (Figure 5 zoomed in). Different results when pulling walls and floor
boundaries to the block shell, with perimeter tolerance 0.7 and 0.35. (b) Column patch. (∗) denotes a
situation where redundant enclosed regions are generated. They will be erased during the alignment.

Joint alignment. The defective BIM model may have walls that are overlapping,
detached, misaligned or zig-zagged. Additionally, due to different wall thicknesses the ex-
tracted center lines of a continuous wall may break up naturally (Figure 7b). Joint alignment
aims to fix and organize these messy line segments then feed them to the region detection.
The term joint represents each end point with an array to store all its outward vectors by
counter-clockwise angles (0~360, no duplicate), indicating its connection relations. There
may be joints connected to oblique lines but often the case is the orthogonal types as listed
in Figure 7c. A line segment with type-I joint is a stray. All strays removed will be cached
for further space separation and shading extrusion.

A
Type-I [0]

[0, 1.5π]
[0, 0.5π, 1.5π]
[0, 0.5π, π, 1.5π]
[0, 0.5π, 1.75π]

Type-L
Type-T
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Type-?

a b c d e
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Figure 7. Process of joint alignment. (a) The original floor plan with wall components, viewed in
Revit. (b) Obtain the center lines and convert the endpoints as joints. (c) Scan and align the joints in
two orthogonal axes. The legend: typical joints and their arrays. (d) Rebuild the grid sorely by the
joints information. (e) Recognize regions from the grid, resulting in clockwise shell, counter clockwise
space boundary and strays.

The alignment happens within each group of (almost) intersected line segments. After
breaking up all segments by their intersections, all segments are converted to joints with
their corresponding arrays. There is a window with a certain width (controlled by the
alignment tolerance) sliding on the X/Y-axis to locate all clusters, each of which frames out
as many joints as possible. If there is an axis that happens to lie within the range of a cluster,
all joints within the cluster are projected onto that axis. If not, a new axis will be generated
based on the most frequently occurring joint position (Figure 7c). The axis is either from
the global grid system of the document, or from the newly generated ones of the previous
floor plan. The alignment applies the following operation rules on the array of joints: (1)
the joint array has no duplicate vector; (2) merge the array of coincident joints; (3) erase the
vector in line with the moving direction of joint A. If A is received by joint B, then erase the
reverse vector within B additionally (the segment collapse situation); (4) when joint A is
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projected to axis without overlapping other joints, add outward vectors to A according to
its position relative to other joints projected to the axis, creating new connections; and (5)
remove joints with only two opposite vectors (the redundant point situation). Note that
the current alignment only works with the orthogonal grid system and allows for a global
rotation by a certain angle.

A grid of lines is rebuilt based on the aligned joints. For each outward vector of joint
A, the algorithm will search for joint B that has the opposite vector as well as the shortest
distance to A on the direction of that vector. If joint B pairs A in the same way, a line
segment is created between A and B. At the final step, all strays are removed recursively
until there is no type-I joint left. The resulting grid is shown in Figure 7d.

3.3. Region Detection

After being doubled with their reversed copy, the recreated grid lines are actually
composed by counter-clockwise boundary loops of each region, and one clockwise outer
shell enclosing all of them. To obtain the boundary loop, the algorithm starts from any joint
A and picks one outward segment, then walks until the next joint B and chooses the next
outward segment of B that has the minimum counter-clockwise angle with the previous
segment. The walked paths are consolidated to one closed region if the iteration comes
back to the starting joint A. All space boundaries emerge when all joints are traversed
(Algorithm 2). Among the results, the clockwise loop is the outer shell for this group of
regions (Figure 7e). In this process, there should be unique global identifiers added to each
region and its boundary edges. Since the duplicate segments are generated in pairs, it is
easy to retrieve the paired edge and the identifier as its adjacency information, which helps
with the surface matching in the XML serialization.

Algorithm 2 Region detection.
Input: The list of line segments, segs;
Output: The nested list of each region vertices loop, regions;
1: repopulate segs by splitting all line segments by their intersections
2: repopulate segs by adding the reversed duplicate next to each line segment
3: initialize List<Point> joints representing all unique joint point of segments in segs
4: initialize Dict<Point, List<Line» nextSegs caching all outward segments id for each joint
5: for all seg in segs do
6: let startPt be the start point of seg;
7: if joints.Contains(startPt) then nextSegs[startPt].Add(seg);
8: elsejoints.Add(startPt)
9: end if

10: end for
11: for all key-value pair kvp in nestSegs do
12: if (kvp.Value.Count == 1) then remove kvp and its reversed duplicate;
13: end if
14: end for
15: while segs.Count > 0 do
16: let thisSeg be any segment in segs, let startPt be its start point;
17: initialize List<Line> region in regions to cache all boundary edges;
18: while thisSeg.EndPoint 6= startPt do
19: for all seg in nextSegs[thisSeg.EndPoint] do
20: let nextSeg be the one with the smallest counter-clockwise angle with thisSeg;
21: end for
22: add thisSeg to region; remove it from segs and nextSegs;
23: thisSeg = nextSeg;
24: end while
25: end while
26: for all region in regions do
27: sort segments direction in region;
28: if region is closed and counter-clockwise then mark it as space;
29: end if
30: if region is closed and clockwise then mark it as outer shell;
31: end if
32: if region is open then mark it as stray;
33: end if
34: end for
35: return regions;

Among all regions within a block, the algorithm will check their containment rela-
tionships and form a hierarchical data tree (if possible). Outer shell of a group and its
enclosing region loop contribute to a multiply connected region (MCR) that has holes in
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it. With all regions of the floor plan generated, the algorithm checks if they contain room
separation line or stray line that could inform further space separations. In case that a
region encloses a quite large hole in the merged floor slab, the boundary of such a hole
will turn into separation lines and the region of this hole into a “void” region. Qualified
line segments and the region boundary will perform the extension and polygon split, the
resulting interface of the adjacent space will be assigned with the Air type in gbXML.

Tessellation on MCR or non-convex regions. The remaining MCRs (if exist) must be
divided into simply connected regions before it can be represented by loops of vertices,
which is the accepted data format of gbXML and IDF. In order to make the model as
lightweight as possible, the algorithm only divides the MCR surface of the original space
other than separating it into sub-zones. In this case, the IDF must inherit the area/volume
value in the gbXML data to prevent an exaggerated internal load. Given an orthogonal
polygon, the algorithm prefers rectangular tessellation in an architectural context. Its
simplest form is to take the shortest edge as the starting point, then keep clipping the
original polygon by the bounding rectangle extruded from this edge, until there is nothing
left (Algorithm 3). Figure 8 depicts the process schematically. EnergyPlus also mandates
that the casting surface in shadowing calculation, and the receiving surface applied with
the solar distribution calculation method “Full Interior” must be convex. The workflow
ensures the convexity of all casting surfaces (such as a shading device) by rectangular
tessellation given orthogonal polygons, and will switch to the Hertel-Mehlhorn algorithm
to solve more general cases by triangulation. The convex subdivision on interior floor
surface will not be performed by default, since EnergyPlus 9.4 brings about a new method
called “Pixel Counting” that could handle concave polygons.

As a quick review of notions, there are four hierarchical levels of line segments. Level
clusters lines by their floor plan and extrusion height. Block discriminates the inside and
outside of a building. Group represents a cluster of adjoining regions that are simply
connected, and a region stands for the 2D outline of a space. There are three tolerances
controlling the reconstruction process. The grouping tolerance affects the recognition of
building blocks. If tuned too large, several isolated podium blocks will be merged into one.
The perimeter tolerance (usually 0~1 m) controls the erasing of sliver space at the perimeter
area. The alignment tolerance affects the accuracy of floor plan recognition. Usually the
value is half the average wall thickness (0.1~0.2 m). These tolerances are within a narrow
range due to human scale in architecture design, but they may overflow due to modeling
errors.
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Figure 8. Rectangular Tessellation.
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Algorithm 3 RectangularTessellate(P)
Input: The list of vertices loop representing MCR: P;
Output: The list of vertices loop representing each rectangular tile: Ts
1: let the clockwise loop in P be shell;
2: let the counter-clockwise loops in P be holes;
3: initialize vertices loop clipper
4: while P.Count == 1 and P[0].Count <= 5 do
5: for all thisPt in shell do
6: let thisEdge be the line segment from thisPt to the next point;
7: let θ1, θ2 be the inward angle of endpoints of thisEdge;
8: if θ1 < 180 and θ2 < 180 and thisEdge has the minimum length then;
9: let cutPt be the endpoint of adjacent edges of thisEdge that has the minimum distance to thisEdge;

10: let clipper be the bounding rectangle of thisEdge and cutPt;
11: end if
12: end for
13: for all hole in holes do
14: if hole inside or intersected with clipper then
15: locate cutPt in hole that has the minimum distance to thisEdge;
16: let clipper be the bounding rectangle of thisEdge and cutPt;
17: add boolean intersection of clipper and shell to Ts;
18: end if
19: end for
20: let P be the boolean subtraction of P by clipper;
21: do RectangularTessellate(P) recursively;
22: end while

3.4. Geometry Regeneration

The spaces will be extruded vertically based on the region boundaries, level by level,
while creating the belonging walls and their adjacency relationships. The walls are only
discriminated by their type (ExteriorWall, InteriorWall or Air). The walls extruded by
separation lines are deemed to be airwalls. Thermal properties are unified among interior
walls due to their limited implication on the simulation result. The space, by default,
is named after its belonging group and level. If provided with a room identification
label (such as “office-1” or “void”) and its location point, the program will allocate the
nameplate to the space enclosing that point. Additionally, he algorithm offers limited
function guessing for anonymous spaces. For example, crooked corridors tend to have
larger normalized perimeter-area ratio, which isolates them from the regular-shaped office
rooms. By calculating the area ratio of a space and the hole of the floor it encloses, the
spaces can be roughly discriminated as shaft or staircase(∗, † in Figure 5). Specifically,
the space assigned with “void” label, as well as the shaft and staircase, will have its floor
surface modeled with Air type. It can be further merged with its adjacent space at lower
level if stack effect is considered in the simulation.

The creation of floor surfaces contains the following three steps: (1) create the top-level
roof and the ground floor by the region loops in the corresponding floor plan; (2) create the
roof and exposed floor on middle levels by subtracting the region loops by the outer block
shells of the adjacent floor plan; and (3) create the rest of the floor surfaces by iterating
the Boolean intersection of all regions between two adjacent floor plans. The surfaces are
named in pairs during Boolean operation to ensure that they are matched.

Windows and doors are attached to surfaces as openings by retrieving the wall line
segment that is closest to the location point (or location line in terms of curtain wall).
In reconstructing the glazing, all mullions are ignored. The opening vertices loop is
manipulated within its hosting surface because EnergyPlus only accepts rectangular sub-
surfaces as openings (Figure 9). (a) For special-shaped, orthogonal polygon, tessellate it
with the aforementioned Algorithm 3. (b) For a non-orthogonal special-shaped polygon,
redraw its bounding rectangle with an equivalent area by adjusting the height. (c) For
collided components, obtain the rectangular tessellation of their Boolean union region.
(d) For windows spanning multiple levels, only pick its Boolean intersection with the
current hosting surface. By doing this, the algorithm avoids failures in BEM authoring that
are caused by windows/doors with an irregular shape. The opening or hole in the wall is
ignored.

Although the gbXML schema allows the shading surface to be clung to a certain
space, the workflow here will append the shading surface directly to the site regardless of
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interior ones. Three kinds of components will be transformed to surface with “Shade” type:
any specifically defined shading device, the floor slab and wall out of the extruded space.
After the region detection, stray line segments outside the block shells will be extruded as
vertical shadings. The floor slab intersected with extruded spaces will be clipped by the
corresponding block shells as horizontal shadings (the slab may be on the floor level or
floating). In addition, there could be degenerated space whose upper surface is neither
fully covered by the space nor the floor/roof slab above. Such a space will be removed
leaving its exterior wall cast as extra shadings.

a b c d

Figure 9. Opening simplification. (a) Orthogonal polygon. (b) Special-shaped. (c) Overlapping.
(d) Spanning multiple levels.

XML serialization. The algorithm has already processed all geometric information
needed for serialization, and cached them within the internal classes that correspond to
each element of gbXML schema, as illustrated in Figure 3. As for the semantic part, project
information, space program settings, thermal property of various components extract from
the data interface will be packed as the simulation presets attached to gbXML for reference.
The serialization is performed by the document object model, following the latest gbXML
schema 6.0.1. The output has passed the official level-1 standardization test [49].

4. Results and Discussion

To demonstrate the effectiveness of the modeling approach, software is developed in
C# to implement all reconstruction and serialization process, targeting gbXML 6.0.1. The
software depends on an open-source package Clipper [50] to ensure the stability in Boolean
operations. For the ease of testing, a plugin Gingerbread is developed as a data interface to
BIM authoring tools, which is an open-source project on GitHub [51]. Its first release suits
for Revit 2020. The native gbXML export modules, “Room Volumes” and “Energy Model”
of Revit are the best alternatives for comparison. Figure 10 shows the user interface of this
plugin. The main dialog allows the user to customize the header information and sets up
modeling tolerances. The tolerance controls the resolution how floor plans are recognized
and aligned. Additional options can be switched on and off with the following check
boxes. “Include linked Revit model” allows to retrieve component information from linked
external models within current environment. “Shadow previous floor plan” indicates that
the floor plan will guide the alignment of next floor to reduce sliver facets during surface
matching. The embedded Aragog-gbXML-Viewer-R14 [52] offers visualized feedback to
the user so that they can tune the tolerance or fix the model immediately.

The tool is tested against two real-world BIM projects. For replication convenience,
case A is a technical school, an official BIM example shipped with Revit (Figure 10). Case
B is an academic building with several blocks of podiums, which are roughly modeled
based on CAD drawings without any room definition. As Revit 2020 does not support the
modeling of shading elements, they are modeled by floor slabs or walls instead. The floor
plan topology of the two projects are rather complex, including large and small offices,
shafts, stairs and atrium voids. Components are varied, such as curtain system, slope
roof, skylights and parapets. All project models come in three versions of gbXML that are
exported respectively by this tool, the “Room Volumes” module, and the “Energy Model”
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module of Revit. Each gbXML is further processed by OpenStudio-3.2 to IDF with default
simulation settings, then tested against the EnergyPlus-9.5 to check if the geometry is
acceptable. The sample files and the test results are cached in the repository of this project.
In the palette of Aragog-gbXML-Viewer-R14, dark red represents the roof, and pale yellow
denotes the shading surface. Interior floors are cyan, and the interior walls are green. The
glazing will overlay a translucent gray on the graphics behind.

Figure 10. Interface of the plugin.

Figure 11 depicts the results of case A. Model A-a exported by this tool stands out
for its sealed and neat geometry, while model A-b confuses the type of some surfaces, by
taking the roof as shading and ceiling on the first level as the roof. When it comes to the
ill-defined plenum space, Revit regards it as a void gap with an adiabatic boundary. In
addition, the shading surfaces (modeled as floor slab) are not translated. Model A-c just
has too many shattered surfaces, such as the crinkly roof or the zig-zagged floor boundary,
usually resulting in spaces that are not enclosed. Additionally, the geometry is much too
detailed in the description of mullions (as shading surface), which hardly contributes to the
simulation accuracy but only slows down the radiation calculation. The geometry of model
A-a is the only one that has been accepted by OpenStudio without errors, compared with
the other two. By focusing on the integrity of space boundary, it eliminates unnecessary
facets and compresses the file size from 29.1 M to 3.14 M, with only 492 surfaces compared
to the original 1400 ones.

Figure 11. Exported gbXML by different modules (case A) (a) By this tool. (b) By “Room Volumes”
in Revit. (c) By “Energy Model” in Revit.

Likewise, three gbXML models are generated for case B, as shown in Figure 12. In
order to obtain the model B-b exported by the “Room Volumes”, the user has to pre-process
the BIM, in the authoring tool, adding room manually or by scripts. This is often the
case that the BIM in actual projects lacks a comprehensive definition of the floor plan
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topology. Case B has decorative curtain systems outside the exterior wall. Model B-b
gets bewildered dealing with the gap between them, and fails in expressing the glazing
panels. Similar to case A, there are surfaces assigned with the wrong type (exterior wall as
shading/adiabatic surface). As for the topology integrity, it is highly dependent on how
rooms/spaces are defined by the modeler. Model B-c is generated by the “Energy Model”
module that can detect space automatically. However, it fails to recognize enclosed (or
almost enclosed) spaces as many as possible, especially in the podium, which cripples the
floor plan topology. The surfaces not assigned to certain space are all turned into shading
surfaces. Unlike the situation of case A, model B-c translates no curtain system due to
the failure in recognizing it as the space boundary. The gbXML documentation process of
BIM authoring tools performs detailed 3D boundary checking and maps every surface to
XML, which lacks robustness when dealing with defective models, thus making it hard for
geometry exchange in real-world BIM-BEM projects. By ensuring an error-less geometry,
model B-a performs better when dealing with defective BIM. It represents more spaces
with less surfaces, contributing to an intact floor plan without any holes, while the other
two are rejected by EnergyPlus for their leaky spaces and facet debris.

Figure 12. Exported gbXML by different modules (case B). (a) By this tool. (b) By “Room Volumes”
in Revit. (c) By “Energy Model” in Revit.

However, there are some limits to the proposed workflow: (1) By the modeling logic
of vertical extrusion, it cannot handle an oblique wall or pitched roof, as well as projects
with a split-level or sloping slab, because the extrusion distance equals a certain space
between the two recognized floors. This logic hinders the tool from passing the official
gbXML level-2 certification, in specific testing cases such as multiple ceiling levels, vaulted
ceiling with dormer and the atrium space (Figure 13). However, it is suited for common
office/apartment projects. The low computational cost and smaller size will make it a useful
alternative, bridging BIM and BEM. (2) The algorithm applies the same construction type to
all interior walls or exterior walls. The detailed information as to the thickness and thermal
properties are unified during the reconstruction of the floor plan. As a common practice,
different interior wall types will not be discriminated by most of the BEM authoring tools,
for their limited impact to the whole building’s simulation result. However, the gbXML will
not describe any columns embedded in the exterior walls, which can be a drawback when
thermal bridging is considered. (3) The workflow aims to tolerate as many modeling errors
as possible and to ensure an error free documented BIM (in gbXML) that can be accepted
by simulation engine. Therefore, it is obscure about the boundary on what kind of model
can be processed and what cannot. Especially when facing real-world modeling failures, it
needs more tests to clarify detailed requirements on inputs. Currently, the effectiveness
still depends on how good the BIM is (the “garbage in, garbage out” principle), and there
is no guarantee on a perfect output every time.
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Figure 13. Failed extrusion. (a) With sloping slab on grade. (b) With pitched roof and dormer/skylight.
(c) Split-level house.

5. Conclusions

In this paper, an automatic workflow is proposed to reconstruct the building geometric
model based on the extrusion of room boundaries. Such a workflow is of less computational
cost and more robust to defective BIMs. The resulting geometry is boundary represented
and airtight, with no gaps among spaces. On top of that, it has fewer surface elements while
keeping the integrity of the original model, which may increase the speed and stability
of the energy simulation. When tested against two real-world projects, this workflow
demonstrates its capability in exporting lightweight and clean gbXML models that can be
accepted by EnergyPlus. Other gbXML files authored by Revit fail. Although the workflow
has some limitations, it could serve as an alternative to the gbXML crafting, when facing
medium or large projects that are not documented very well.

The factor of the modeler should not be neglected in the interoperability of BIM-
BEM. Although much work has been done to bridge the gap, with software cooperating
seamlessly, standard and schema up to date, it is still a struggle to perform BIM-based
energy simulation. It probably relates to a specific time of the evolving BIM market, when
most of the models are not established during the forward design process but transformed
from CAD drawings. The quality of BIM cannot be guaranteed when it is moved away
from the decision table and acting merely as a visualization tool. There needs to be
more standards and guidelines to regulate the modeling process so that the BIM-BEM
interoperability can be improved on a solid basis, as well as a more robust workflow and
software for support.

The gbXML reconstruction approach proposed in this paper is a practical attempt.
There are needs for preliminary energy simulation in real-world projects, such as concept
comparison in parametric design and performance evaluation for code compliance. The
developed tool may help with its applications on defective BIMs and potentially save
human labor. The rebuilding workflow follows the method how professionals build up
models from scratch. That is where artificial intelligence could come in and bring about
more intuitive solutions on fixing defective BIMs. The neural network has demonstrated
its ability in pixel-based floor plan recognition, and its application in the vector world is
one intriguing topic.

The author will continue the development of the tool, aiming to increase its robustness
on defective yet regular-shaped models and improve the user interface. In case of model
failures beyond the capability of the algorithm, a graphical interface is needed to give
instant feedback on potential improvements of the floor plan. To be more robust, a smarter
algorithm on fuzzy space recognition is needed. In addition to that, an extrusion algorithm
with adaptive shape that suits the boundary will be of great help in handling pitched roof
and split-level structures.
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Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
BIM Building Information Modeling/Model
BEM Building Energy Modeling/Model
BPS Building Performance Simulation
B-rep Boundary Representation
CAD Computer-Aided Design
gbXML Green Building Extensible Markup Language
HVAC Heating, Ventilation and Air-Conditioning
IDF Input Data File (of EnergyPlus)
IFC Industry Foundation Class
MCR Multiply Connected Region
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